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Abstract

Model Independent Analysis (MIA) has previously em-
ployed statistical methods to reveal sub-resolution cor-
related modes present in pulse-by-pulse beam-position-
monitor (BPM) measurements at the SLAC linac [1]. This
paper describes an extension of MIA to verify local linear
and nonlinear properties of linac and storage ring lattices.
Measurements and analysis of the LER ring at PEP-II are
presented as an example.

1 INTRODUCTION

To utilize precision beam measurements to verify a beam-
line model one must identify and remove relatively large
variations in BPM offsets, gains, cross-plane couplings,
and nonlinear pin-cushion distortions. In section 2 it is
proven that all such BPM attributes may be represented
by symplectic maps. In section 3 it is shown that given
the orbit data for four independent excitations of a beam-
line one can use symplectic methods to extract the four
Green’s functions between BPM outputs. In the linear
case the Green’s functions are specified by values for
R12; R14; R32; andR34. Section 4 establishes that even in
the case of single-view BPMs this is sufficient information
to identify the gain and cross-plane-coupling BPM errors
as well as one normal and one skew attribute of the linear
lattice between each BPM pair. In the case of double-view
BPMs there is sufficient information to determine two nor-
mal and two skew lattice attributes. Section 5 describes the
use of MIA to extract precision excitation modes from ob-
servations of a shaken beam in a storage ring, and section 6
presents a first attempt to use this method to verify the lat-
tice of the low-energy ring (LER) of PEP-II. In section 7 it
is shown how these methods may be extended to determine
nonlinear BPM errors and nonlinear lattice parameters.

2 SYMPLECTIC BPM-ERROR MAPS

2.1 Linear errors

The BPM offsets may be removed by observing, and later
subtracting, the average BPM measurement during unex-
cited operation. Assuming that a change in the beam’s
slope at a BPM does not effect its output, the linear er-
rors can be represented by four numbers: the horizontal and
vertical gain,gx andgy, the change in the horizontal out-
put from a vertical beam displacement,�xy, and the change
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in the vertical output from a horizontal beam displacement,
�yx. This information can be placed in a 4x4 symplectic
matrix:

G =

�
G 0
0 G�1T

�
with G =

�
gx �xy
�yx gy

�
;

where the symplectic identity is given by

J =

�
0 I

�I 0

�
:

2.2 Nonlinear errors

Assuming that nonlinear distortions do not depend on
beam slope, they will have Lie generators of the form
g = �x0fx(x; y) � y0fy(x; y), producing�x(x; y) =
fx(x; y) + ::: and�y(x; y) = fy(x; y) + ::: . Any nonlin-
ear shape can be produced. The map output forx0 andy0 is
irrelevant because these are not measured.

3 LINEAR GREEN’S FUNCTIONS

The previous section implies that maps between BPM out-
puts can be assumed symplectic, being the composition of
3 symplectic maps: the inverse of the map from the be-
ginning of the lattice section to the initial BPM output, the
map through the lattice section, and the map from the end
of the lattice section to the final BPM output.

Suppose one has the BPM measurements for 4 linear in-
dependent modes of a beamline. Though x’ and y’ are not
measured they exist, and at theath andbth BPM output one
could conceptually form a matrix consisting of the phase-
space coordinates for the four independent excitations: eg.

Za =

0
B@

xa
1

xa
2

xa
3

xa
4

x0a
1

x0a
2

x0a
3

x0a
4

ya
1

ya
2

ya
3

ya
4

y0a
1

y0a
2

y0a
3

y0a
4

1
CA :

Since the phase-space coordinates ata andb are related
by a symplectic map,Rba, one hasZb = RbaZa: The sym-
plecticity ofR meansRbaTJRba = J; and it follows that
the anti-symmetric matrixQ = ZbTJZb = ZaTJZa is
a constant around the ring, even in a strongly coupled lat-
tice. The 6 independent elements ofQ are the generaliza-
tion of the Wronskian in 1 d.o.f. SinceZa has an inverse
(the 4 modes are independent), left-multiply the expression

for Q byZaT�1

; right-multiply byZa�1 and invert to get
ZaQ�1ZaT = �J; whereQ�1 is an anti-symmetric ma-
trix whose elements are a permutation of the elements ofQ

divided by its determinant.



Now suppose there are horizontal-view BPMs ata and
c and vertical-view BPMs atb andd. Define 4x4 matri-
ces that contain the modes as measured at these BPMs and
contain the map elements froma to the other locations.
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0
B@
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4
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yd
3

yd
4

1
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R̂ =

0
B@
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34

1
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Then Ẑ = R̂Za. Pre-multiplyingZaQ�1ZaT = �J
by R̂, and post-multiplying byR̂T yields ẐQ�1ẐT =
�R̂JR̂T .

The elements of̂RJR̂T are Green’s function elements of
the various maps betweena; b; c andd, and the components
of this matrix equation have the extremely simple form

X
i<j

(xai y
b
j � xaj y

b
i )Q

�1

ij = Rba
lm : (1)

The RHS is always a Green’s function element
(R12; R32; R14; or R34); the first index, l is 1 or 3
according to whether ”b” is horizontal or vertical, and
the second index,m is 2 or 4 according to whether ”a” is
horizontal or vertical. Note that in this equation forRba

only measurements ata and b enter; what’s happening
at c and d is actually irrelevant. The amplitude and
orthogonality of the 4 modes being used enters through
Q. The result in eq. (1) is a tidy expression for the local
linear Green’s function matrix elements between any two
locations in the beamline.

4 VERIFYING THE LINEAR MODEL

Not all of these Green’s function equations can be indepen-
dent. Since there are 4 measurements at each single-view
BPM, 1 for each of the 4 modes, one might expect each
BPM to be involved in 4 independent equations. Except
for BPMs at the end and beginning of a beamline, this is in-
deed true: there are 2 independent ”normal” measurements
and 2 independent ”skew” measurements. For double-view
BPMs one expects eight relationships. One can show that
all Green’s function elements may be expressed in terms
of elements between neighbors and next-nearest neighbors.
For example, for J as above, and ”B” the Green’s function
sub-matrix of

R =

�
A B

C D

�
;

then, Bda = BdbBcb�1

Bca � BdcBcbT
�1

Bba; where
a; b; c andd are four consecutive double-view BPMs.

The introduction of an additional single-view BPM im-
plies the introduction of an unknown normal gain and an

unknown skew cross-plane coupling. Since there are four
new equations, there remain two relationships that can be
used to verify the lattice. Typically one has a BPM at ev-
ery main quadrupole or half-cell. If there is a sextupole
in this half-cell, then the equations can determine the hor-
izontal and vertical position of the sextupole, relative to
the beam. In other words, since in addition to determin-
ing BPM parameters, we typically have only 2 (or 4) rela-
tionships per beamline interval, we can not determine the 6
possible parameters of an arbitrary symplectic map. How-
ever, many properties of the beamline interval are not in
doubt, such as the longitudinal position of elements and in-
dividual strengths of elements on strings. One makes the
most of such information, limiting the unknowns to less
than one normal and one skew parameter per BPM in the
case of single-view, or two normal and two skew parame-
ters in the case of double-view BPMs.

5 OBTAINING MODES IN RINGS

In linacs there is often enough incoming jitter in the beam
to measure and identify betatron modes. In rings this is
usually not the case, and one must introduce excitation.
Shakers are typically used to measure tunes. In PEP-II
it is relatively easy to shake the beam to amplitudes of a
few mm. Since the BPM resolution is a few�ms one ob-
tains information with parts per thousand accuracy poten-
tial. The beam profile does not seem to be noticeably al-
tered by shaking, so one avoids the decoherence inherent
in enlarged beams. To obtain these amplitudes, one must
shake at a frequency close to the betatron frequency. Thus
the horizontal shaker and vertical shaker must operate at
different frequencies. To determine higher order informa-
tion, it is necessary to have enhanced horizontal and verti-
cal amplitudes simultaneously. Having collected data from
many consecutive turns for an ensemble of BPMs, an SVD
analysis is used to identify correlated modes. Typically 2
betatron modes in the shaken plane are very large and all
other modes are close to the noise floor. The eigenvalues
of these other modes may be set to zero, and the SVD de-
composition re-multiplied to obtain a noise-reduced data
matrix. A linear portion of the lattice can now be decom-
posed in an SVD product, to identify the initial amplitude
of the two betatron modes on each turn. These amplitudes
can be further filtered using a hypothesis on the form of the
turn-to-turn map. One obtains highly refined initial ampli-
tude data. These initial amplitudes and their products can
now be used in conjunction with the original data matrix to
project out high quality eigenmodes (resolution now going
as
p
P , the number of pulses). Thus one obtains response

vectors around the ring to any amplitude product. The local
values of these vectors are precisely the coefficients of the
one-turn map from the linear starting region to each BPM
location. They may be used to determine the linear and
nonlinear local Green’s functions.



6 APPLICATION TO PEP-II

We have tried some preliminary applications of least square
fitting of Eq. 1 to the PEP-II Low Energy Ring (LER) in or-
der to find magnet errors. The fitting variables are the BPM
errors and the magnet errors by inserting, at each loca-
tion of the quadrupole or the sextupole (for misalignment),
a varying normal quad and a varying skew quad. Since
most of the PEP-II BPMs are single-view BPMs, in order
that BPM errors can also be part of the fitting, we make a
modification of Eq. 1 by transforming it into the measure-
ment frame such that the LHS is kept the same and thex’s
andy’s stand for the measured coordinates which include
BPMs error effect while the RHS is modified such that
R12; R32; R14; andR34 are replaced withR12;R32;R14;

andR34, where

R12 = gbxR12g
a
x + gbxR14�

a
xy + �bxyR32g

a
x + �bxyR34�

a
xy;

R32 = gbyR32g
a
x + gbyR34�

a
xy + �byxR12g

a
x + �byxR14�

a
xy;

R14 = gbxR14g
a
y + gbxR12�

a
yx + �bxyR34g

a
y + �bxyR32�

a
yx;

R34 = gbyR34g
a
y + gbyR32�

a
yx + �byxR14g

a
y + �byxR12�

a
ya:

The first step we do is to get the 4 independent orbits
and calculate the invariants so that the LHS of Eq. 1 can
be calculated. We would get 2 sets (x data and y data) of
about 2000 turns of orbit data for all BPMs from excitation
of horizontal (x) motion and another 2 sets of about 2000
turns of orbit data from excitation of vertical (y) motion.
We then perform Fourier transformation (if necessary) to
cut the low-frequency noise and then the singular value de-
composition (SVD) to get the 2 betatron modes (the largest
two modes) for each of the 4 sets of data to form the 4 in-
dependent orbits.

The second step we do is to get the local transfer matri-
ces and then insert a matrix of the form

0
B@

1 0 0 0
qn 1 qs 0
0 0 1 0
qs 0 �qn 1

1
CA

at each quadrupole or sextupole location, whereqn andqs
are variables representing the normal and skew quad errors
to be fitted. Besides the constraints from Eq. 1, we further
impose constraints that requiregx’s andgy ’s to be close to
1 and�xy and�yx to be close to 0 for all BPMs in the least
square fitting (note that we have removed the bad BPMs
during the process of getting the 4 independent orbits).

Figure 1 shows a fitted results from simulation (orbit
data obtained from numerical trackings) with 5 magnet er-
rors purposely imposed for a portion (covering 21 BPMs)
of the arc section after the injection. The BPM errors are
randomly generated. The top plot shows that the magnet
errors (normal quad or skew quad errors) are fitted pretty
well even though the BPM errors, particularly the coupled
errors�xy and�yx, are not perfectly fitted, as shown on
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Figure 1: Magnet error fitting for PEP-II LER. The orbit
data are obtained from computer particle tracking.

the bottom plots, due that the invariants are not calculated
accurately.

Figure 2 shows the fitted results from measurement (or-
bit data obtained from buffered data acquisition of the PEP-
II LER machine) forR12 (top) andR34 (bottom) in the
measurement frame for the same arc section as in Fig. 1.
Note that in the arc section, although the localR12’s are
the same (a constant) and so do the localR34’s, the modi-
fiedR12’s andR34’s in the measurement frame include the
BPM errors and so are not constants.
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Figure 2: Magnet error fitting for PEP-II LER. The orbit
data are obtained from buffered data acquisition of the LER
machine.

7 NONLINEARITIES

The result of the MIA orbit determination may be written

~b(z) =
X
~n

~v~nz
~n



andz~n = xnxx0nx0 ynyy0ny0 ; where~b is the vector of BPM
readings around the ring,~v~n are the values of thenth mode
around the ring, andz~n is the amplitude on any given pulse
of the ~nth mode. For the linear case only the1st order
terms are retained, and the four linear~vs are the values of
the four modes used in section 3 to deduce eq. 1 for the
local Green’s functions. To deduce the nonlinear Greens
function, replacez by zo + �, wherezo is assumed small,
and� is an infinitesimal that is retained to first order only.

~b(zo + �) = ~b(zo) +
X
k

@~b

@zk
(zo)�k :

Looking at this expression as a function of� the form is
similar to the linear case with modes

~vk(zo) =
@~b

@zk
(zo):

By stepwise adding terms of higher order one can deter-
mine each of the higher order contributions to the Green’s
function. To illustrate how this works consider the2nd-
order terms for a single variable. In addition to the con-
stant term,~vk(zo) will have linear terms inxo andx0o. Us-
ing Eq. 1 these linear terms contribute terms to the local
Green’s function linear inxo andx0o.

On the other hand, the local map has the form:

xb = Rba
11
xa+Rba

12
x0a+Rba

111
xa

2+Rba
112

xax0a+Rba
122

x0a
2
:

Taking the derivative with respect to x’ gives the Green’s
function

@xb

@x0a
= Rba

12
+Rba

112
xa + 2Rba

122
x0a:

Assuming that the linear lattice was successfully verified,
the values ofxa andx0a are determined as linear combina-
tion of xo andx0o. The two coefficientsR112 andR122 are
determined by comparison with the 2 new contributions to
the Green’s function.
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