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1 INTRODUCTION e ‘ s
= p — ER

In accelerators with very short bunches, such as is envi-
sioned in the undulator region of the Linac Coherent Light a
Source (LCLS)[1], the wakefield due to the roughness of l
the beam-tube walls can have important implications on the
required smoothness and minimum radius allowed for the
beam tube. Of two theories of roughness impedance, one Figure 1: The geometry considered.
yields an almost purely inductive impedance[2], the other a
single resonator impedance[3]; for smooth bunches, whose
length is large compared to the wall perturbation size, the$@e eigenfrequencies are found by setting its determinant
two models give comparable results[4]. to zero. We demonstrate below that, for our parameter

Using very detailed, time-domain simulations it wag€gime, the system matrix can be reduced to dimension 1,
found in Ref. [3] that a beam tube with a random, rougi@nd the results become quite simple.
surface has an impedance that is similar to that of one with N the tube region, the-component of the Hertz vector
small, periodic corrugations. It was further found that the < 4T

. N ) . I n lo(xn?) _i5 ,

wake was similar to that of a thin dielectric layer (with I, = — Z — € JBnz (2)
dielectric constant ~ 2) on a metallic tube:V, (s) = W E=t X To(xna)

20 cos kos, with wave number and loss factor with I, the modified Bessel function of the first kind, and

_ 2 _ ZQC . 271'77,
ko= = and Ro=o0s () Bo=hot ==, a=A-k, @)
with a the tube radius§ depth of corrugation, and, =  with 3, the phase advance akdhe wave number of the

377 €. For the periodic corrugation problem this resulimode. In the cavity region,

was inferred from simulations for which the peripd- 4. o

On the other hand, at the extreme of a tube with shallow 77 _ _ Z Cs Ro(Lsr) coslag(z+g/2)], (4)
oscillations, withp > 4, the impedance was found, by a : = I'? Ro(I'sa) ’
perturbation calculation of Papiernik, to be composed of

many weak, closely spaced modes beginning just above pi as = ™ , 2 =a—k%, (5)
phase advance[5]. g

In this report we find the impedance for two geometriegto(I's7) = Ko(I's[a+d])Io(Tsr)—Io (I's [a+6]) Ko(L's7) |
of periodic, shallow corrugations: one, with rectangular (6)

corrugations using a field matching approach, the othekith Ko the modified Bessel Function of the second kind.
with smoothly varying oscillations using a more classical £- andH are given by
perturbation approach. In addition, we explore how these o2 oIl
results change character as the period-to-depth of the wallE, = (8—2 —+ kz) I1, , ZoHy = —jk 5 z
undulation increases, and then compare the results of the “ "
two methods. Matching these fields at = @, and using the orthogo-
nality of e=#»* on [~p/2, p/2], andcos[a,(z + g/2)] on
2 RECTANGULAR CORRUGATIONS [—¢9/2, ¢/2] we obtain a homogeneous matrix equation. To

. o ) _ find the frequencies, the determinant is set to ziego;
Let us consider a cylindrically-symmetric beam tube with

the geometry shown in Fig. 1. We limit consideration here det [R _ (2_9) NTIN] -0 (8)
to the cased/a small; for the moment, in addition, let ’

d/p 2 1. We follow the formalism of the field matching
program TRANSVRS[6]: In the two regions, < « (the
tube region, Region I) and > « (the cavity region, Region _ 26, { sin(Bng/2) : seven )
I1) the Hertz vectors are expanded in a complete, orthogo-""* = (32 — a2)g | cos(Bng9/2) : sodd

nal set;~, andH s are matched at = «; using orthogonal- . .

ity properties an(z)infinite dimensional, homogeneous matriQnOI the diagonal matricés andZ by

NG

with the matrixVgiven by

equation is generated,; this matrix is truncated; and 1‘ina||}7/t (14+600)k ( R ) I o— ( I )
s — s0JRQ 3 n = RKa | — .
t Work supported by the U.S. Department of Energy under contract zRo Tsa a1l Xna
DE-AC03-76SF00515. (10)



For the beam, on average, to interact with a mode, one W ‘/‘ g
space harmonic of the mode must be synchronous. We will 0.8 F p/a= .050 -~ ]
pick then = 0 space harmonic to be the synchronous one; T E g/a= .025 v=c line ]
i.e. let 3y = k (we take the particle velocity to be = e ogl 9/a= .025 - —]
¢). We truncate the system matrix to dimension 1, keeping; = ]
only then = 0 ands = 0 terms in the calculation (the =~ ]
other terms are small). Now k¢ is small, then the = 0 F 3
term inR becomesRy = 2/(kd), then = 0terminZ is 0.2 —
7y = ka/2,andNyo = 1. Eq. 8 then yields C | | | | ]

b 2P (11) °%0 o0z 04 06 o8 1.0
adg’ Bp/m
which, forp = 2g¢, equalsk; of Eq. 1. ) ) ]

The loss factor is given bi. = |V|?/[4Up(1 — B,)][7], Figure 2: Dispersion curve example.
with V' the voltage lost by the beam to the modé the _
energy stored in the mode, ant} the group velocity j"/‘g‘:?:‘ solid fﬁ/‘a‘:_;opgﬁ‘d??h‘es‘ “5/‘&‘:10‘:{
over c. The voltage lost in one cell is given by the syn- R.O—- ) -
chronous(n = 0) space harmonicV = Ayp, and the u ]
energy stored in one cell/ = 1/(2Zyc) [ E - E* dv, 15— —]
is approximately that which is in the = 0 space har- c ]
monic: U = nA2a’p(1 + k%a?/8)/(2Zqc) (for details, 10— .
see Ref. [6]). Fom,, we take Eq. 8 truncated to dimen- : ]
sion 1, and expand near the synchronous point. Taking the 0.5 —]
derivative with respect t@, and then settingg, = & we C e
obtain: ool b by |

409 0.0 0.2 0.4 0.6 0.8 1.0
(1 - 69) = % . (12) p/po

The loss factor becomés = K ;. . . .
The above method can be extended to modes of higherFlgure 3: An example showing the effect of varying

multipole momentr, in which case the beam will excite

hybrid modes rather than the pure TM modes of above][

Again the system matrix can be reduced toithe 0 and

s = 0 terms, and the lowest mode wave number and lo

factor have a simple form (fdr < m < a/4):

6‘]Nhere27r/n is the period of corrugation, andis its am-
$Iitude. We assume that both the amplitude and the wave-
Sngth are smallh < « andka > 1. This allows us

to neglect the curvature effects and to consider the surface
(m+ 1) 7 locally as a plane one. We will also assume a shallow cor-

P 0C : . . S
~— and K=—1—, (13) rugationhx < 1, i.e. the amplitude of oscillation is much
adg ra2(m+1) .
smaller than the period.

and(1— 3,) = m(m+2)dg/(ap). We note that the dipole  Introducing a local Cartesian coordinate systeny, =

(m = 1) frequency is equal to the monopdle = 0) fre-  with y = a — r (directed from the wall toward the beam
quency. Also, the wake at the origin is the same as for thaxis), andr directed along, the surface equation becomes
resistive-wall wake of a cylindrical tube[8], as we expect. y = y,(z) = hsin xz. The magnetic field near the surface

Running TRANSVRS with a matrix of dimension 40, H,.(y, ) does not depend on (that is¢) due to the ax-

we obtain a typical dispersion curve (see Fig. 2). Hergymmetry of the problem. It satisfies the Helmholtz equa-
k/ko = 1.07, K/Ko = .94. Note that even whefi/a is  tion

not so smalle.g. for bellows withd /a ~ .2[9], the analyti- 0?’H, 0%H,
cal formulas are still useful. Fig. 3 shows how the strength Ay? t 922
and frequency of the mode change as the period of undula- .
tion is increased. The scale over whi€hdrops to zero is with the boundary condition
po & w\/adg/2p. By p ~ po, the one dominant mode has
disappeared, and we are left with the many weak, closely
spaced modes, beginning just abdye = =, that were
found by Papiernik.

k=

+k*H, =0 (15)

(ﬁVH)|y:yu = Oa (16)

where 77 is the normal vector to the surfacei =
(0,1, —hk coskz).
Note that the longitudinal electric field’, can be ex-

3 SINUSOIDAL CORRUGATIONS oressed in terms of

Let us assume now that the pipe surface is given by o
r=a— hsinkz, (14) EZ:_E dy

(17)



Using the small parametéy/, we will develop a perturba- _dotdash ¢/a=.003; dashes ¢/a=.03

tion theory for calculation of{, near the surface and find 05 . | |
how £, is related taH . 04—

In the zeroth approximation, thedependence ofi,; is E
dictated by the beam current periodicity, 0.3

Ho(y, z) = H(y)e*=. (18) 0.2 ;

Putting Eq. (18) into Eq. (15) we find thadt?# /dy? = 0, 01
hence#(y) = Hy, + Ay, where the constant can be E
related, through Eq. (17), to the electric field on the atef 00,
A =ik, We will see below that! is second order in. h(ax®)V? /2

For a flat surface, for whickk = (0,1,0), from the
boundary condition (16), we would conclude that= 0,
however, the corrugations result in a nonzérand hence
E,. Substituting the magnetic field (18) into the right hand
side of Eq. (16) one finds We should mention here that the perturbation theory

breaks down for very small values éf Indeed, we im-
AVH = _lihkﬁHO eilktn)z _ pilk=r)z| _ ke Hoetke plicitly assumed that the satellite harmonics in Eq. (21)
2 are localized near the surface, otherwise our approxima-
Clearly, the boundary condition is not satisfied in this aption of plane surface becomes invalid. Hence, we have to
proximation. To correct this, we have to add satellite mode€quire that — 2k >> a~*, which gives the following con-

Figure 4: Frequency and loss factor as function of height.

to the fundamental solution (18) dition of applicability: A > a~'/*x~%/4. This condition
ihs explains why this mode was not found by Papiernik: be-
Hy(y, z) = H(y)e™ + Hi(y, 2), (19)  ing perturbative in parametérthe approach developed in

i(ktr)z - i(k—r)z his paper is applicable only wheéncan be made arbitrar-
Hi(y, z) = Bt (y)e'F+97 + B (k=r)z — (20) | .
1y, 2) (y)i + B (20) ily small. Let us also mention that our approach can be
The dependence 8= versusy can be found from the applied to the rectangular corrugations problem: we take
Helmholtz equation, Faraday's law, to obtain the averaged longitudinal field at
. r=a,{E,) = ikdgH,/p, and then follow the method of
B = B:I:e—yx/n :I:ZRk’ (21) < > g /p
0 Ref. [10] to reproduce Eq. 11.
WhereBOi are constants. In order fd#* to exponentially Finally, in Fig. 4 we include also the results of Fig. 3,
decay iny, we have to assume here that « /2. obtained by field matching (the dashes, the dotdashes).
Substituting; terms into the boundary condition For the comparison we make the correspondences with the
(16) generates first order terms that havelependence first Fourier component of the wall shape:= 2/p and
expi(k + )z, and second order terms proportional tdt = 26/m. We note that even though the rectangular corru-

exp(ikz). From the former one finds that gations violate our requiremen.t fpr smoothness, the results
. for the two methods are very similar.
BE — _ iksHoh (22) Acknowledgement: We thank A. Novokhatskii for his
0 k2 + 2kk’ contribution to our understanding of the problem of rough-

and the latter gives an expression for the tangential electfic >> impedance.
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