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Matter effects in the D0 −D0 system
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We discuss the impact of matter effects in the D0−D0 system. We show that such effects could,
in principle, be measured, but that they cannot be used to probe the mass difference xD or the
lifetime difference yD. This occurs because the mixing effects and the matter effects decouple at
short times. We also comment briefly on the B systems.

14.40.Lb, 11.30.Er, 14.40.-n.

I. INTRODUCTION

The D0 − D0 system is of great current interest. Until recently, the best probes on the mixing resulted only in
upper bounds on x2

D+y2
D of order 10−2 [1]. This changed with the recent results from CLEO [2] and FOCUS [3]. The

current situation is beautifully summarized in reference [4]: there is evidence for yD ∼ 10−2 and for a large strong
phase, corresponding to large SU(3) breaking effects. The problem with the strong, final-state interaction phases is
that they are not known. They are fit in the same experiments that look for yD . It would be interesting if matter
effects could be used to shed some light on this issue. The idea arises from the kaon system, where the phases due to
matter effects are measured experimentally. Thus, we would be dealing with a known CP-even phase.

There is one important difference between the kaon and D systems. For a beam of neutral kaons in vacuum, the
depletion from the beam is controlled by two exponentials, exp (−ΓS t) and exp (−ΓL t), corresponding to the short-
lived (KS) and long-lived (KL) components. Here |∆Γ| ∼ 2Γ and the two exponential fallouts are clearly separated.
As a result, we may wait for the KS component to decay away and use the matter effects on KL to regenerate KS ;
a phenomenon known as ‘regeneration’. In the D (and the Bd) system the situation is very different: |∆Γ| � Γ and
the leading behavior in vacuum is given by exp (−Γ t), with the hyperbolic sine and cosine of ∆Γ t acting as small
perturbations. In this system, the depletion from the beam is controlled by Γ. Because we cannot resolve the two
exponentials, the classical ‘regeneration’ experiments cannot be carried out and a new analysis is required. This is
the question we address here.

In section II we review the general features of propagation of neutral mesons systems in matter. In section III we
use an extrapolation from known kaon results to argue that these effects might, in principle, be sought. Unfortunately,
we will also show that, even if visible, the matter effects cannot be used to probe xD or yD . This is shown to be a
generic feature of the ‘small-time’ approximation in the time-evolution. We draw our conclusions in section IV, where
we remark briefly on the Bd and Bs systems.

II. PROPAGATION IN MATTER

Let us consider a generic neutral meson system P 0 − P 0. Assuming CPT-conservation in vacuum, this system is
characterized by two complex eigenvalues, µa = ma − iΓa/2 and µb = mb − iΓb/2, and by a mixing parameter, q/p.
It is convenient to define the average and the difference of the eigenvalues,

µ =
µa + µb

2
= m − i

2
Γ,

∆µ = µa − µb = ∆m− i

2
∆Γ. (1)

These quantities describe the system in vacuum and its time evolution is well known [5].
The new effects resulting from the interaction with matter can be described by the elastic forward scattering

amplitudes of P 0 and P 0, which we denote by f and f̄ , respectively. These enter the effective Hamiltonian through
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χ = −2πN

m
f, and χ̄ = −2πN

m
f̄, (2)

where N is the density of scattering centers in the medium. As before, we define the average and the difference of
these parameters as

χav =
χ+ χ̄

2
,

∆χ = χ− χ̄ = −2πN

m
∆f, (3)

with ∆f = f − f̄ .
In the presence of matter, the time evolution of meson states with a given initial flavor may be written as [6–9],

ei(µ+χav)t |P 0(t)〉 =

[
cos (Ω t/2)− i∆χ

Ω
sin (Ω t/2)

]
|P 0〉 +

q

p

[
−i∆µ

Ω
sin (Ω t/2)

]
|P 0〉,

ei(µ+χav)t |P 0(t)〉 =
p

q

[
−i∆µ

Ω
sin (Ω t/2)

]
|P 0〉 +

[
cos (Ω t/2) + i

∆χ

Ω
sin (Ω t/2)

]
|P 0〉, (4)

where Ω =
√

(∆µ)2 + (∆χ)2 [10]. The evolution in vacuum is reproduced by setting χav and ∆χ to zero.
As mentioned in the introduction, in the D (and in the Bd) system the depletion from the beam in vacuum is

controlled by Γ. This one exponential is then modulated by trigonometric functions of ∆µ t = ∆µ
Γ
τ , where τ = Γ t is

the time measured in lifetime units. Therefore, one introduces

∆µ

Γ
= x− iy. (5)

In most cases of interest the matter effects satisfy Γ > |Imχav| and |∆µ| > |∆χ|, and the depletion is still chiefly
determined by Γ. To describe the trigonometric functions in matter we need Eq. (5) and a new complex parameter.
This may be choosen to be ∆χ/Γ, which determines the depletion (statistics available) by the time the effects of ∆χ
become important. However, since we know the current experimental reach on ∆µ, it is easiest to use it to access the
experimental reach on ∆χ, through1

2r =
∆χ

∆µ
. (6)

Our figure of merit will be |∆χ/∆µ|.
Henceforth we will refer to those effects due to ∆µ as ‘mixing effects’, and to those effects due to ∆χ as ‘matter

effects’. The fundamental question is: when do the matter effects and the mixing effects couple to each other? The
answer is easily found by looking at Eqs. (4). They can couple in two ways. The first and simplest way occurs when
the production, propagation and decay occur all in the same medium and the decay is flavor tagging. In that case,
the matter and mixing effects couple mainly through Ω. The second way occurs when both flavors can decay into
the same final state, or when the system crosses several media. For example, for events occuring completely in the
medium, with the decays going into CP-eigenstates. Or, when the production and the initial part of the evolution
occur in matter, with the final part of the evolution and its decay occuring in vacuum. In these cases, besides Ω,
there can also be effects proportional to ∆µ∆χ, which arise from the interference between the coefficients of the sine
terms multiplying |P 0〉 and of the sine terms multiplying |P 0〉.

III. MATTER EFFECTS IN THE D0 −D0 SYSTEM

A. Interplay between mixing and matter effects

We will now show that, even when visible, the matter effects cannot be used to probe xD or yD. The main reason
is that the complex trigonometric functions are controled by (x − iy)τ and, with current technology, one can only

1Although it is conventional to use this factor of two in the definition of r, it seems to confuse rather than enlighten the issue.
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follow τ up to 5 or 10, corresponding to 5 to 10 average lifetimes in the D proper frame. This is mostly due to the
statistics of perfectly reconstructed events. It is obvious that, given unlimmited event samples, one could follow the
full decay curve including times of order 1/yD. We mention this because the ‘no-go theorem’ we are about to present
hinges on the experimental constraint that one can only follow the decay curves for time τ � 1/yD. Under these
circumstances, we can expand the trigonometric functions on the right-hand side of Eqs. (4) as

cos (Ω t/2)± i∆χ
Ω

sin (Ω t/2) ≈ 1± i∆χ
2
t− (∆µ)2 + (∆χ)2

8
t2 ∓ i∆χ (∆µ)2 + (∆χ)2

48
t3 +©(t4), (7)

and

− i∆µ
Ω

sin (Ω t/2) ≈ −i∆µ
2
t+ i∆µ

(∆µ)2 + (∆χ)2

48
t3 +©(t5), (8)

for the right-sign and wrong-sign transitions, respectively.
The old results on semileptonic wrong-sign decays [11] measure the magnitude squared of Eq. (8), given to leading

order by

|∆µ|2
4Γ2

τ2 =
x2 + y2

4
τ2. (9)

Let us now consider a final state f to which both P 0 and P 0 can decay. We denote the decay amplitudes by Af and
Āf , respectively. Such a decay has a term linear in t arising from the interference between Eqs. (7) and (8),

Im

[
∆µ

q

p
ĀfA

∗
f

]
t. (10)

CLEO [2] has looked at f = K+π− which is a Cabibbo-allowed decay for D0 and a Doubly-Cabibbo-suppressed decay
for D0. FOCUS [3] has looked at the CP-eigenstate f = K+K−.

Could one look at matter effects with semileptonic decays? In principle yes. The time evolution of the right-sign
semileptonic decays is proportional to the magnitude squared of Eq. (7), which has a term linear in t,

∓ Im

(
∆χ

Γ

)
τ. (11)

Even if |∆χ| is an order of magnitude smaller than |∆µ|, this term should still be easier to detect than the quadratic
term in Eq. (9). This idea will be explained in detail below.

For the moment we wish to return to our fundamental question: can matter effects be used to give a new handle
on ∆µ? The answer is no! First consider right-sign semileptonic decays and magnitude square the right-hand side of
Eq. (7). We see that only at order τ 3 do we find effects proportional to ∆µ∆χ. Even at order τ 2, the effects decouple
as Re(∆µ)2 and Re(∆χ)2. Next consider wrong-sign semileptonic decays and magnitude square the right-hand side
of Eq. (8). This case is even worse, since the effects proportional to ∆µ∆χ only arise at order τ 4. Now consider again

a final state f to which both D0 and D0 can decay. In the presence of matter Eq. (10) gets changed into

Im

[
∆µ

q

p
ĀfA

∗
f

(
t+ i

∆χ∗

2
t2
)]

. (12)

In this case there is an effect proportional to ∆µ∆χ∗ at order t2. But, if |∆χ| is an order of magnitude smaller than
|∆µ|, then this effect will be an order of magnitude smaller than that in Eq. (9). Notice that, in particular, there is
no effect proportional to Ωt.

In this discussion we have implicitly considered only events which occur totally in matter. However, the matter-
vacuum transition can only promote the same type of interference effects we have already discussed [12].

B. Observing matter effects

We have already argued that matter effects cannot be used as a handle on xD and yD. We have yet to prove that
they are observable at all, even in principle. Let us consider the decay D0 → K−l+νl. Using Eqs. (4) and (7) we find

Γ
[
D0(t)→ K−l+νl

]
≈ e−Γt e2Imχav t |Ao|2 (1 + Im ∆χ t) , (13)
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where we have denoted Ao = A(D0 → K−l+νl).2 We now need to estimate the linear term.
However, since the elastic forward scattering amplitudes forD0 and D̄0 (f and f̄ ) are not known, we have to estimate

them somehow. We recall that the matter effects in the kaon system arise because K0 interacts quasi-elastically with
the nucleons, while K0 suffers inelastic interactions, such as

K0 + (p+, n) → π0 + (Σ+,Σ0)

sd̄ + (uud, udd)→ dd̄ + (uus, uds). (14)

The counterpart in the D system is

D0 + (p+, n) → π0 + (Σ+
c ,Σ

0
c)

cū + (uud, udd)→ uū + (udc, ddc). (15)

The kinematics are different because m(D0) ≈ 1865MeV� m(K0) ≈ 498MeV and m(Σ+
c ) ≈ 2454MeV� m(Σ+) ≈

1189MeV. However, on the one hand we will be interested in the high momentum range (larger than 25GeV), where
the difference becomes less important. And, on the other hand, we are not interested in exact results but, rather,
wish to learn whether the matter effects are in principle observable. Therefore, we will simply scale the results from
the kaon system to the D system.

We will use an empirical scaling law determined by Gsponer and collaborators from their measurements in C, Al,
Cu, Sn, and Pb for kaon momenta between 30 to 150 GeV. They found that [13,14]

|∆f | = 1.13fm

(
A

g mol−1

)0.758( pK
GeVc−1

)0.386

, (16)

where A the atomic number of the material. This result exhibits a power law momentum dependence in accordance
with Regge theory [15], which also predicts that arg ∆f should be constant and given by −(1 + 0.386)π/2 = −0.693π
[14]. The power-law approximation is fairly good down to a few GeV/c momentum, where low-energy resonances set
in [16]. We neglect these effects since we will be concentrating on the high momentum range. We will also need the
imaginary part of f + f̄ . Again we rely on Gsponer and collaborators, who found [18,19]

Im(f + f̄) = 1.895fm

(
A

g mol−1

)0.840( pK
GeVc−1

)
(17)

in the kaon sector.
We start by noticing that the density of scattering centers is a medium is given by

N =
NAρ

A
, (18)

where NA is Avogadro’s number, ρ is the density of the material, and A is its atomic number. Using Eqs. (3) and
(16), we obtain

∆χD
ΓD

=
1

mDΓD

(
−2πNAρ

A

)
∆f

= −5.6× 10−5ei0.307π

(
A

g mol−1

)−0.242(
ρ

g cm−3

)−0.242( pD
GeVc−1

)0.386

. (19)

This result should be compared with that obtained for the neutral kaons, where −5.6× 10−5 is substituted by 0.09.
The sign difference arises from the fact that the inelastic interactions occur for D0, not D0; for example, Eq. (15)

involves D0, while Eq. (14) involves K0. Since we are assuming that the forward scattering amplitudes coincide, the
difference in magnitudes arises from

2To illustrate this effect, we have simplified the discussion by considering a ‘thought-experiment’ with the events taking place
(production, evolution, and decay) inside the material. For these purposes, a muon in the final state would be most readily
observed.
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|∆χD|/ΓD
|∆χK|/ΓK

=
mKΓK
mDΓD

=
498MeV

1865MeV

0.415× 10−12s

2× 0.893× 10−10s
= 6.2× 10−4. (20)

The results for carbon and tungsten are listed in table I for a variety of D momenta chosen within a range accessible
to FOCUS [17]. Tungsten is a preferable material since it leads to values which are roughly 4.4 times larger than
those obtained in carbon. For tungsten and momenta above 100GeVc−1 the effects are of order 0.2%. However, the
current experiments already probe ∆µD/ΓD of order 1%. Therefore, in principle, the linear term in Eq. (13) would
be detected with an experiment of this type.

Of course, we still need to show that the absorption term exp (2Imχav t) does not affect greatly the number of
events. Using Eq. (17), we find

2
Imχav D

ΓD
= −9.4× 10−5

(
A

g mol−1

)−0.160(
ρ

g cm−3

)( pD
GeVc−1

)
. (21)

For tungsten and a momentum of 100GeVc−1, the ratio becomes 0.08. Looking back at the right-hand side of Eq. (13),
this result means that the absorption exponential, exp (2Imχav t), does not compete with the decay exponential,
exp (−Γt).

Although we have been detailed about our estimates, our objective is not to propose a specific experiment, but
rather to emphasize that one is not, in principle, out of reach. Therefore, we will not address the obvious list of
questions: i) How does one identify the primary and secondary vertices?; ii) How does one instrument the material?;
iii) What is the ideal momentum range?; etc. We stress that the results presented here are based on the expectation
that we can extrapolate from the kaon to the D system. They should be taken as estimates and not as reliable
predictions. In particular, the presence of resonances could enhance or suppress these estimates.

IV. CONCLUSIONS

The situation in the Bd system is similar to the one in the D system in that ∆Γ � Γ. Using the same naive
high-momenta, scaling law used in Eq. (20), we obtain

|∆χB|/ΓB
|∆χK|/ΓK

=
mKΓK
mBΓB

= 8.2× 10−4. (22)

However, in the Bd system |∆µ| ∼ xd ∼ 0.7, meaning that |∆χ| cannot compete with Γ nor with |∆µ|.
The situation in the Bs is very different. From the point of view of the lifetime difference it is actually closer in

spirit to the kaon system [20]. Indeed, in the Bs system |∆Γ|/Γ ∼ 0.15 [21], and one may talk about two exponentials.
However, Bs contains no quarks of the first family and, hence, it would seem inappropriate to estimate the matter
effects as we have done above.

In conclusion, we have analyzed the possibility of detecting matter effects in the D0 − D0 system. We conclude
that these effects are, in principle, accessible. Unfortunately, when the time dependence is followed only for a few
lifetimes, the matter effects and the mixing effects decouple. As a result, matter effects cannot be used to provide a
new handle on xD or yD .
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pD
GeVc−1

100
∣∣∆χD

ΓD

∣∣
in carbon

100
∣∣∆χD

ΓD

∣∣
in tungsten

25 0.024 0.106
50 0.032 0.138
100 0.042 0.182
150 0.048 0.212
200 0.054 0.236
250 0.058 0.258

TABLE I. Values of ∆χD/ΓD for carbon and tungsten, as a function of the D momentum.
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