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Abstract

The purpose of this paper is to provoke a discussion about the right next step in
accelerator-based neutrino physics. In the next �ve years many experiments will be
done to determine the neutrino mixing parameters. However, the small parameters
�13; �m

2

21
, and the CP violating phase are unlikely to be well determined. Here, I

look at the potential of high-intensity, low-energy, narrow-band conventional neutrino
beams to determine these parameters. I �nd, after roughly estimating the possible
intensity and purity of conventional neutrino and anti-neutrino beam, that sin2 �13
can be measured if greater than a few parts in ten thousand, �m2

21
can be measured

if it is greater than 4� 10�5 (eV)2, and the CP violating phase can be measured if it
is greater than 20Æ and the other parameters are not at their lower bounds. If these
conclusions stand up to more detailed analysis, these experiments can be done long
before a muon storage ring source could be built, and at much less cost.

�Work supported by Department of Energy contract DE{AC03{76SF00515.



Neutrino physics has become one of the central studies of current high-energy
physics. Experiments on neutrinos from the sun have shown that not enough of
them reach the earth to be consistent with the suns energy output. Experiments on
neutrinos produced in the atmosphere have shown that muon-type neutrinos seem to
be depleted while passing through the earth compared to those incident on detectors
directly from above. Neutrinos no longer seem to be the zero-mass passive participants
in the sub-nuclear world that they were thought to be only a few years ago. Instead,
the picture that is emerging shows a system of three, or possibly four, neutrino-mass
eigenstates that mix in di�erent amounts to form the familiar avor eigenstates, the
electron, muon and tau neutrino types. What is produced in a reaction is a avor
eigenstate which evolves as it travels because of a change in relative phases of the
di�erent mass eigenstates arising from their relative mass di�erences.

Each year brings new information that is beginning to �ll in a still incomplete
picture. The continuation of several current experiments and a host of soon to be
begun experiments will further �ll in the picture. However, enough is known now
to indicate that certain of the interesting parameters, in particular the mixing angle
known as �13, the mass di�erence �m2

21
, the magnitude if any of CP violation in the

neutrino sector, and the ordering of the neutrino masses cannot be well determined,
if determined at all, from the current crop of running and planned experiments. Thus
attention has begun to turn toward high-intensity accelerator sources to get further
information.

Much of this attention has been focused on the potential of high-energy (20 GeV
and above) muon storage rings as candidate sources. [1] These devices require consid-
erable R&D to determine whether they are indeed feasible, and, if feasible, will be very
expensive. In this paper I will discuss the potential of high-intensity, conventional
neutrino beams to get at these small parameters. My conclusion is that low-energy,
conventional muon-neutrino beams of attainable intensity are serious candidates for
the next generation systems.

Before analyzing what can be done in the real world, it is useful to look at a
primitive, two-neutrino, model to illustrate why low energy may be better than high
energy in untangling the puzzle. Consider two species with a small mixing ampli-
tude between them. The \signal-to-noise" ratio in an experiment looking for the
appearance of neutrino type two in a beam of neutrino type one is given by

P (�1 ! �2)

P (�1 ! �1)
=

A2 sin2(�m2L=4E)

1� A2 sin2(�m2L=4E)
(1)

where A is the mixing amplitude, �m2 is the di�erence of the squares of the masses,
L is the distance from the source to the detector, and E is the beam energy. The op-
timum signal-to-noise ratio comes when the sine term is equal to one, i.e., �m2L=4E
is equal to an odd integer multiple of �=2. However, all of the muon storage ring
designs have high energy, making this factor small with the known mass di�erence.
Hence, a very sophisticated background rejection is required in the detector.
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It is also sometimes argued that, because neutrino cross sections increase with
energy and the ux of neutrinos increases with the square of the energy of the parent
particle, high-energy beams are better than low energy ones. However, in looking for
the small terms that are unlikely to be determined by the present round of experi-
ments, the appearance of a neutrino species di�erent from the primary species gives
the most sensitive tests. This probability is proportional to E�2, leaving only a single
power of the energy as a potential advantage for the high-energy beams. Thus, this
rationale for the choice of high energy is not as overwhelming as it might appear.

In addition, in the real three-neutrino world, there is a further complication from
high-energy beams, tau-lepton production. In the scenarios using a storage-ring
source, tau-lepton production is a potentially serious complication in determining
the small parameters, since its leptonic and semi-leptonic decays can make a tau
event look like an electron or a muon event. It is proposed to solve this problem by
determining, for example, the sign of electrons produced by muon neutrinos [2] which
would be e�ective but is very diÆcult in a large detector. It is a simpli�cation if one
can stay below the tau-lepton production threshold.

Now I turn to the standard three-neutrino formulation (recent results from Super
Kamiokande appear to give 95% con�dence in this formulation). Equation (3) includes
the small terms that are often dropped in oscillation analyses. In Eq. (3), Cij means
cos �ij; Sij means sin �ij; �m

2

ij means m2

i �m2

j , Æ is the CP violating phase, L is the
distance from the source to the detector, and E is the neutrino energy. The matter
e�ect is given by

a = 2
p
2GFneE = 7:6� 10�5 �(gm=cm3)E(GeV ) (eV )2 (2)

where GF is the Fermi weak-coupling constant, and ne is the electron density. Equa-
tion(3) is exact when the matter term of Eq. (2) is zero; otherwise a=�m2

31
is assumed

to be small.[3]
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It is not my purpose here to do an exhaustive analysis of all of the possibilities,
but to show some examples of the potential, and in what follows I will assume that
�23 = �12 = �=4. The Super Kamiokande atmospheric data favors this for �23 and
their solar data favor the large mixing-angle solution for the solar neutrino de�cit. I
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will also take �m2

32
= 3� 10�3 (eV )2 which is the central value of the latest Super-K

data, [4] �m2

31
� �m2

32
, S2

13
� 1, and the matter term (a) = 0.

Now, look at the results of four experiments; �� ! �e and ��� ! ��e at two values
of L=E such that �m2

32
L=4E equals �=2 and �. The result when the �m2

32
term is

�=2 is,

P+(�=2) = P (�� ! �e) + P (��� ! ��e) = 4S2

13
+ sin2

�m2

21
L

4E
(4)

P
�
(�=2) = P (�� ! �e)� P (��� ! ��e) = �4S13 sin Æ sin

�m2

21
L

4E
(5)

and, when the mass term is �, is

P+(�) = P (�� ! �e) + P (��� ! ��e) = sin2
�m2

21
L

4E
(6)

P
�
(�) = P (�� ! �e)� P (��� ! ��e) = 0 : (7)

The next question is, are there enough neutrinos to do useful experiments. It will
require a detailed design of a beam to get a precise answer, but we can get a rough
idea by extrapolating from work already done at FNAL on the MINOS beam design
and from the FNAL storage ring source study.[1] The present FNAL proton beam
power for the MINOS beam is about 400 kW. The beam intensity is limited by space-
charge at injection into the 8-GeV Booster and at injection into the 100{GeV Main
Injector. If the FNAL linacs energy was increased to about 1 GeV and the Boosters
energy increased to about 16 GeV, the FNAL beam on target could be increased to
about 4MW. [5] The improvements to the injector chain are straightforward. The
proton target is more diÆcult than the present system and will certainly require
more shielding. Target R&D is being intensively pursued for the Spallation Neutron
Source and should present no fundamental problems for neutrino production. The
target for a conventional beam is somewhat easier per unit beam power than that
for a muon storage ring source. The conventional beam is designed to produce pions
of multi-GeV energy, while the muon source uses pions of low energy. For maximum
production, the conventional source is thus thinner and absorbs less power than the
storage ring source.

The comparative yields from a high-intensity, conventional, wide-band beam and
a muon storage ring can be estimated by scaling the numbers given in the FNAL
report. Table 1 shows the numbers. Using those numbers, a 20 kiloton detector at
732 km would see about 9 � 104 events per year from the low-energy, wide-band,
conventional beam.

At 732 km, the neutrino beam energies required to have (�m2

32
L=4E) equal to

�=2 and � would be about 2 GeV and 1 GeV respectively (� mesons of about 9 and
4.5 GeV). There is no design available for a narrow band beam, and so I use the
spectrum of the MINOS low-energy beam to make a rough estimate. The spectrum
has a low-energy peak and a high-energy tail, each generating about equal number
of events [6] Much improved focusing can be achieved in a narrow band beam, which
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Table 1: Muon-neutrino charged-current events per kiloton year, assuming no oscilla-
tion, for a 4{MW upgraded FNAL wide-band conventional source, and for a 20-GeV
muon storage ring giving 1020 decays per year. The numbers are scaled from Ref. [1].

Source Type Mean � Energy (GeV) Baseline (km) N
CC-events/kT-year

Conventional 3 732 4.6 � 103

Conventional 6 732 1.4 � 104

Conventional 12 732 3.2 � 104

Storage Ring 15 732 1.2 � 104

increases the ux. The peak in the MINOS spectrum has a width of about � 30%,
while it is desirable for background rejection to have a narrower width, thus reducing
the ux. I will assume that the spectrum has a width of (� 10{20% and that the
focusing and width e�ects balance out in determining the beam intensity. Finally, I
will give up another factor of two because this estimate may be too optimistic, or the
FNAL Main Injector upgrade may not be capable of reaching the 4 MW power level.
The result for neutrinos in the 20-kiloton detector at 732 km from the source is

Ycc(2 GeV ) = 2:5� 104 events per year: (8)

A 1{GeV beam will have a lower rate. There will be more pions in the decay channel,
but the neutrino beam divergence will increase by a factor of two and the charged-
current neutrino cross-section will decrease by a factor of two resulting in a reduction
of about a factor of four in event rate

Ycc(1 GeV ) = 6� 103 events per year: (9)

Note that antineutrino cross-sections are about half of those for neutrinos.
Electron neutrinos in the beam come from the chain � ! � ! e in the decay

channel. They amount to about 0.1% total at the far detector, and amount to (1�
2)�10�4 in the muon neutrino energy range. However, a more serious background will
be neutral-current interactions initiated by muon and tau neutrinos in the detector.
These can give �0 mesons, and highly asymmetric conversions of the �0 decay y's
can be confused with electron-neutrino-charged current events.[7] These have to be
controlled by detector design. Here I will assume that they give a background of 0.1%
of the \unoscillated" muon-neutrino ux.

The optimum data-taking strategy depends on \a priori" knowledge. If, for exam-
ple, KamLAND determines �m2

21
, there is no reason to take data at 1 GeV. Here, I

will simply assume that data equivalent to 104 charged-current events (in the absence
of oscillation) is collected for �� and ��� at both 2 GeV and 1 GeV. I also ignore the
e�ect of the �nite energy spread in the beam.
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From Eq. (6), the minimum detectable value of �m2

21
di�erent from zero at the

three standard-deviation level is

�
�m2

21

�
min

= 4:2� 10�5 (eV )2 : (10)

This is independent of �13 as long as C13 is near one. It is near the lower end
of the solar Large Mixing Angle solution allowed region and, if this large, might be
measurable by the KamLAND experiment.

Equation (4) couples �m2

21
and S2

13
. Table 2 gives the 3� lower bound for S2

13

for various values of �m2

21
ranging from the minimum detectable in this proposed

experiment to the maximum in the solar LMA solution. What is happening, as the
usually ignored �m2

21
term increases, is that more events have to come from the S2

13

term to meet the three standard deviation requirement.

Table 2: Three standard deviation lower bound on the determination of S2

13
for various

values of �m2

21
.

�m2

21
(eV )2 S2

13

4� 10�5 5� 10�4

2� 10�4 9� 10�4

1� 10�3 4� 10�3

The last item to look at is the sensitivity to the CP violating phase Æ. This
is given in Eq.(5) and depends on both S13 and �m2

21
(note also that the sign of

�m2

21
comes in). If either of these is very small, CP violation becomes impossible to

measure in this or any other experiment. To give an idea of the sensitivity, I will take
�m2

21
= 2� 10�4, the center of its range, and take S2

13
at the 3� limit for this �m2

21
,

i.e. 9� 10�4. The minimum detectable value for the phase that di�ers from zero by
three � is,

j sin Æjmin = 0:35 (11)

where Eq. (4) has been used to determine the error on the non-CP violating yield.
The determination of Æ is most sensitive to the matter term. With Satos [3] �rst

order analysis, the matter term is 30% of the CP violating term for the parameters
used above. I believe the matter e�ect needs to be taken to higher order. It is
interesting to note that as the neutrino beam energy is increased, the matter term
gets bigger while the CP violating term gets smaller, another argument for low-energy
beams.

In summary, I have analyzed here the potential of high-intensity, low-energy,
narrow-band conventional neutrino beams. The \gedanken" experiments outlined
here give interesting limits on the measurement of the small terms among the neutrino-
mixing parameters. These limits are better than those from the entry level storage
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ring neutrino factory. [8] It is well worth the time of the experts to see if my assump-
tions on potential beam intensity and purity, and background rejection are reasonable.
If they are, these experiments can be carried out sooner, and at less cost than those
with a muon storage ring source.
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