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I. INTRODUCTION

Interaction of a bunch of particles with the laser �eld in an undulator has been described

by Becker and McIver [1] using operator formalism of quantum mechanics. This note re-

produces the main results of this paper in a di�erent formalism where we follow the time

evolution of the density matrix of the system. This approach will be used in the following

publication to study the optical stochastic cooling [2].

The number of particles within a bunch is arbitrary, but theory neglects retardation

which would lead to bunching in the self-ampli�cation regime. In this sense the interaction

is weak.

II. KINEMATICS

Here we reproduces for completeness the main features of laser/beam kinematics and

introduce the density matrix of the beam.

The circularly polarized undulator in the lab (L) frame is described by the �eld ~BL(z) =

Bu[~y cos(kuzL) + ~x sin(kuz)], or transverse vector potential ~Au;L = (Bu=ku)[~x sin(kuzL) +

~y cos(kuz)], where zL is coordinate along the axes of the undulator.

The equilibrium particle is de�ned as a particle moving in the lab frame with relativistic

factor 
0 and velocity along the undulator axes v0;z = v0 cos �, where � = K0=
0, K0 is

undulator parameter, K0 = eBu=(m0c
2ku). The equilibrium particle with momentum p0

in the lab frame is at rest in the frame moving with velocity v=c = kL=(kL + ku), 
 '

0=
q
1 +K2

0 , where kL = !L=c = 2ku

2
0=(1+K

2
0), !L is frequency radiated by the equilibrium

particle in the lab frame in the forward direction. The frequency ! = ck in the moving

frame, k = !=c = 
(v=c)ku ' 
ku. A particle with o�set momentum in the lab frame

pL = p0 + �pL and the longitudinal velocity vz;L = vL cos � has, in the moving frame,

longitudinal momentum pz=(m0c) = (�pL=p0)=
q
1 +K2

0 . This de�nes transform of the rms

bunch distribution to the moving frame. In particular, particles can be considered as non-

relativistic in the moving frame for small �pL=p0.

In the moving frame with coordinates (z; t), the undulator �eld ~B(z) = ~y
Bu cos[
ku(z+
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vt)] can be considered as 
ux of equivalent photons with frequencies ! = 
vku. This

frequency is equal to the frequency of photons radiated by the equilibrium particle in the

moving frame. The last is the de�nition of the Bambini-Renieri moving frame and shows

that, for the equilibrium particle, radiation is just back-scattering of undulator photons.

In quantum mechanics, the vector potential operator of the EM �eld in the moving frame

in Shrodinger picture is

~A =

s
2�hc2

V !
~y[âeikẑ + cc]; j~yj = 1; (1)

where ẑ is operator of longitudinal coordinate, and V is normalization volume. As usual, â

is Shrodinger time-independent annihilation operator, âjn >= jn � 1 >
p
n, where jn > is

the n-photon state. The undulator �eld can be described in the moving frame as an external

time-dependent �eld, for example,

Au(z) =
Bu

2iku
ei
ku(ẑ+vt) + c:c: (2)

Hamiltonian of the system H = (p � e
c
[ ~Au + ~A])2=2m0 in 1D case does not contain the

linear in A term [3] for longitudinal initial p(0), because both operators Âu and Â are

transverse and the canonical momentum p is constant of motion.

The average < a >/ e�i!t. Therefore, neglecting the small corrections 2�r0c
2=(V !) to !

and (eAu=c)
2 to m0c

2, we get [1]:

H =
NBX
i=1

p̂2i
2m0

+ h!(a+a+ 1=2)� ihg[aue
2ikẑ+i!t � cc]: (3)

The sum here is over NB particles in the bunch, parameter of interaction

g =
r0Bu

2ku

s
2�c2

V h!
= cK0

s
e2

hc

�

2kV
; (4)

where r0 = e2

m0c2
, K0 = eBu=(m0c

2ku). The interaction time in the moving frame is t =

2�Nu=(v
ku), where Nu is number of the undulator periods.

In classical mechanics, bunch of particles is described approximately as product of nor-

malized particle distribution functions �NB
i=1f(

~Pi; ~ri),
R
d~PdV f(~P ;~r) = 1. Respectively,

in quantum mechanics, it can be described as product of one-particle density matrices

3



�̂ = j~p0 > �(~p0; ~p) < ~pj, where the single particle density matrix �(~p0; ~p) in momentum

representation is related to f(~P ;~r) by the Wigner's transform:

f(~P ;~r) =
Z

V d~q

(2�h)6
ei~q~r=h�(~P + ~q=2; ~P � ~q=2): (5)

The density matrix �(~p0; ~p) is normalized by the condition

X
~p

�(~p; ~p) = 1;
X
~p

=
Z

V d~p

(2�h)3
: (6)

Inverse transform

�(~p0 ~p) =
Z
(2�h)3d~r

V
e�i(~p

0�~p)~r=hf(
~p+ ~p0

2
; ~r) (7)

can be used to de�ne density matrix corresponding to classical distribution function. Con-

sider the Gaussian distribution function with (z; p) correlation speci�ed by parameter �:

f(~p;~r) =
1

2���
e�

(p�p0)
2

2�2
� (z�z0��p)

2

2�2 Æ(~r?)Æ(~p?): (8)

The corresponding density matrix �(~p0; ~p) = �?(~p0?; ~p?)�l(p
0
z; pz), where

�?(~p
0
?; ~p?) =

(2�h)2

S
Æ[
~p0? + ~p?

2
]; (9)

�0l (p
0; p) =

h
p
2�

L�
e�(i=h)(p

0�p)(z0+�(p+p0)=2)�(1=2)(�=h)2 (p0�p)2�(1=2)(1=�)2((p+p0)=2�p0)2 : (10)

Here V = SL. As usual, integration over p can be converted to the sum. This can be

done using correspondence shown in Eq. (6) and replacing (2�h=L)Æ(p� p0) by Kroneker's

symbol Æp;p0, LÆ(z � z0) by Æz;z0, and
R
dz=L by the sum over z,

P
z. For example, transform

from the momentum representation of an operator O to the coordinate representation is

given by < p0jOjp >= P
z;z0 < p0jz0 >< z0jOjz >< zjp >, where < zjp >= eipz=h, and

P
z < p0jz >< zjp >= Æp0;p.

III. BEAM DYNAMICS

Initial state of the system with n-photons and a bunch of particles with moments pi,

i = 1::NB is transformed by the interaction with the mode k to the vector

j	(t) >=X
li;pi

jpi � 2hkli; n + l� >

s
n!

(n+ l�)!
Fn(t; pi; li)e

�(it=h)
P

i
E(pi;li)�i!t(n+l�); (11)
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where E(pi; li) = (pi � 2hkli)
2=(2m0) and l� =

P
i li.

Equation for the amplitudes F (t; [pi; li]) follows from the Shrodinger equation:

_Fn(t; pj; lj) = g
X
j

[(n+l�)Fn(t; pj; lj�1)e�2i(k=m0)t(p�2hklj)�Fn(t; pj; lj+1)e2i(k=m0)t(pj�2hklj)]:

(12)

Here, we use < pj�2hkljje�2ikẑjp0j�2hkl0j >= (2�h=L)Æ[p0j�pj+2hk(lj� l0j�1)], and write

explicitly only quantum numbers which are changed by the interaction, Fn(t; pj; lj � 1) =

Fn(t; (p1; l1)::; (pj; lj � 1); ::; pNB ; lNB).

Neglecting terms hk2=2m0 in the exponent (i.e., in the laboratory frame, terms of the

order of hkukL=m0 << 1), we can solve Eq. (12) by the Fourier transform

Fn(t; pj; lj) = f�NB
i=1

Z 2�

0

d�i

2�
eili�igF (t; p1::pNB ; �1; ::; �NB): (13)

Function F (t; �) = F (t; p1; ::pNB ; �1::�NB) is given by

_F (t; �) = �gv�0F (t; �) + g(n+ 1)v0F + igv0
X
i

@F

@�i
; (14)

where

v0(t; �) =
X
i

e�i�it�i�i ; �i =
2kpi

m0

: (15)

If initial condition is the n-photon state j	(0) >= jpi; n >, then Fn(0; pi; li) = �iÆli;0 and

F (0; �) = 1.

Characteristics �(t) of the Eq. (14) are de�ned by _�i(t) = �igv0(t; �), with solutions

�i(t) = �0i + V (t), where V (0) = 0, �0i = �i(0) are constants, and V (t) is the same for all

�i(t).

The function V (t) satis�es _V (t) = �igv0. Substitution of �(t) in Eq. (15) gives

v0(t; �) = u0(t; �
0)e�iV (t); u0(t; �

0) =
X
i

e�i�it�i�
0
i : (16)

Hence, (@=@t)eiV (t) = gu0(t; �
0),

eiV (t) = 1 + g
X

aj(t)e
�i�0j ; (17)

where

ai(t) =
sin(�it=2)

(�i=2)
e�i�it=2; _ai(t) = e�i�it: (18)
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Eq. (17) de�nes characteristics �i(t)

ei�i = ei�
0
i [1 + g

X
aj(t)e

�i�0
j ]; e�i�i = [ei�i ]�1: (19)

Eq. (19) can be reversed to get constants of motion �0i in terms of �i. De�ne �(�1; :::; �NB)

as ei�
0
i = �ei�i(t). Substitute this in the right-hand-side of Eq. (19) to get

� = 1� g
X
j

aj(t)e
�i�j : (20)

Hence,

ei�
0
i = ei�i [1� g

X
aj(t)e

�i�j ]; e�i�
0
i = [ei�

0
i ]�1: (21)

The general solution of the Eq. (14) can be found as F (t; �) = �(t; ei�
0
i ), where � is arbitrary

function of the arguments �i(t; �) � ei�
0
i given by Eq. (21). Eq. (14) in terms of t; � takes

form

@�(t; �)

@t
= �gv�0�(t; �) + g(n+ 1)v0�; (22)

where

v0(t) =
u0

1 + g
P
i ai(t)=�i

; v�0(t) = u�0[1 + g
X
i

ai(t)=�i]: (23)

Integrating Eq. (22) over t and substituting �i from Eq. (21) gives

F (t; �) = �0(�)
e
�g
P

i
a�i e

i�+(g2=2)j
P

i
a�i e

i�j2�(g2=2)
P

i;j
e
i(�i��j)

R t
0
d� [aj _a

�

i�a�i _aj ]

[1� g
P
i aie

�i�i]n+1
: (24)

Note, a(0) = 0. Hence, initial condition F (0; �) = 1 allows us to choose �0(�) = 1.

Parameter �t is of the order of �t 4�2Nu(Æp=p)L=
q
1 +K2

0 where Nu is number of periods

the undulator and (Æp=p)L is rms energy spread in the lab system. We assume that �t <<

1 what means that the rms energy spread of the bunch is small compared to the width

�!=! ' 1=Nu of the mode. In this case, the integral term in the numerator

Z t

0
d� [aj _a

�
i � a�i _aj] '

it3

6
(�i + �j)� t4

12
(�2i � �2j); (25)

i.e. �t times smaller than other terms in the exponent (which are of the order of gt and

(gt)2) and can be neglected. We retain only diagonal terms i = j for comparison with a
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single particle theory. Remaining terms can be written introducing additional integration

over � in terms of b = g
P
i ai(t)e

�i�i :

F (t; �) =
Z 1

0
d�
�n

n!
e��e�b

�+�b+(1=2)bb� : (26)

Let us factorize this expression using identity

e�b
�+�b+(1=2)bb� = Ô��e

�b��b�j�=1; (27)

where operator Ô�� = e�(1=2)
@2

@�@� .

Now integration in Eq. (13) over �i can be easily carried out for each particle usingZ
d�

2�
eil���a

�ei�+�ae�i� = (
�a

�a�
)l=2Jl(2

p
��aa�): (28)

Replacement k ! �k in the left-side of Eq. (28) changes the RHS by Jl ! Il with the rest

intact.

Thus,

Fn(t; p; l) =
Z 1

0
d�
�n

n!
e��Ô��f�NB

i=1(
�ai

�a�i
)li=2Jli(2gjaij

p
��)e�(g

2=2)
R t
0
d� [ai _a

�

i�c:c]gj�=1; (29)

where Jl are Bessel functions.

For a single particle, NB = 1, identity

Ô��(
�

�
)l=2Jl(2gjaj

p
��)j�=1 = �l=2e(1=2)g

2jaj2Jl[2gjaj
p
�]; (30)

which can be veri�ed using series for the Bessel function, allows us to write

Fn(t; p; l) =
Z 1

0
d�
�n+l=2

n!
e��(

ai

a�i
)l=2Jl(2gjaj

p
�)e(1=2)g

2jaj2e�(g
2=2)
R t
0
d� [ai _a

�

i�c:c]: (31)

The phase factor exp[�(g2=2) R t0 d�(a _a� � c:c:)] = expf�i(g=�)2[�t� sin(�t)]g.
Integration over � gives [5] result in terms of Laguerre polynomials Lln:

Fn(t; p; l) = (ga)le�(1=2)g
2jaj2Lln(g

2jaj2)e�(g2=2)
R t
0
d� [ai _a

�

i�c:c]: (32)

Eq. (32) reproduces Dattoli-Renieri [4] result. Eq. (29) de�nes evolution of the initial

state of the system for a bunch with Nb particles.

It is easy to see that Eq. (12) conserves the norm. By de�nition, function F (t; p; l) =

Fn(t; p1; l1; :::; pNB ; lNb) is normalized

X
l1;:::;lNB

n!

(n+ l�)!
jFn(t; p; l)j2 = 1; l� =

X
i

li: (33)
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IV. TIME EVOLUTION OF THE DENSITY MATRIX

Let us consider time evolution of the density matrix �̂ describing bunch of NB particles

with momentum p1; ::; pNB . At the entrance to the undulator, there is no radiation,

�̂(0) = jp0; p0?; 0 > �0?�
0
l < p; p?; 0j; (34)

where �0? and �0l are de�ned by Eqs. (9) and (10). �̂(0) is normalized by the condition

Tr[�̂(0)] = 1, or Z
V d~p

(2�h)3
�0?�

0
l = 1: (35)

In the 1D case, �? does not change and it is suÆce to consider evolution of the longitudinal

part of �̂(t).

In the undulator, the state jp; 0 > evolves to the state j	 > according to Eqs. (11), (29).

The density matrix at the end of the undulator can be written separating variables of the

individual particles and global parameters of the radiation l�, l
0
�. It can be done introducing

additional integration:

X
l1;:::;lNB

=
X

l1;:::;lNB

X
l�

Æl�;l1+:::+lNB =
Z
d 

2�
e�il� �NB

i=1

X
li

eili : (36)

The density matrix takes form

�̂(t) = �?(~q
0
?; ~q?)�(q

0; q; l�; l
0
�)jq0; ~q0?; l0� >< q; ~q?; l�j; (37)

�(q0; q; l0�; l�) =
1q
l�!l

0
�!

Z
d d 0

(2�)2
e�i(l

0

�
 0�l� )ei!t(l��l

0

�
)
Z
d�d�0e����

0

Ô��Ô�0�0Floc(q
0; q):

(38)

Here jq > stands for the set jq1::qNB >, and Floc(q0; q) = �NB
i=1fi(q

0
i; qi), where

fi(q
0; q) =

X
l0;l

(
�a

�a�
)l=2Jl[2gja(t)j

p
��](

�0[a0]�

�0a0
)l
0=2Jl0[2gja0(t)j

p
�0�0]e

it
2m0h

(q02�q2)
ei(l

0 0�l )�0l ;

(39)

a = a(q; t), a0 = a(q0; t), and �0l = �0l [q
0 + 2hkl0; q + 2hkl] is de�ned in Eq. (10).

Eq. (38) is generalized to the case of initial n photon state replacing factor 1=
q
l�!l

0
�! byq

n!n0!=[(n+ l�)!(n0 + l0�)!]�
n(�0)n

0

.
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Let us consider initial density matrix, Eq. (10), with no z; p correlation (� = 0). It

describes probability to �nd a particle with moment p at location z. For a particle within a

bunch with rms �B and �B centered at z0 = p0 = 0,

�0l (q
0 + 2hkl0; q + 2hkl) =

h
p
2�

L�B

e�
1
2
(
�B
h
)2[q0�q+2hk(l0�l)]2�(1=2)(1=�B )2[(q+q0)=2+hk(l0+l)]2 : (40)

If the wave length of radiation is small compared to the rms bunch length, k�B >> 1, the

non-diagonal terms l0 6= l are exponentially small. We also can approximate ai(t) ' te�(i=2)�it.

Then Eq. (39) is simpli�ed

fi(q
0
i; qi) =

X
l

(
�

�
)l=2Jl[2gt

p
��](

�0

�0
)l=2Jl[2gtj

p
�0�0]eil(�

0��)te
it

2m0h
(q02�q2)

eil( 
0� )�0l ; (41)

where �0l (q
0; q) = h

p
2�

L�B
e�

1
2
(
�B
h
)2(q0�q)2�(1=2)(1=�B )2[(q+q0)=2+2hkl]2.

A The norm of the density matrix

First let us show that the density matrix Eqs. (38), (41) is normalized Tr[�̂(t)] = 1. This

also allows us to check approximations we are going to make. Trace

Tr[�̂(t)] =
X
l�

1

l�!

Z
d d 0

(2�)2
e�il�( 

0� )
Z
d�e��Ô��

Z
d�0e��

0

Ô�0�0�
NB
i=1[
X
qi

fi(qi; qi)]: (42)

Integration over dqi gives

X
qi

fi(qi; qi) =
1X

li=�1
(
�

�
)li=2Jli [2gt

p
��](

�0

�0
)li=2Jli[2gtj

p
�0�0]ei( 

0� )li : (43)

The sum here includes li < 0 even for l� >= 0 due to absorption of photons radiated by other

electrons in a bunch. For gt << 1, we can use approximation Jl[x] ' (xl=l!)[1� x2=(l + 1)]

for l > 0, and Jl[x] = (�1)lJjlj(x) for l < 0. Neglecting terms of the order of o(gt)4, we get

X
qi

fi(qi; qi) = 1� g2t2(��+ �0�0) + g2t2[��0ei( 
0� ) + ��0e�i( 

0� )]: (44)

With the same accuracy,

�NB
i=1[
X
qi

fi(qi; qi)] = e�NBg
2t2(��+�0�0)+NBg

2t2[��0ei( 
0
� )+��0e�i( 

0
� )]: (45)
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This takes correctly into account terms of arbitrary power of NBg
2t2 neglecting terms with

additional factor g2t2.

Calculation of Tr[�̂(t)] can be simpli�ed, �rst, integrating by parts

Z
d�e��Ô��f(�; �) =

Z
d�e��e�(1=2)

@
@� f(�; �) (46)

and then by the identity e�(1=2)
@
@�f(�; �)j�=1 = f(�; ��1=2)j�=1 = f(�; 1=2) for an arbitrary

f(�; �). This gives

Tr[�̂(t)] =
X
l�

1

l�!

Z
d d 0

(2�)2
e�il�( 

0� )
Z
d�

Z
d�0e�(1+p)(�+�

0)e2p[��
0ei( 

0
� )+(1=4)e�i( 

0
� )]; (47)

where p = (1=2)NBg
2t2. Integration over  ;  0 now can be carried out using Eq. (28):

Tr[�̂(t)] =
X
l�

1

l�!

Z
d�e��

Z
d�0e��

0

e�p(�+�
0)(4��0)l�=2Il�(2p

p
��0): (48)

Remaining integrals can be calculated using series for the Bessel function

Tr[�̂(t)] =
1X
l�=0

1X
n=0

(n+ l�)!

n!l�!

p2n(2p)l�

(1 + p)2(n+l�+1)
: (49)

The sum
P1
l=0(n+ l)!xl=(n!l!) = (1� x)�n�1 and the sum over n is geometric series.

This gives, �nally, the desirable result Tr[�̂(t)] = 1.

B Density matrix of radiation

The radiation density matrix at the exit of the undulator can be obtained averaging Eq.

(37) over the state of the bunch,

�̂rad(t) = �rad(l
0
�; l�)jl0� >< l�j; (50)

where

�rad(l
0
�; l�) =

1q
l�!l

0
�!

Z
d d 0

(2�)2
e�i(l

0

�
 0�l� )ei!t(l��l

0

�
)
Z
d�d�0e����

0

Ô��Ô�0�0

X
q

Floc(q; q):

(51)

The last factor,
P
q Floc(q; q) is still given by Eq. (45). Eq. (46) and the following discussion

allow us to simplify �rad(l
0
�; l�) and, after integration over  ;  0, it becomes the diagonal

matrix

�rad(l
0
�; l�) = Æl�;l0�

1

l�!

Z
d�d�0e�(1+p)(�+�

0)(4��0)l�=2Il�(2p
p
��0): (52)
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Integration here is the same as in the previous section giving

�rad(l
0
�; l�) = Æl�;l0�

(2p)l�

(1 + 2p)l�+1
: (53)

The average number of radiated photons < a+a >= Tr[�̂rada
+a] =

P
l�
l��rad(l�; l�) is

< a+a >= 2p = NB(gt)
2. Hence, parameter of expansion (gt)2 in Eq. (44) is the number

of photons radiated in the undulator per particle. More exactly, the number of photons

is a+a
, where 
 is the phase volume of the mode 
 = V d3k=(2�)3. In the lab frame,

d3kL = �k3L(d!L=!L)d�
2, where d!L=!L = 1=(2Nu) is the relative frequency spread, and ��

2

is solid angle of the mode, � =
q
�L=Lu = (1=
0)

q
(1 +K2

0 )=(2Nu) [7]. In the moving frame

where kL = 2
k, k = 
ku, and relativistic factor 
 = 
0=
q
1 +K2

0 , d
3k = �k3=[N2

u(1 +K2
0)].

This gives number of photons in the mode: k a+a
 = (gt)2
 = (�=4)( e
2

hc
)K2

0=(1 +K2
0 ).

In the same way, < (a+a)2 >=
P
l�
l2��rad(l�; l�) or < (a+a)2 >= x(d=dx)x(d=dx)(xl=(1+

x)l+1)jx=2p = 2(2p)2 + 2p. Hence, the rms spread of number of photons increases with the

average number of photons. Eq. (53) reproduces the thermal statistics of radiation [6].

C Density matrix of the bunch

The density matrix of the bunch �̂bunch(t) can be obtained from Eq. (37) as

P1
l�=0 �(q

0; q; l�; l�).

�̂bunch(t) = �?(~q
0
?; ~q?)�B(q

0; q; )jq0 >< qj; (54)

where

�B(q
0; q) =

X
l�

1

l�!

Z
d d 0

(2�)2
e�il�( 

0� )
Z
d�d�0e����

0

Ô��Ô�0�0Floc(q
0; q): (55)

Here Floc(q
0; q) = �NB

i=1fi(q
0
i; qi), and fi are de�ned by Eq. (39).

For illustration, let us consider only diagonal terms, �B(q; q). In this case, fi(q; q) and

Floc are di�erent from those in Eq. (43) and Eq. (45) only by additional factor �0l =

h
p
2�

L�B
e
� 1

2�2
B

(qi+2hkl)2

.

Neglecting small terms o(gt)4, we get similar to Eq. (44)

fi(q
0
i; qi) =

h
p
2�

L�B

f[1� g2t2(��+ �0�0)]e
� 1

2�2
B

q2i
+ (56)
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+g2t2[��0ei( 
0� )e

� 1

2�2
B

(q+2hk)2

+ ��0e�i( 
0� )e

1

2�2
B

(q�2hk)2
]: (57)

With the same accuracy,

Floc(q; q) = [�i�0(qi)]e
�2p(��+�0�0)e2p[��

0ei( 
0
� )��+��

0e�i( 
0
� )�+]; (58)

where �0(q) =
h
p
2�

L�B
e
� 1

2�2
B

q2

, and

�� =
1

NB

NBX
i=1

e
� 1

2�2
B

(�4hkqi+(2hk)2)
: (59)

Using Eq. (46)and Eq. (28), we get

�B(q; q) = [�i�0(qi)]
X
l�

1

l�!

Z
d�d�0e�(1+p)(�+�

0)(4��0)l�=2Il�(2ps
p
��0)[

��
�+

]l�=2; (60)

where s =
p
���+. Integrals can be calculated as in Eq. (48), what gives �nally

�B(q; q) = [�i�0(qi)]
1

1 + 2p(1� ��) + p2[1� ���+]
: (61)

Approximately,

�� = 1� 2(hk)2

�2
B

+ (2
(hk)2

NB�
4
B

X
q2i �

2hk

NB�
2
B

X
i

qi: (62)

Expanding �B(q; q) in series over hk,

�B(q; q) = [�i�0(qi)]f1�(2hk)2

�2
B

p(1+p)� 4hkp

NB�
2
B

X
i

qi+
(2hk)2p(1 + p)

NB�
4
B

X
i

q2i+o(
(2hkp)2

N2
B�

4
B

(
X
i

qi)
2)g;

(63)

it is easy to check that the norm is preserved
P
q �B(q; q) = 1 with the accuracy of terms

o(Nb(gt)
4) we neglected. The average < q >= �4hkp=NB, and < q2 >= �2

B. This cor-

resonds to energy loss < q >= �2hk(gt)2. The rms energy spread does not changed.

Hence, modulation in the bunch phase space by radiation is due to non-diagonal terms

we neglected so far. They will be considered in the next paper.

V. CONCLUSION

The main results by Becker-McIver for weak laser-beam interaction are reproduced includ-

ing statistics of the undulator radiation. Explicit form of the density matrix is given. The

12



density matrices of the radiation and of the bunch are obtained as projections of the density

matrix of the system. Although 
uctuations of number of radiated photons are strong, they

do not increase the rms energy spread of the bunch. It is found that small non-diagonal

terms of the density matrix have to be taken into account to describe micro-correlations

induced in a bunch due to radiation.
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