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Abstract

A highly accurate self-consistent particle code to simulate the beam-beam col-

lision in e+e� storage rings has been developed. It adopts a method of solving
the Poisson equation with an open boundary. The method consists of two steps:

assigning the potential on a �nite boundary using the Green's function, and then
solving the potential inside the boundary with a fast Poisson solver. Since the
solution of the Poisson's equation is unique, our solution is exactly the same as

the one obtained by simply using the Green's function. The method allows us to
select much smaller region of mesh and therefore increase the resolution of the

solver. The better resolution makes more accurate the calculation of the dynam-

ics in the core of the beams. The luminosity simulated with this method agrees
quantitatively with the measurement for the PEP-II B-factory ring in the linear

and nonlinear beam current regimes, demonstrating its predictive capability in

detail.
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1 Introduction

The beam-beam interaction is one of the most important limiting factors determining the

luminosity of storage colliders. It has been studied extensively by theoretical analysis [1],

experimental measurements [2], and computer simulations [3]. Historically, due to the com-

plexity of the interaction, many approximations, such as strong-weak [4] or soft-Gaussian [5],

have been introduced in order to simulate the interaction in a reasonable computing time.

The self-consistent simulation of the beam-beam interaction by solving the Poisson equation

with a boundary condition has been proposed �rst to investigate the round beams [6] and

then the at beams [7]. To enhance the accuracy and to reduce the computational over-

head, an algorithm (and a code) of the so-called �f method that can handle strong-strong

interactions has been introduced [8]. Another self-consistent approach to the beam-beam

interaction is to use the Green's function directly or indirectly [9] [10].

In the present paper we will develop a method that takes advantage from both self-

consistent approaches: a smaller region of mesh from the method of using the Green's func-
tion and a faster solver for the interior. In order to develop a highly accurate predictive code
at the luminosity saturation region, it is necessary to have a fully self-consistent treatment of

�eld-particle interaction at collision. Since we are interested in simulating the Asymmetric
e+e� Storage Collider PEP-II [11], which needs to maximize the luminosity and thus the
beam current, it is even more crucial that the beam-beam interaction in the large current

regime be treated accurately.
In a self-consistent simulation of the beam-beam interaction in storage rings, the beam

distributions have to be evolved dynamically during collision with the opposing beam to-
gether with the propagation in the rings. During collision, the beam distributions are used
at each time sequence to compute the force that acts on the opposing beam.

Since positrons and electrons are ultra-relativistic particles in high-energy storage rings,
the beam-beam force is transverse and acts only on the opposing beam. Hence, given a

beam distribution, we can divide the distribution longitudinally into several slices and then
solve for the two-dimensional force for each slice. Self-consistency is achieved by introducing
many-body particles in the �eld that in turn constitutes charge-current, the strategy of the

particle-in-cell (PIC) procedure (for example, Ref. [12]). In this paper, for simplicity, we use

only a single longitudinal slice for a bunch, ignoring any beam-beam e�ects encompassing
over the length of the bunch.

2 Method

In modern colliders, beams are focused strongly at the interaction point to achieve high

luminosity. As a result the transverse dimension of the beam is much smaller than the
dimension of the beam pipe at the collision point. Therefore, the open boundary condition

is a good approximation for calculating the transverse beam-beam force.
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2.1 Green's Function

Given a charge density �c(x; y), which is normalized to the total chargeZ
dxdy�c(x; y) = Ne; (2.1)

where N is the total number of particles, the electric potential �(x; y) satis�es the Poisson

equation
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@x2
+

@2

@y2

!
�(x; y) = �2��c(x; y) (2.2)

with x and y being the transverse coordinates. The solution of the Poisson equation can be

expressed as

�(x; y) =
Z
dx0dy0G(x� x0; y � y0)�c(x

0; y0); (2.3)

where G is the Green's function which satis�es the equation
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G(x� x0; y � y0) = �2��(x� x0)�(y � y0): (2.4)

In the case of open boundary condition, namely the boundary is far away so that its con-

tribution to the potential can be ignored, one has the well-known explicit solution for the
Green's function:

G(x� x0; y � y0) = �1

2
ln
h
(x� x0)

2
+ (y � y0)

2
i
: (2.5)

This explicit solution can be used directly to compute the potential. The main problem of

this approach is that it is slow to calculate the logarithm and the number of computations
is proportional to the square of the number of macro particles N2

p . One can reduce Np by
introducing a two-dimensional mesh to smooth out the charge distribution [9]. Or to further

improve the computing speed, one can map the solution onto the space of spectrum by the
Fast Fourier Transformation (FFT) and then calculate the potential [9] [10].

2.2 Reducing the Region of Mesh

Another alternative approach is to solve the Poisson equation with a boundary condition

[7], because the region (20 �m � 450 �m for PEP-II) occupied by the beam is much smaller

than the boundary de�ned by the beam pipe (2 cm radius) at the collision point. In order

to achieve required resolution, a few mesh points per � of the beam are needed, otherwise

the size of mesh is too large for numerical computation.

However, it is unnecessary to cover the entire area with mesh inside the beam pipe since

the area is mostly empty. We choose a smaller and �nite area of the mesh, which is large
enough to cover the whole beam, and by carefully selecting the potential on the boundary,

we can obtain the accurate solution inside the boundary.
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We denote by �1 the solution (2.3) of the Poisson equation. Let �2 be the solution

obtained by solving the Poisson equation in a two-dimensional area S with the potential

prescribed on a closed one-dimensional L bounding the area S,

�2(x; y) =
Z
S

dx0dy0G(x� x0; y � y0)�c(x
0; y0); (2.6)

where (x; y) 2 L. By de�nition, we have �1 = �2 on the boundary L. Let U = �1 � �2 and

use the �rst identity of Green's theorem [13] in two dimensions,

Z
S

h
Ur2U + (rU)

2
i
dxdy =

I
L

U
@U

@n
dl; (2.7)

where dl is a line element of L with a unit outward normal n. Since U = 0 on L and r2U = 0

inside L, we have Z
S

(rU)2dxdy = 0; (2.8)

implying that U is a constant inside L. We can set U = 0, which is consistent with the value
on the boundary. Hence �1 = �2. The two solutions are identical.

3 Field Solver

We adopt the PIC technique to calculate the �elds induced by the charge (and current)
of the beams self-consistently. The charge distribution of a beam is represented by macro
particles. These macro particles are treated as single electron or positron dynamically. In

order to compute the �eld acting on the particles of the opposing beam, we �rst deposit
their charges onto the gird points of a two-dimensional rectangular mesh. We denote by Hx

the horizontal distance between two adjacent grid points and by Hy the distance in vertical
direction.

3.1 Charge Assignment

We choose the method of the triangular-shaped cloud [15] as our scheme for the charge

assignment onto the grid. On a two-dimensional grid, associated with each macro particle,
nine nearest points are assigned with non-vanishing weights as illustrated in Fig. 1. We use

\0" to denote the �rst, \+" as the second, and \-" as the third nearest lines.
The weights are quadratic polynomials of the fractional distance, rx = �x=Hx, to the

nearest line

w0

x =
3

4
� r2x;

w+

x =
1

2

�
1

4
+ rx + r2x

�
; (3.1)
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Figure 1: Scheme of charge assignment.
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:

The coe�cients are chosen such that the transition at the middle of the grid is continuous

and smooth, and w0

x+w+

x +w�x = 1 which is required by the conservation of charge. In order
to retain these properties, the weights of the two-dimensional grid are simply a product of

two one-dimensional weights. For example, w00 = w0

xw
0

y or w
+� = w+

x w
�

y .

3.2 Poisson Solver

It is crucial to solve the Poisson equation fast enough (within a second on a computer
workstation) for the beam-beam simulation, because the radiation damping time is about

5000 turns and several damping times are needed to reach an equilibrium distribution. For
the reason of the computing speed, we follow Krishnagopal [7] and choose the method of

cyclic reduction and FFT [14]. A �ve-point di�erence scheme is used to approximate the
two-dimensional Laplacian operator

�i�1;j + �i+1;j � 2�i;j

H2
x

+
�i;j�1 + �i;j+1 � 2�i;j

H2
y

= �2��ci;j; (3.2)

where i and j are the horizontal and vertical indices that label the grid points on the mesh.

Truncation errors are of the order of H2

x and H2

y . It is worthwhile to mention that, if we

use the same number of mesh points per � in both transverse directions in the case of beam

aspect ratio 30:1, the truncation errors in the horizontal plane are dominant. To minimize
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the errors in our simulation, we select three times more mesh points per � in horizontal

direction compared to the vertical one.

3.3 Field

The �eld ~E = �r� is computed on the two dimensional grid, using a six-point di�erence

scheme

Exi;j = � 1

12Hx

[(�i+1;j+1 � �i�1;j+1) + 4(�i+1;j � �i�1;j) + (�i+1;j�1 � �i�1;j�1)]; (3.3)

Eyi;j
= � 1

12Hy

[(�i+1;j+1 � �i+1;j�1) + 4(�i;j+1 � �i;j�1) + (�i�1;j+1 � �i�1;j�1)]: (3.4)

The �eld o� the grid is computed with the same smoothing scheme used in the charge

assignment to ensure the conservation of momentum. The �elds Ex and Ey are interpolated

between the grid points. They are calculated by using the weighted summation of the �elds
at the nine nearest points with exactly the same weights used as the charge is assigned.

4 Particle Tracking

The motion of a particle is described by its canonical coordinates

zT = (x; Px; y; Py); (4.1)

where Px and Py are particle momenta normalized by the design momentum p0.

4.1 One-Turn Map

When synchrotron radiation is turned o�, a matrix is used to describe the linear motion in

the lattice

zn+1 =M � zn; (4.2)

where M is a 4� 4 symplectic matrix which can be partitioned into blocks of 2� 2 matrices
when linear coupling is ignored,

M =

 
Mx 0

0 My

!
: (4.3)

Here Mx and My are 2 � 2 symplectic matrices. The matrix Mx is expressed with the
Courant-Snyder parameters �x, �x, and x at the collision point,

Mx =

 
cos(2��x) + �x sin(2��x) �x sin(2��x)

�x sin(2��x) cos(2��x)� �x sin(2��x)

!
; (4.4)

where �x is the horizontal tune. A similar expression is applied in the vertical plane.
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4.2 Damping and Synchrotron Radiation

Following Hirata [16], we apply the radiation damping and quantum excitation in the nor-

malized coordinates, since it is easily generalized to include linear coupling. The motion of

a particle in the normalized coordinates is described by a rotation matrix

Rx =

 
cos(2��x) sin(2��x)

� sin(2��x) cos(2��x)

!
; (4.5)

which is obtained by performing the similarity transformation

Rx = A�1x �Mx � Ax; (4.6)

where

Ax =

0
@
p
�x 0

� �xp
�
x

1p
�
x

1
A ; A�1x =

0
B@

1p
�
x

0

�xp
�
x

p
�x

1
CA : (4.7)

When synchrotron radiation is switched on, we simply replace the rotation matrix Rx

with the following map in the normalized coordinates �x and �Px 
�x
�Px

!
= e�

1

�xRx

 
�x
�Px

!
+
q
�x(1� e�

2

�x )

 
��x
� �Px

!
; (4.8)

where ��x and ��px are Gaussian random variables normalized to unity, �x is the damping time

in unit of number of turns, and �x is the equilibrium emittance. In the vertical plane, a
similar map is applied.

4.3 Beam-Beam Kick

Assuming particles are ultra-relativistic and the collision is head-on, the kick on a particle
by the opposing beam is given by the Lorenz force

�Px = � 2e

E0

Ex; (4.9)

�Py = � 2e

E0

Ey; (4.10)

where Ex and Ey are the horizontal and vertical components of the electric �eld evaluated

at the position of the particle. They are computed with the Poisson solver as outlined in

the previous section each time two slices of the beam pass each other. Half of the transverse

force is the magnetic force due the beam moving at the speed of light. The energy of the

particle, E0 = cp0, appearing in the denominator of the above expressions comes from the

normalization of the canonical momenta Px and Py and the use of the s-coordinate, s = ct,

as the \time" variable.
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Figure 2: The beam-beam kick by a at Gaussian beam with aspect ratio 30:1 near X axis and

Y axis. The dash-dotted curve is the case when � = 0 is assigned as the boundary condition.

The \�" is the kick when inhomogeneous boundary condition is used. The solid curve is the

kick produced by the Erskine-Bassetti formula [17].

A typical beam-beam kick experienced by a particle near the axis is shown in Fig. 2

with the PEP-II parameters, which are tabulated in the next section. As expected based on
the derivation in section 2.2, the kick resulted from solving the Poisson equation with the
inhomogeneous boundary condition agrees well with the analytic solution. In addition, the

agreement demonstrates that the scheme of the charge deposition works well, the mesh is
dense enough, and the number of macro particles is large enough.

The number of macro particles used to represent the distribution of the beam is 10240.

The area of the mesh is 8�x�24�y and there are 15 grid points per �x and 5 per �y. There

are about 15 macro particles per cell within 3� of the beam. These parameters are chosen

to minimize truncation errors and maximize resolution. The 256�256 mesh is also the

maximum allowed by a computer workstation to complete a typical job within a reasonable

time.

The discrepancy between the solution with the homogeneous boundary condition, � = 0,

and the analytic one worsens as the beam aspect ratio becomes larger because the actual

change of the potential on the horizontal boundaries becomes larger.
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5 Application to PEP-II

An object-oriented C++ class library has been written to simulate the beam-beam interac-

tion using the method outlined in the previous sections. In the library, the beam and the

Poisson solver are all independent objects that can be constructed by the user. For example,

there is no limitation on how many objects of beam are allowed in the simulation and the

beams can have di�erent parameters as an instance of the beam class. These features provide

us with great exibility to study various phenomena of the beam-beam interaction.

We will carry out the simulation of beam-beam interaction with the current operating

parameters of the PEP-II so that the results of the simulation can be compared with the

known experimental observations. As a goal of this study, after a proper benchmarking of the

code against the experiment, we shall be able to make predictions on parameter dependence

and show how to improve the luminosity performance of the collider.

5.1 PEP-II Operating Parameters

Parameter Description LER(e+) HER(e-)

E (Gev) Beam energy 3.1 9.0
��x (cm) Beta X at the IP 50.0 50.0
��y (cm) Beta Y at the IP 1.25 1.25

�t (turn) Transverse damping time 9740 5014
�x (nm-rad) Emittance X 24.0 48.0

�y (nm-rad) Emittance Y 1.50 1.50
�x X tune 0.649 0.569

�y Y tune 0.564 0.639

Table 5.1: Parameters for the beam-beam simulation

The parameters used in the simulation are tabulated in Tab. 5.1. The vertical ��y is lowered
to 1.25cm [18] from the design value 1.5cm [11]. The horizontal emittance 24nm-rad in the

Low Energy Ring (LER) is half of the design value 48nm-rad because the wiggler has been

turned o� to increase the luminosity. The damping time, 9740 turns, in the LER is a factor

of two larger than the one in the High Energy Ring (HER) because of the change of the
wigglers made during the construction of the machine. The degradation of luminosity from

the increase of the damping time was then found to be about 10% based on the beam-beam

simulation. The tunes are split and are determined experimentally to optimize the peak

luminosity.

5.2 Procedure of Simulation

The distribution of the beam is represented as a collection of macro particles that are dy-

namically tracked. The procedure to obtain equilibrium distributions of the two colliding
beams is as follows:
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� initialize the four-dimensional Gaussian distribution according to the parameters of the
lattice at the collision point and the emittance of the beam. Distributions of two beams are

independent and di�erent.

� iterate a loop with three damping times.

� propagate each beam through corresponding lattice using one-turn map with syn-

chrotron radiation.

� cast the particle distributions onto the grid as the charge distribution with weighting

and smoothing.

� solve for the potential on the grid with the Poisson solver.

� compute the �eld on the grid.

� calculate the beam-beam kick to the particles of the other beam with the �eld at the

position of the particles. The �eld o� the grid is interpolated with the same weighting and

smoothing used in the charge deposition.

� save data such as beam size, beam centroid and luminosity.

� end of the loop.

� save the �nal distributions.
We vary the beam intensity with a step of �N = 1010 and the �xed beam current ratio:

I+:I� = 2:1, which is close to the ratio for the PEP-II operation. At each beam current, we
compute the equilibrium distributions.

Particle loss outside the area (8�x�24�y) covered by the mesh is closely monitored. There
is no loss at the low beam currents (the �rst 15 data points). At very high current (beyond

the 15th data points), the loss is still less than 1%.

5.3 Beam-Beam Blowup

Given equilibrium distributions that are close enough to the Gaussian, we can introduce the

beam-beam parameters

��x =
reN

���x
2����x (�

�
x + ��y )

;

��y =
reN

���y
2����y (�

�
x + ��y )

; (5.1)

where re is the classical electron radius,  is the energy of the beam in unit of the rest

energy, and N is total number of the charge in the bunch. Here the superscript \+" denotes

quantities corresponding to the positron beam and \�" quantities corresponding to the

electron beam.

The results of the simulation are summarized in Fig. 3. The horizontal size of the positron

beam grows linearly as the currents increase while the horizontal size of the electron beam

remains unchanged. We see that the reduction of the horizontal size of the positron beam

at the low current has helped to match its beam size to the horizontal size of electron

beam. That is the reason why turning o� the wiggler in the LER has helped to increase the
luminosity.
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In the vertical plane, the beam sizes are reasonably matched until I+ = 1000mA. The

�nal vertical blowup of the positron beam near I+ = 1400mA is the cause of the saturated

luminosity. The large vertical mismatch at the higher current could also lead to the deteri-

oration of the beam lifetime during the collision. As a result, the maximum current of the

positron beam is limited to below 1400mA.
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Figure 3: The beam size and beam-beam tune shifts as a function of the positron current

while the electron current is �xed at a half of the positron current. The dashed line presents

the maximum operating current of positron beam with 605 bunches at 1400mA.

Experimentally, there is no blowup of beam size in either plane seen in the electron beam.

For the positron beam, the sizes in both planes grow as the currents increase. However,
it is di�cult at this point to make quantitative comparisons between measurement and

simulation because the resolution of the synchrotron monitors is unknown, particularly due
to the heating damage when they were installed.

As shown in the �gure, at the maximum operating currents: I+ = 1400mA and I� =

700mA, the vertical beam-beam tune shifts for positrons are about 0.06 and for electrons
0.015. The large di�erences in the tune shifts are a direct consequence of the mismatch of

the beam sizes and the violation of the energy transparency condition: I++ = I��. The
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lower current ratio makes the positron beam weaker and the electron beam stronger. It is

clear that the positron beam is weaker than the electron beam at this working point and

current ratio.

5.4 Luminosity

Given the two beam distributions, �+ and ��, the luminosity can be written as

L = nbf0N
+N�

1Z
�1

1Z
�1

�+(x; y)��(x; y)dxdy; (5.2)
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Figure 4: Luminosity as a function of the beam current. The labels are the number of the

colliding bunches.

where nb is the number of the colliding bunches, f0 is the revolution frequency, and N+; N�

are the number of particles in each position and electron bunch, respectively. Since the

distribution � is normalized to unity
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Z
dxdy�(x; y) = 1 (5.3)

and proportional to the charge density �c, we evaluate the overlapping integral by a summa-

tion over �+c �
�

c on the mesh. Furthermore, if we assume the distributions are Gaussian, the

overlapping integral can be carried out

L =
nbf0N

+N�

2��x�y

; (5.4)

where �x =
q
�+x

2 + ��x
2 and �y =

q
�+y

2 + ��y
2. Two methods agree within a few percents.

The mesh method gives a higher luminosity than the Gaussian one. We always use the mesh

method, since it can be applied to broad classes of distribution.

The luminosity as a function of beam current is shown in Fig. 4. The maximum luminosity

with di�erent number of bunches is corresponding to nb times of the saturated luminosity

of single bunch. The single bunch luminosity is limited by a �nal rapid vertical blowup of
the positron beam as discussed in the previous section. In the accelerators, the number of

bunches is limited by the electron-cloud instability [19] in the LER. We expect that, as the
e�ects of electron-cloud reduce while more solenoids are added into the ring, the maximum
luminosity should increase as the number of bunches increase according to the �gure. As

shown in Tab. 5.2, the result of simulation has been reasonably followed since April this
year after which the con�guration of the machines was kept �xed to the values listed in Tab.
5.1.

Month nb Lmeasured Lsimulated

May 554 1.90 2.20

August 605 2.20 2.40
October 692 3.10 2.80

Table 5.2: Luminosity comparisons for PEP-II

The luminosity tabulated in the table is in the unit of 1033cm�2s�1. Note that the ratio

of beam currents I+:I� actually used in the operations is not always exactly 2:1 as used in

the simulation. For example, when the design luminosity was reached, I+ = 1550mA and
I� = 800mA.

If this trend continues, the luminosity allowed by the beam-beam interaction with the
design bunch pattern (1658 bunches) should reach 6.5�1033cm�2s�1 with I+ = 3500mA and

I� = 1750mA, unless longitudinal e�ects such as the hour-glass e�ect set in earlier than we

presently expect.

5.5 Damping Time

Historically, the damping time is typically not considered to be an important parameter for
the beam-beam e�ects. So we make an attempt to reduce the damping time arti�cially for
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the LER to speed up the computation. The result is shown in Fig. 5.
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Figure 5: Peak luminosity a�ected by the damping time of the LER with 605 bunches. The

circles represent the simulation result, and the dashed line represents the �tted curve of

2081� (�+t )
�0:75.

The only di�erence of the parameters used in the simulation is the damping time in

the LER. In particular, the damping time of the HER is �xed at ��t = 5014. Indeed,
at low currents, the di�erence of the luminosity is rather small, which is consistent with

the simulation performed when the change of the wiggler was made. But the di�erence

grows larger, as the current increases. Near the peak luminosity for the PEP-II operation,
I+ = 1400mA, the luminosity di�erence between �+t = 5014 and �+t = 9740 is about 40%

according to Fig. 5, which is signi�cant.

This result shows for the �rst time that the damping time is a rather important parameter
for the computation of the peak luminosity at high beam currents. Secondly, it points a way

to improve the peak luminosity of the PEP-II without the increase of the beam currents,

namely to install another wiggler in the LER to reduce the damping time to the original

design value.
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5.6 Routine Operation

To make a direct comparison between simulation and experimental observation, we have

recorded the luminosity during a typical delivering operation of PEP-II. The data in a pe-

riod of two hours on September 15, 2000 were shown in Fig. 6. Duration of each measurement

was three minutes. The �rst and second plots in the �gure present the total decaying beam

current of positron and electron beams respectively. The third plot shows the measured lumi-

nosity and simulated luminosity at the same beam current displayed in the �gure. The other

parameters used in the simulation are the same as in Tab. 5.1. At these beam intensities,

there are no lost particles in the simulation.
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Figure 6: Luminosity of a routine operation of PEP-II. The crosses represent measurement

and the circles represent simulation. The number of bunches was 605.

The agreement of the simulation and measurement was within 10% and the simulated
luminosity was actually lower than the measured one. Since the longitudinal e�ects of the

beam-beam interaction are not yet included in the simulations, three-dimensional simulation
could reduce further the simulated luminosity. For example, the hour-glass e�ect should

reduce the simulated luminosity by 12% given �z = 1:3cm and ��y = 1:25cm.
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The disagreement between the measurement and simulation reects also the uncertainty

of those parameters relevant to the beam-beam interaction. For instance, the � functions are

only known to within about 10% in the machines. The fact that the measured luminosity is

larger than the simulated one could be a consequence of the tuning bias toward the highest

luminosity within the boundary of the parameters when the machines are tweaked by the

operators.

6 Collective Beam-Beam E�ects

It has been shown in the last section that the beam-beam simulations of the PEP-II with an

aspect ratio 30:1 agrees with the experimental measurements at about 10% level. As in many

cases, it is di�cult to know exactly what are the causes of the di�erence between simulation

and measurement since the real machines are often much more complicated than the simple

model used in the simulation. As a useful and practical method, it is very important to

make sure �rst that the simulation results are correct given the input parameters and then
to �nd what input parameters describe the real machines.

We have shown that the beam-beam kick given by a Gaussian beam using this method

of mesh reduction agrees well with the analytical solution. To check dynamics e�ects of the
beam-beam interaction, we choose to simulate the e�ects of coherent resonance because they
are more stringent and distinctive phenomena. As we known, Krishnagopal and Siemann [6]

have found period-n solutions due to the collective beam-beam interaction near the tune of
0.79. We made two simulations with the parameters tabulated in Tab. 6.1. These parameters

give an aspect ratio of 8:1 and are the same as used by Krishnagopal [20].

Parameter Description LER(e+) HER(e-)

E (Gev) Beam energy 3.1 or 3.0 9.0
��x (cm) Beta X at the IP 12.0 12.0
��y (cm) Beta Y at the IP 1.50 1.50

�t (turn) Transverse damping time 1000 1000

�x (nm-rad) Emittance X 50.0 50.0
�y (nm-rad) Emittance Y 6.25 6.25

�x X tune 0.79 0.79

�y Y tune 0.79 0.79

I (mA) bunch current 6.0 2.0

Table 6.1: Parameters for the coherent resonance

The results of the simulation are shown in Fig. 7. They are essentially the same as the

published results using the code CBI [20]. The small di�erences in the ip-op solution
are probably due to the di�erent smoothing schemes used in the codes. These simulations

make a benchmark against one of the existing codes under the same set of parameters and
conditions.
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Figure 7: Beam size vs turn number. As shown in the left plot, a ip-op solution is found

with E+ = 3:1Gev and E� = 9:0Gev when the energy transparency condition is violated and

in the right plot the period-3 solution [6] is found with E+ = 3:0Gev and E� = 9:0Gev when

the energy transparency condition is preserved.

7 Discussion

We have developed a hybrid method of solving the potential with an open boundary by
using Green's function to �x the potential on a �nite boundary and then to solve the Poisson

equation for the potential inside the boundary. The method is applied to the simulation of

strong-strong interaction of beam-beam e�ects in PEP-II. The preliminary results of this
simulation show a very good quantitative agreement with the experimental observations.

Given the simplicity of the two-dimensional model used, the achievement is surprising and

remarkable. We have demonstrated that the present code has a highly reliable predictive

capability of realistic beam-beam interaction. To further benchmark the code, we need to

extend the simulation to include the �nite length of the bunch and compare the simulation
results directly to controlled experiments.

This method is quite general. It can be applied to the problem of space charge in three
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dimensions. It can also be used in the beam-beam interaction of a linear collider, aside from

the additional Bremsstrahlung e�ects. Finally, it can be applied to any boundary condition

to reduce the region of the mesh if Green's function is known.
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