

Atomic Force Microscopy Study of High Electric Field Breakdown Through Thin Oxide Layers on Copper

R.E. Kirby, C.H. Back, and I. Ben-Yaacov Stanford Linear Accelerator Center

SLAC Workshop on RF Breakdown in Copper Structures
Stanford, CA, August 28-30, 2000

Work supported by Dept. Of Energy contract DE-AC03-76SF00515

8/30/00

Robert E. Kirby

Characterizing HV Breakdown

- HV breakdown and topography are linked
- A little history:

The UHV HV breakdown apparatus

Results - Raising the work function doesn't help

Degassed and Mechanically polished is good

E-P is not better than M-P

Dielectric coating raises the threshold, but...

- What broke down anyway?

Multiple sites

Are some sites more important than others?

How can β be reduced?

High Voltage Breakdown System

Hard Carbon-Coated S/S

Microscopy - the "Topography"

- Optical

Useful for locating large sites M < 1000x, poor vertical resolution

- SEM

Great resolution, wide magnification range Poor contrast on smooth surfaces Misleading images on dielectrics Poor vertical resolution, vacuum only

- AFM/STM

Excellent xyz topographic resolution, to 10 nm Ambient atmosphere Small samples, but tip within 1-2 nm of the surface

High-Field Breakdown AFM

Robert E. Kirby 8/30/00

Atomic Force Microscope Imaging - Cu

 $3.5 \times 3.5 \ (\mu m)^2$

 $1.4 \times 1.4 \ (\mu m)^2$

 $3.5 \times 3.5 \ (\mu m)^2$

 $1.4 \times 1.4 \ (\mu m)^2$

Before UPW Rinse

After UPW Rinse

Now Where?

- -Can we do coatings, where many iterations (e.g., thickness) are involved, more quickly?
- -But...we need topography identification for efficient determination of sites.
- -And...could we be more surgical in choosing sites to measure before we attempt to F-N them (again efficiency).
- -And...does UHV, or even vacuum, matter that much, to first order?

Putting It Together, AFM + F-N

- Generating the breakdown:

Electrical circuit

Tunneling

Breakdowns

- F-N plots at the sites:

Identify the sites at which breakdowns occur

Acquire an F-N plot

Make an AFM topographic image

- Investigations:

Surface quality, processing, hardness

Material quality - inclusions, dislocations,

boundaries, dielectric coatings

AFM Images - Copper

Clean OFE Cu

2.5nm Al₂O₃/Cu 2.5nm Al₂O₃ /10nm Pt/Cu

Native Oxide/OFE Copper

"Tunneling"

2.5nm Al₂O₃/20nm Mg/OFE Copper

"Breakdown"

Successive Voltage Scans 2.5nm Al₂O₃ on OFE Copper

Fowler-Nordheim Equation

$$\frac{I_{FN}}{\alpha} = \frac{q^2}{8\pi h} \frac{m_0}{m^*} \frac{1}{t(E)} \frac{\beta^2 V^2}{\phi s^2} \exp \left\{ -\frac{8\pi}{3} \frac{\sqrt{2m^* q}}{h} v(E) \frac{s}{\beta V} \phi^{3/2} \right\}$$

α - Effective emission area

s - Oxide thickness

φ - Barrier height at emitter

m* - Electron effective mass

Reducing Fowler-Nordheim

The problem: Too many parameters

The partial solutions: Eliminate some by choosing surfaces with known known properties

- Effective emission area: Look in the SEM at the tip
- Oxide thickness: Deposit known thicknesses
- Barrier height: Deposit surfaces with known work functions
- Geometry: Use parallel plate geometry (Oxide thickness is small compared to tip radius, so

 $E = \beta V/S$

where β is the "field enhancement factor S is the oxide thickness

2.5nm Al₂O₃/20nm Pt/OFE Copper

Fit: $\phi = 4.5 \text{ eV}, \beta = 1$

Some Early Results

- Copper with oxide inclusions breakdowns easily
- On good copper, grain bodies and boundaries behave similarly and well
- Break downers: Poor Cu, Al oxide/Cu, Al oxide/Mg/Cu
- Non-break downers: Native oxide/Cu, Al Oxide/Pt/Cu
- Successive breakdowns at the same place occur at successively lower fields
- Non-breakdown I-V plots give single-digit betas