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We compute O(α3 lnα) corrections to the decay rates of para- and orthopositronium into two
and three photons, respectively. For this calculation we employ the nonrelativistic QED regularized
dimensionally and we explain how in this framework the logarithms of the fine structure constant
can be extracted.

I. INTRODUCTION

Positronium decays into two and three photons provide an interesting test of bound states Quantum Electrodynamics
(QED). While the parapositronium (p-Ps) decay rate is well described by QED, it is known that the decay of
orthopositronium (o-Ps) into three photons is still a controversial issue [1]. However, on the theoretical side there
has been a major breakthrough recently and both decay rates are now known with O(α2) accuracy [2,3]. The next
level of precision, i.e. O(α3) correction, is currently beyond the reach, although parts of the O(α3) correction that
are enhanced by the logarithms of the fine structure constant, can be computed.

The knowledge of these corrections is not of significant phenomenological importance at present since they are much
smaller than the experimental accuracy for both p-Ps and o-Ps decays. Nevertheless, from a theoretical viewpoint, it
is an interesting problem because at order α3 there are both leadingO(α3 ln2α) and subleading O(α3 lnα) corrections.
The calculation of the leading O(α3 ln2 α) corrections is a fairly simple enterprise; it has been done quite some time
ago [4]. Here we are interested in subleading logarithmic corrections. In order to compute them, we utilize the
nonrelativistic QED in dimensional regularization and we explain how in this framework the logarithmic corrections
can be computed using limited amount of information.

Before diving into the description of the calculation, let us summarize our results. For the O(α3 lnα) corrections
to para- and orthopositronium decay rates we find:

∆Γp =
α3

π
lnα

{
−367

90
+ 10 ln 2− 2Ap

}
Γ(0)

p , (1)

∆Γo =
α3

π
lnα

{
−229

30
+ 8 ln 2 +

Ao

3

}
Γ(0)

o . (2)

The coefficients Ap,o describe O(α/π) corrections to the lowest order decay widths Γ
(0)
p,o. They are [5,6]

Ap =
π2

4
− 5, Ao = −10.286606(10). (3)

Numerically, the O(α3 lnα) corrections, Eqs.(1,2), evaluate to 7.7919 α3/π lnα Γ
(0)
p for p-Ps and to

−5.517 α3/π lnα Γ
(0)
o for o-Ps. These corrections are therefore quite comparable with the “leading” O(α3 log2α)

corrections computed in [4].
The paper is organized as follows. In the next Section we set up the framework of the calculation. We then continue

with detailed discussion of how various contributions to Ps decays at O(α3 lnα) are computed. In the last Section we
present our conclusions.
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II. FRAMEWORK OF THE CALCULATION

Let us first discuss the framework of our calculation. We work in nonrelativistic QED regularized dimensionally;
d = 3−2ε is the number of spatial dimensions and ε is the regularization parameter. General features of this technique
have been described at length in our previous paper [9]. Here we would like to discuss a new issue which was not
considered in [9] – how logarithmic in α corrections can be extracted.

In order to extract logarithms of the fine structure constant in a self-consistent way, we use the fact that the matrix
element of any operator in dimensional regularization is a uniform function of the fine structure constant. This
implies that all the dependence on the fine structure constant can be scaled out of any dimensionally regularized
matrix element1. The scaling, however, should be done in d dimensions.

In order to establish the scaling rules, we need to know how different quantities involved in bound state calculations
scale with α. To do that, we rewrite the d-dimensional Schrödinger equation in “atomic units” familiar from the
standard treatment of hydrogen atom in three-dimensional Quantum Mechanics.

Consider the Schrödinger equation for positronium in d dimensions:

(
p2

m
− c(d)α

rd−2

)
Ψ = EΨ, (4)

where c(d) = Γ(d/2−1)/πd/2−1 (see [9]). Let us rescale p→ pγ and r→ r/γ and choose γ = (mα/2)
1

1+2ε . Then both
the Coulomb Hamiltonian H = p2/m− c(d)α/rd−2 and its eigenvalue E scale as γ2/m. The wave function of a bound
state, being normalized to unity, scales as γd/2. Hence, when expressed in atomic units, the energy of a bound state
and its properly normalized wave function depend on d only. The scaling rules above provide sufficient information
to write the matrix element of any operator in atomic units and therefore scale out all the dependence on the fine
structure constant.

There is another important point that makes the extraction of the lnα corrections possible using limited amount of
information. In order to explain it, we remind the reader that in bound state calculations different contributions to
the final result can be distinguished. In particular, there are so-called hard contributions. The O(α3) hard corrections
to the Ps decay rates are described by the three-loop Feynman diagrams for the process e+e− → 2(3)γ, that have to
be computed exactly at the threshold. Schematically, such diagrams generate the correction

Vhard =
(α
π

)3
[
t1
ε2

+
t2
ε

+ t3

]
VBorn, (5)

( t1−3 are some constants) to the annihilation kernel VBorn that is responsible for the lowest order decay rate:

Γ(0)
p,o = 〈Ψ|VBorn|Ψ〉 ∝ Ψ2

0. (6)

Here Ψ0 stands for the positronium wave function at the origin. The effective potential (5), in turn, generates the
correction to the decay rate,

δhardΓ = 〈Ψ|Vhard|Ψ〉 ∝
[
t1
ε2

+
t2
ε

+ t3

]
Ψ2

0. (7)

If we rewrite Ψ0 in atomic units, Eq.(7) generates logarithms of the fine structure constant. These logarithms are
artificial, since we anticipate that other, soft scale, contributions also generate divergences which exactly match and
cancel all the divergences in Vhard. This implies, that the logarithms associated with the rescaling of the wave function
at the origin get cancelled as well. Therefore, the easiest way to avoid considering Vhard (which is not available at
present) is to work with relative, rather than absolute, corrections to the decay width. This automatically discourages
Eq.(7) as the source of logarithms of the fine structure constant since in this case there is simply nothing to rescale.

In order to illustrate how these arguments help to compute the lnα corrections, let us consider the matrix element of
a nonrelativistic operator O that delivers O(α3) correction to the lowest order annihilation kernel VBorn. In accordance
with the above comment we consider relative correction to the decay rate:

∆O =
δOΓ

Γ
(0)
p,o

=
〈Ψ|O|Ψ〉
〈Ψ|VBorn|Ψ〉

. (8)

1We stress that this is the feature of dimensional regularization and it is not valid in other regularization schemes.
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The operator O is a function of coordinate and momentum operators that act on the positronium wave function.
After rescaling of all the quantities on the right hand side of Eq.(8) as described above, we end up with the following
equation:

∆O = αn
γ3−n+lε

m3−n+kε
· 〈Ψ|O|Ψ〉〈Ψ|VBorn|Ψ〉

∣∣∣∣
γ=1

, (9)

where n = 1, 2 is a power of α that explicitly enters O and l, k are some integer numbers. If the matrix element is
finite, we can safely put ε = 0 and then the relative correction to the decay width is α3 times the α-independent
ratio and hence no logarithms of α appear. Therefore, after the rescaling, the only place where lnα can come from
is the expansion of the factor γ3−n+lε in powers of ε; this implies that in order to generate the lnα corrections, the
nonrelativistic matrix elements should diverge and only divergent pieces of the matrix elements have to be known to
determine logarithmic in α corrections to the decay rate. Note also, that because of the relation between γ and α,

γ =
(mα

2

) 1
1+2ε

,

even the operators that scale as integer powers of γ can generate lnα corrections.
Let us note that the extraction of the lnα corrections in dimensional regularization can lead to some counter-

intuitive results; for example, logarithms of the fine structure constant are generated by the operators, that in a more
“physical” regularization schemes, such as e.g. the schemes that use either the photon mass or the momentum cut-off
λ, can only lead to the logarithms of m/λ but not to lnα. Therefore, it appears that individual contributions to the
final result are scheme dependent. Nevertheless, we would like to stress that once dimensional regularization and clear
rules for extracting lnα are adopted, there is no other way as to consider all possible contributions; none of them can
be disregarded by invoking the fact that in a different regularization scheme a particular operator cannot generate
O(lnα) correction.

The calculation of the nonrelativistic contributions that are relevant at order O(α3 lnα) is described in the following
Sections. Some useful integrals, that we need in the calculation, are summarized in Appendix. We give intermediate
formulas for the relative logarithmic corrections to the positronium decay rate expressed in units of (α3/π)Γ(1 +
ε)3(4π)3ε.

III. IRREDUCIBLE CONTRIBUTION

This particular contribution arises as the average value of a local operator that comes from the Taylor expansion of
the one-loop corrections to the annihilation kernel in spatial momenta p of electron and positron. For our purpose we
need O(αp2) correction to VBorn. Since this operator is constructed by Taylor expanding in external momentum, the
non-analytic dependence on p2 cannot appear. Then, from the rescaling argument we know that only divergent piece
of the Wilson coefficient of this operator is required. It turns out that this divergent piece can easily be computed
using rather general arguments. According to the rules of nonrelativistic QED, we extract Wilson coefficients of
various effective operators from the corresponding on-shell scattering amplitudes. The key observation is that the
divergence in the Wilson coefficient of the O(αp2) operator causes the divergence in the on-shell annihilation process
e+e− → nγ, n = 2, 3, and that it is in fact a “true” infrared divergence that should be compensated by the real
emission of an additional soft photon in the same process.

In order to avoid confusion we stress that the mechanism of cancelling this divergence by real radiation does not
apply to the bound state because of C-parity conservation. There is no contradiction, however. The real infrared
divergences in the bound state calculations are absent because electron and positron in positronium are off shell. The
divergence appears only when we put them on mass shell in order to extract the Wilson coefficient of the relevant
operator. The crucial observation is that considering the process in a different kinematic regime (on-shell annihilation),
we easily find a divergent piece of the appropriate Wilson coefficient from the known amplitude of the real soft photon
emission.

Requiring that virtual and real corrections to the on-shell annihilation process e+e− → nγ add up to a finite
quantity, we get the following correction to the annihilation kernel VBorn:

Virr =
2α

3πε

p2 + p′2

m2
VBorn. (10)

Applying the rescaling arguments, we end up with the following correction induced by the irreducible operator (10):

∆irr =
4

3
lnα. (11)
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IV. “HARD LOOP” CONTRIBUTIONS

These contributions arise in the second order of the nonrelativistic perturbation theory. This means that the
corresponding nonrelativistic operators O are of the form V GV ′, where G is the reduced Green function of the
Coulomb Hamiltonian from Eq.(4) and V, V ′ are some local operators with one of the two originating from a hard
one-loop correction.

There are two sources of the “hard loop” contributions. The first one is the one-loop renormalization of the
annihilation kernel:

Vp,o =
α

π
Ap,oVBorn. (12)

The corresponding O(α3 lnα) correction to the decay rate is then easily related to the O(α2 lnα) correction computed
in [10,11]. We find:

∆p,o =

(
7

6
S2 − 2

)
Ap,o lnα. (13)

The second “hard loop” contribution corresponds to the “hard” piece in O(mα5) effective potential. It reads [12]:

Vhl = − α2

3m2

Γ(1 + ε)

(4π)−ε

[
1

ε
+

39

5
− 12 ln 2 + S2

(
32

3
+ 6 ln 2

)
− 2 lnm

]
δ(r), (14)

where S is the operator of the total spin. There is no problem with defining total spin operator here, since it multiplies
explicitly finite quantity.

The O(α3) correction to the decay rate generated by the potential from Eq.(14) then reads:

δhlΓ = 2 〈Ψ|VBornGVhl|Ψ〉 , (15)

and is proportional to the Green function at the origin, G(0, 0). All necessary results for this Green function can be
found in [9]. Finally, we obtain:

∆hl =
ln2 α

3
+

(
− 1

6ε
+ 2 ln 2− 59

30
− S2

(
16

9
+ ln 2

)
+ lnm

)
lnα. (16)

Let us note that since there is an explicitly divergent term in Eq.(16), one may wonder whether or not the difference
in the energy E of the bound state in d and three dimensions should be taken into account. We have checked that
the cancellation of all divergent terms in the final result for the O(α3 lnα) correction to the decay rate occurs for
arbitrary E and for this reason we use three dimensional expression for this (rescaled) quantity to present individual
contributions as well.

V. SEAGULL CONTRIBUTION

The correction to the decay rate,

δsΓ = 2 〈Ψ|VBornGVs|Ψ〉 , (17)

is induced by the double seagull effective potential Vs,

Vs(q) = −π
2α2

m2

∫
ddk

(2π)d
Pij(k)Pij(k′)
kk′(k + k′)

, (18)

where k′ = q − k and Pij(k) = δij − kikj/k2.
To facilitate the calculation of this potential, we introduce auxiliary integration variable k0 and rewrite Vs(q) as

follows:

Vs(q) = − α
2

m2

∫ ∞

0

dk0

2π

∫
ddk

(2π)d
Tij(k)Tij(q − k), (19)
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with

Tij(k) =
4πPij(k)

k2 + k2
0

. (20)

It is convenient to consider Fourier transform of Vs(q):

Vs(r) = − α
2

m2

∫ ∞

0

dk0

2π
Tij(r)Tij(r), (21)

where Tij(r) stands for

Tij(r) = δij

∫
ddk

(2π)d
eikr

4π

k2 + k2
0

+
1

k2
0

∂i∂j

∫
ddk

(2π)d
eikr

(
4π

k2
− 4π

k2 + k2
0

)
. (22)

To compute Tij(r) we use

∫
ddk

(2π)d
eikr

4π

k2 + k2
0

= 2

(
k0

2πr

) d
2−1

K d
2−1(k0r), (23)

where Kν(x) is the modified Bessel function of the second kind.
Inserting (23) to (22), and integrating over k0 in Eq.(21), we obtain:

Vs(r) = −α
2r−3+4ε

2πm2

Γ(1− ε)2

(4π)−2ε

[
1− ε17− 8 ln 2

3
+O(ε2)

]
. (24)

We then rescale the relative correction to the decay rate and obtain:

δsΓ

Γ
(0)
p,o

= −α
2γ1−4ε

2πm

Γ(1− ε)2

(4π)−2ε

[
1− ε17− 8 ln 2

3
+ O(ε2)

] ∫
ddr r−3+4εG(r, 0)

Ψ(r)

Ψ0
. (25)

As we explained previously, we need only a divergent part of the integral in Eq.(25). Since in three dimensions the
Green function G(r, 0) behaves as O(r−1) for small values of r, we may expand the wave function in series around
r = 0 and keep only two first terms in such an expansion:

Ψ(r)

Ψ0
= 1− c(d)r4−d

4− d + O(r8−2d). (26)

The Green function G can be written as a sum of three pieces G = G0 + G1 + Gmulti according to the number of
Coulomb interactions2. In three dimensions, G0 ∼ r−1, G1 ∼ ln r and Gmulti ∼ r0 as r→ 0. Therefore, the first term
from the expansion Eq.(26) is sufficient to extract the singularities caused by the contributions of G1 and Gmulti. For
Gmulti we derive:

∫
ddr r−3+4εGmulti(r, 0) = 4π

∫ ∼1

0

dr r−1+2εGmulti(0, 0) + O(1) = −3

ε
+O(1). (27)

In order to analyze G0,1 contributions, it is convenient to switch to the momentum space. We obtain:

∫
ddr r−3+4εG1(r, 0) =

4επ3/2−εΓ(ε)

Γ(3/2− 2ε)

∫
ddp

(2π)d
G1(p)

p2ε
, (28)

∫
ddr r−3+4εG0(r, 0)

(
1− c(d)r1+2ε

1 + 2ε

)
=

2π

ε

∫
ddp

(2π)d
G0(p)

p2ε

(
1− πε

p1+2ε

)
+O(1). (29)

The integrals in Eqs.(28,29) can be expressed through the integrals listed in Appendix:

2G0 is the free Green function, G1 is the single Coulomb correction to G0, and Gmulti accounts for two and more Coulomb
interactions.
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∫
ddp

(2π)d
G1(p)

p2ε
= −16π [I2(1 + ε, 1, 1) + I1(1, 1, 1)− I2(1, 1, 1)] +O(ε), (30)

∫
ddp

(2π)d
G0(p)

p2z
= −2I0(1, z). (31)

Substituting all the relevant expressions into Eq.(25) and expanding in ε, we arrive at the final result for the seagull
contribution:

∆s =
3 ln2α

2
−
(

1

2ε
+

4 ln 2

3
+

5

3
− 3 lnm

)
lnα. (32)

VI. RETARDATION

In this Section we discuss the retardation effect, caused by the exchange of a photon with a typical momentum of
the order of the inverse Bohr radius k ∼ mα between electron and positron in the bound state. The corresponding
formula reads:

δretΓ = 2

〈
Ψ

∣∣∣∣VBornG

∫
ddk

(2π)d
jei e

ikre 4πα

2k

Pij(k)

k + H − E jpj e
−ikrp

∣∣∣∣Ψ
〉

−〈Ψ |VBorn|Ψ〉
〈

Ψ

∣∣∣∣
∫

ddk

(2π)d
jei e

ikre 4πα

2k

Pij(k)

(k + H −E)2
jpj e
−ikrp

∣∣∣∣Ψ
〉

+ H.c., (33)

where je = pe/m − [σk,σ]/(4m) and jp = pp/m+ [σ′k,σ′]/(4m) are electron and positron currents, respectively.
The appearance of two matrix elements in Eq.(33) is related to the fact that we need the second order correction to

the wave function of a bound state. In contrast to the first order, at second order of perturbation theory one should
be careful to maintain the normalization of the wave function. This is the reason why the second term in Eq.(33)
appears. The general formula for the second order correction to the wave function can be found in [13].

When writing Eq.(33), we have assumed that a magnetic photon with the momentum k is emitted by the electron
at the point re and absorbed by the positron at the point rp. Using the fact that H −E ∼ mα2 and k ∼ mα for the
retardation effects, we expand the r.h.s. of Eq.(33) in powers of (H − E)/k and obtain:

δretΓ = 2 〈Ψ|VBornGVret|Ψ〉 − 〈Ψ|VBorn|Ψ〉 〈Ψ|V ′ret|Ψ〉 , (34)

where the “retardation potential” Vret reads:

Vret = −
∫

ddk

(2π)d
4παPij(k)

2k3
jei e

ikre (H −E)jpj e
−ikrp + H.c., (35)

and V ′ret = ∂Vret/∂E. Let us illustrate how one deals with such expressions using the spin-dependent parts of the
currents as an example. The corresponding contribution to Vret then reads:

V spin
ret =

πα

16m2

∫
ddk

(2π)d
[σk, σi][σ

′k, σ′i]
k3

{
(H − E)eikr + eikr(H − E)

}
+ H.c., (36)

where the relative coordinate r = re − rp has been introduced. It is now easy to see that if we insert this result into
Eq.(34) and use the Schrödinger equation both for the wave function Ψ and for the reduced Green function G, we
obtain a finite correction to the decay rate. As we explained in the Introduction, finite contributions cannot generate
logarithms of the fine structure constant.

The analysis of the spin-independent contribution to Vret is only slightly more cumbersome. We again pull out
H − E both to the right and to the left by commuting it with either electron or positron current and obtain the
following expression for the retardation potential:

Vret = −πα
m2

∫
ddk

(2π)d
Pij(k)

k3

({
H −E, eikrpipj

}
+ [pi, [H, pj]]e

ikr
)

+ H.c.,

where {H −E, eikrpipj} denotes the anticommutator of the two operators. Using this expression for the retardation
potential in Eq.(34) and applying equations of motion, we arrive at the following correction to the decay rate:
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δretΓ = −4πα

m2
〈Ψ|VBornG [Uij [C, pi] , pj] |Ψ〉 , (37)

where C = −c(d)α/rd−2 is the Coulomb potential, and Uij(r) is defined as

Uij(r) =

∫
ddk

(2π)d
Pij(k)

k3
eikr =

Γ(−ε)r2ε

6π2−ε (δij − εninj) . (38)

Performing rescaling and computing the double commutator in Eq.(37), we get the result for the relative correction
to the decay rate,

δretΓ

Γ
(0)
p,o

= −8αγ2−2ε

3m2

Γ(2− ε)Γ(3/2− ε)
π3/2−ε

∫
ddr r−3+4εG(r, 0)

Ψ(r)

Ψ0
, (39)

which is very similar to the correction induced by the seagull potential, Eq.(25). We can, therefore, borrow much of
the analysis from the previous Section. We finally obtain:

∆ret = 2 ln2α−
(

2

3ε
− 4 ln 2

3
+ 4− 4 lnm

)
lnα. (40)

VII. ULTRASOFT CONTRIBUTION

By definition, the ultrasoft contribution is due to the photons with energy and momentum of order mα2. Such soft
photons cannot resolve the structure of the bound state and for this reason they interact directly with the positronium
as a whole. Since the positronium is chargeless, the interaction is necessarily of the dipole nature.

A general formula for the correction to the decay rate caused by ultrasoft contributions is:

δusΓ = 2

〈
Ψ

∣∣∣∣VBorn G
2pi
m

∫
ddk

(2π)d
4πα

2k

Pij(k)

E −H − k
2pj
m

∣∣∣∣Ψ
〉

−〈Ψ |VBorn|Ψ〉
〈

Ψ

∣∣∣∣
2pi
m

∫
ddk

(2π)d
4πα

2k

Pij(k)

(E −H − k)2

2pj
m

∣∣∣∣Ψ
〉
. (41)

After integration over directions of k and performing the rescaling we get:

δusΓ

Γ
(0)
p,o

=
42−επαγ2−4ε

m2−2ε

Ωd
(2π)d

d− 1

d

(〈
0

∣∣∣∣G p
∫ ∞

0

dk k−2ε

k +H − E [H,p]

∣∣∣∣ Ψ̃
〉
−
〈

Ψ

∣∣∣∣p
∫ ∞

0

dk k1−2ε

(k + H −E)2
p

∣∣∣∣Ψ
〉)

. (42)

Both matrix elements in Eq.(42) must be computed in atomic units; also Ψ̃ = Ψ/Ψ0, and Ωd = 2π3/2−ε/Γ(3/2− ε) is
the d-dimensional angular volume.

The second matrix element in Eq.(42) is easy to compute3:

−
〈

Ψ

∣∣∣∣p
∫ ∞

0

dk k1−2ε

(k +H − E)2
p

∣∣∣∣Ψ
〉

= −
〈
Ψ
∣∣p(H −E)−2εp

∣∣Ψ
〉

2ε
= − 1

2ε
. (43)

Then, consider the first matrix element from Eq.(42). It is convenient to write it as a sum:

〈
0

∣∣∣∣G p
∫ ∞

0

dk k−2ε

k + H −E [H,p]

∣∣∣∣ Ψ̃
〉

= M0 +M1, (44)

where the two terms correspond to the number of Coulomb interactions between the moments of emission and
absorption of the ultrasoft photon4.

3Recall that only the terms that are singular for ε→ 0 are needed.
4If two or more Coulomb photons are exchanged, the resulting matrix element becomes finite and, in accordance with the

argument given in Section II, it cannot generate O(lnα) correction.
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Let us consider M0. In this case, integrating over k we obtain:

M0 =
1

2ε

〈
0
∣∣∣G (H0 − E)

−2ε
p [H,p]

∣∣∣ Ψ̃
〉
, (45)

where H0 = p2/2 is the free Hamiltonian in atomic units. Using

p [H,p] = [p, [H,p]] + [H,p] p = 4πδ(r) + [H,p] p, (46)

we represent M0 as the sum of two terms,

M0 = Mδ +Mψ , (47)

where

Mδ =
4π

2ε

〈
0
∣∣∣G (H0 −E)−2ε

∣∣∣ 0
〉
, (48)

Mψ =
1

2ε

〈
0
∣∣∣G (H0 −E)−2ε [H,p] p

∣∣∣ Ψ̃
〉
. (49)

We now analyze the two terms in Eq.(47) separately. In order to compute Mδ we use the fact that only two first
terms in the expansion of the Green function in the number of Coulomb exchanges, G0 and G1, diverge at zero spatial
separation. Since Gmulti(0, 0) is finite, we can compute it for d = 3. On the other hand, both G0 and G1 are known
explicitly (see e.g. [9]) and hence the corresponding integrals can easily be computed. Using expressions for integrals
summarized in Appendix, we arrive at the following expression for Mδ :

Mδ = −22+2επ

ε
I0(1 + 2ε, 0)− 25+2επ2

ε
I1(1 + 2ε, 1, 1)− 3

ε
. (50)

Consider the second matrix element Mψ . In this case, it is sufficient to separate G = G0 + (G−G0). Since there is
an overall factor ε−1 in Eq.(49), the finite matrix element that contains G−G0 can be calculated in three dimensions.
Using the expression for G−G0 from [9], we derive:

M f
ψ =

1

2ε

〈
0 |(G−G0)[H,p] p| Ψ̃

〉
=

2

ε
. (51)

The matrix element containing G0 can be rewritten in momentum space as

M i
ψ =

1

2ε

〈
0
∣∣∣G0 (H0 −E)

−2ε
[H,p] p

∣∣∣ Ψ̃
〉

= − 1

2ε

∫
ddp′ddp

(2π)2d

(
2

p′2 + 1

)1+2ε
4π(p′ − p)p

(p′ − p)2

Ψ(p)

Ψ0
, (52)

where Ψ(p) is the Fourier transform of Ψ(r). Since M i
ψ has an overall divergence and hence we need the integral up

to a constant only, we can use the three dimensional expression for the wave function Ψ(p):

M i
ψ = −4π2

ε

∫
ddp′ddp

(2π)2d

(
2

p′2 + 1

)1+2ε
(p′ − p)p

(p′ − p)2

(
2

p2 + 1

)2

. (53)

We now rewrite the scalar product in the numerator as a linear combination of denominators and obtain our final
expression for Mψ = M f

ψ +M i
ψ :

Mψ = −42+επ2

ε
[I1(2ε, 1, 2)− I1(1 + 2ε, 1, 1)− I1(1 + 2ε, 0, 2)] +

2

ε
. (54)

Consider next the matrix element M1. We start with the following expression:

M1 = −
〈

0

∣∣∣∣Gp
∫ ∞

0

dkk−2ε 1

k +H0 − E
C

1

k +H0 −E
[H,p]

∣∣∣∣ Ψ̃
〉
. (55)

Simple power counting shows that we can safely take Ψ̃ at the origin, Ψ̃→ 1, and also replace the Green function G
by its high-momentum asymptotics, G(p)→−2/p2. We then obtain symmetric and uniform expression
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M1 = −8π

∫ ∞

0

dkk−2ε

∫
ddp′ddp

(2π)2d

2

p′2(p′2 + 1 + 2k)

4π p′p

(p′ − p)2

2

p2(p2 + 1 + 2k)
. (56)

If we now rescale both p and p′ as p→
√

2k + 1 p, the integration over k factorizes and we obtain:

M1 = −8π2

ε

[
2I2(1, 1, 1)− 2I1(1, 1, 1)− I0(1, 1)2

]
. (57)

Finally, using explicit expressions for the integrals from Appendix, we arrive at our final result for the ultrasoft
correction to the decay rate:

∆us = −16 lnα2

3
+

(
4

3ε
+ 8 ln 2 +

20

9
− 8 lnm

)
lnα. (58)

VIII. CONCLUSIONS

The sum of all the contributions from Eqs.(11,13,16,32,40,58) gives the final result for the O(α3 lnα) corrections to
Ps decay rate:

∆Γp

Γ
(0)
p

=
α3

π

[
−3

2
ln2 α+ lnα

{
−367

90
+ 10 ln2− 2Ap

}]
=
α3

π

[
−3

2
ln2 α+ 7.919 lnα

]
, (59)

∆Γo

Γ
(0)
o

=
α3

π

[
−3

2
ln2 α+ lnα

{
−229

30
+ 8 ln 2 +

Ao

3

}]
=
α3

π

[
−3

2
ln2 α− 5.517 lnα

]
. (60)

Numerically, these corrections cause a negligible change in the theoretical prediction for p-Ps and o-Ps lifetimes at
the current level of precision. It is interesting to note, however, that the magnitude of the leading O(α3 ln2 α) and
the subleading O(α3 lnα) corrections is comparable; in case of o-Ps they almost cancel each other.

Our results Eqs.(59,60) are in agreement with two recent calculations of O(α3 lnα) corrections [7,8]. In Ref. [7]
the result for O(α3 lnα) correction to o-Ps decay rate has been obtained numerically, where as in Ref. [8] analytical
methods similar to ours have been employed. We believe that the achieved agreement between three independent
calculations ensures that the results, Eqs.(59,60), are correct.

As we mentioned, the O(α3 lnα) correction to Ps decay rates at present is not very interesting phenomenologically.
A more important question, which we think we fully addressed in this paper, is how the logarithms of the fine structure
constant can be efficiently extracted in the bound state calculation when the dimensional regularization is used to
regulate the nonrelativistic dynamics. It is true that dimensional regularization offers many technical advantages in
the calculation. This does not go without a price, however, since one has to be extremely careful in defining basic
objects of the nonrelativistic theory, e.g. the wave functions and energies. If this is not done, one is left guessing
whether or not is the calculation correct.

Our key observation, which we think cures such problems and makes our calculation unambiguous, is the fact
that the matrix elements in d dimensions are the uniform functions of the fine structure constant, and that the
corresponding power of α can be determined by expressing the matrix elements in “d-dimensional” atomic units. We
think that these arguments have not been spelled out before in the literature on one hand, and that they are necessary
to make a convincing case, on the other.

Finally, let us note that the technique discussed in this paper can obviously be used in other bound state QED
problems, as well as for the heavy quarkonium states in QCD.
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APPENDIX

Definition of the integrals that were used in the derivation.

I0(a, b) =

∫
ddp

(2π)d

(
1

p2 + 1

)a(
1

p2

)b
= (4π)−d/2

Γ(a+ b− d/2)Γ(d/2− b)
Γ(a)Γ(d/2)

, (61)

I1(a, b, c)=

∫
ddp′ ddp
(2π)2d

(
1

p′2 + 1

)a(
1

(p′ − p)2

)b(
1

p2 + 1

)c
= (4π)−d

×Γ(a+ b+ c − d)Γ(a+ b− d/2)Γ(b+ c− d/2)Γ(d/2− b)
Γ(a)Γ(c)Γ(d/2)Γ(a+ 2b+ c− d)

, (62)

I2(a, b, c)=

∫
ddp′ ddp

(2π)2d

(
1

p′2

)a(
1

(p′ − p)2

)b(
1

p2 + 1

)c
= (4π)−d

×Γ(a+ b+ c − d)Γ(a+ b− d/2)Γ(d/2− a)Γ(d/2− b)
Γ(a)Γ(b)Γ(c)Γ(d/2)

(63)
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