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Abstract

A general method is presented for symplectic integration of particle orbit in a 3-dimensional mag-

netic �eld. The reference orbit in phase space is solved by eliminating the linear part of the

Hamiltonian. The Hamiltonian ow can be obtained by the Lie algebraic techniques such as ma-

trix maps for linear motion and integrable polynomials for nonlinear motion. Our method eases

the diÆcult task of particle tracking through insertion devices with complex magnetic �eld con�g-

uration such as the elliptical-polarization undulator. It can also be applied to calculate the particle

orbit through a dipole or a quadrupole to include the fringe �eld e�ects accurately.
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Insertion devices (IDs) such as undulators and wigglers are widely used in high per-

formance storage rings. They can produce high-brightness lights in the third and future

generation light sources, and can also be used to modify the emittance and the damping

partition numbers for attaining high quality electron beams.

In recent years, specially designed IDs, such as gap- and phase-adjustable Elliptical-

Polarization Undulators (EPUs), have been developed to generate polarized lights. Because

of the complex magnetic �eld con�gurations in EPUs, it is diÆcult to obtain accurate maps

for particle tracking. Since dynamical aperture depends sensitively on IDs with nonlinear

magnetic �eld, it is important to �nd a nonlinear map for these devices.

For accelerators, the magnetic �eld con�guration treated in the past can usually be de-

scribed by a two-dimensional transverse magnetic �eld model. In this model, only the

longitudinal component of the vector potential is needed to describe the system. Since the

coordinates and their conjugate canonical momenta are not mixed in the Hamiltonian, the

particle motion can easily be handled in the tracking programs. Since the fringe �eld or the

magnetic �eld in an EPU is three-dimensional, the vector potential can not be solely de-

scribed by a longitudinal component. A new algorithm is needed to handle this complicated

magnetic �eld con�guration.

In the past, there are several symplectic schemes proposed to solve particle tracking

problems for complex wigglers. However, some of these methods neither solve the \true"

reference orbit nor take advantage of the symplectic integrators [1]. On the other hand, the

straight forward particle tracking in the straight rectangular coordinate system proposed

in Ref. [2] may cause a mixed reference orbit and true betatron coordinates. This paper

studies a general algorithm of solving a Hamiltonian system for a complex magnetic �eld

con�guration. The reference orbit is obtained through a canonical transformation that

eliminates linear terms. Particle tracking can then be carried out by symplectic integrators

and integrable polynomials.

Because of the periodic nature of IDs, the three-dimensional magnetic �eld can be pre-
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sented by a Fourier-Floquet expansion:

Bx =
1X
n=1

h
f1n(x; y) cos (nkss) + f2n(x; y) sin (nkss)

i
+ f0(x; y)

By =
1X
n=1

h
g1n(x; y) cos (nkss) + g2n(x; y) sin (nkss)

i
+ g0(x; y) (1)

Bs =
1X
n=1

h
h1n(x; y) cos (nkss) + h2n(x; y) sin (nkss)

i
+ h0(x; y);

where (x̂; ŷ; ŝ) forms the basis of the orthogonal coordinate system, x and y are the transverse

position coordinates, s is the longitudinal distance serving as the time-like variable, the

functions f0; g0; h0 satisfy @xg0 = @yf0, @yg0 = @xf0, and h0 = constant, ks = 2�=�s is the

wave vector, and the functions f1n, f2n, g1n, g2n, h1n, and h2n are obtained from Maxwell's

equations r �B = 0 and r�B = 0. Thus we have

f1n = �k2nx (�2ns2nx + �2nc2nx) (2nc2ny + Æ2ns2ny) ;

f2n = k1nx (�1ns1nx + �1nc1nx) (1nc1ny + Æ1ns1ny) ;

g1n = �k2ny (�2nc2nx + �2ns2nx) (2ns2ny + Æ2nc2ny) ;

g2n = k1ny (�1nc1nx + �1ns1nx) (1ns1ny + Æ1nc1ny) ;

h1n = ks (�1nc1nx + �1ns1nx) (1nc1ny + Æ1ns1ny) ;

h2n = ks (�2nc2nx + �2ns2nx) (2nc2ny + Æ2ns2ny) ;

where u stands for either x or y, cmnu � cosh (nkmnuu), smnu � sinh (nkmnuu), (m = 1; 2),

and k2mnx+ k2mny = k2s : The parameter set of k's, �'s, �'s, 's, and Æ's are determined by the

characteristics of the three dimensional magnetic �eld [3]. From the relation, B = r�A,

we can choose As = 0 and �nd Ax and Ay as:

Ax =
1X
n=1

1

nks

h
g1n(x; y) sin (nkss)� g2n(x; y) cos (nkss)

i
+ g0(x; y)s+G(x; y); (2)

Ay =
1X
n=1

�1

nks

h
f1n(x; y) sin (nkss)� f2n(x; y) sin (nkss)

i
+ f0(x; y)s+ F (x; y); (3)

where @xF (x; y)� @yG(x; y) = h0.

The Hamiltonian in Frenet-Serret coordinate system is [4, 5]

H =
�e

c
As �

 
1 +

x

�

!
p

"
1�

 
Px

p
�
eAx

cp

!2
�

 
Py

p
�
eAy

cp

!2#1=2
; (4)
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where Px and Py are the canonical momenta, p is the magnitude of the mechanical momen-

tum of the particle, and � is the radius of curvature. For the 3-dimensional magnetic �eld

discussed above, we choose As = 0 and 1=� = 0. Since p is much larger than the transverse

mechanical momenta, px = Px �
e
c
Ax and px = Py �

e
c
Ay, the particle Hamiltonian can be

approximated by

H (x; Px; y; Py; s) '
1

2p

�
Px �

e

c
Ax

�2
+

1

2p

�
Py �

e

c
Ay

�2
: (5)

Using Hamilton's equations, we obtain the equations of motion as

d2x

ds2
=

d

ds

"
Px � (e=c)Ax

p

#
=

e

cp

 
Bs

dy

ds
� By

!
(6)

d2y

ds2
=

d

ds

"
Py � (e=c)Ay

p

#
=

e

cp

 
Bx � Bs

dx

ds

!
; (7)

which states explicitly the transverse Lorentz force. In the following, we will describe our

algorithm in solving the Lie generator for particle tracking in this type of undulators.

Let ~z represent the particle phase-space state vector, i.e. ~z(s) � (x; Px; y; Py)
y. The

Hamiltonian ow can be best described by expanding the Hamiltonian around a reference

orbit, where the linear part of the Hamiltonian is transformed away. To reach this goal, we

consider the generating function:

F2 = (x� x0)(PX + Px0) + (y � y0)(PY + Py0); (8)

where ~z0 = (x0; Px0; y0; Py0)
y is the reference orbit. From the generating function, we obtain

X = x� x0; Y = y � y0; Px = PX + Px0 ; Py = PY + Py0: The new Hamiltonian becomes

H = H +
@F2

@s
: (9)

The reference orbit ~z0 is chosen such that the linear part in the expansion of the new

Hamiltonian in the phase space coordinates vanishes, i.e. the new Hamiltonian in Taylor

series becomes

H =
1X
i=2

Hi; (10)
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where Hi stands for a homogeneous polynomial of degree i in canonical phase space coordi-

nates, the constant term H0 is ignored and we have set H1 = 0. This constraint gives

@x0

@s
=

Px0 � (e=c)Ax(~z0)

p
; (11)

@y0

@s
=

Py0 � (e=c)Ay(~z0)

p
; (12)

@Px0

@s
=

e

pc
f[Px0 � (e=c)Ax(~z0)] @xAx(~z0) + [Py0 � (e=c)Ay(~z0)] @xAy(~z0)g ; (13)

@Py0

@s
=

e

pc
f[Px0 � (e=c)Ax(~z0)] @yAx(~z0) + [Py0 � (e=c)Ay(~z0)] @yAy(~z0)g : (14)

These equations can be used to solve the reference orbit ~z0 that obeys the Lorentz force law,

i.e.

d2x0

ds2
=

e

pc

"
Bs(~z0)

dy0

ds
� By(~z0)

#
; (15)

d2y0

ds2
=

e

pc

"
Bx(~z0)�Bs(~z0)

dx0

ds

#
: (16)

Note here that ~z0 is also a function of the momentum p. The dispersion vector evaluated at

momentum p0 is given by

~d = p0
d~z0

dp

�����
p=p0

; (17)

where p0 is the momentum of a reference synchronous particle.

Once the reference orbit is found, all the coeÆcients of the new Hamiltonian in terms of

Taylor series expansion given by Eq. (10) are determined. The symplectic Hamiltonian ow

of the state vector ~Z � (X;PX ; Y; PY )
y, can be expressed in Lie algebra as

d~Z

ds
= lim

�s!0

exp f��s : H :g � 1

�s
~Z = �

h
H; ~Z

i
: (18)

This algorithm can be accurately and easily implemented by splitting an ID into small

segments in the Lie transformation as

~Z(s+�s) = exp

(
��s :

X
i=2

Hi(�s) :

)
~Z(s) where �s 2 [s; s+�s] (19)

to preserve the symplectic integration.

The second order part H2 and higher order part of the Hamiltonian can then be sepa-

rately treated by symplectic integrator techniques [6]. For example, using the second order
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symplectic integrator, we obtain, in terms of Lie generators [7]

exp

(
:
X
i=2

Hi :

)
= exp

�
:
1

2
H2 :

�
exp

(
:
X
i=3

Hi :

)
exp

�
:
1

2
H2 :

�
: (20)

Where the nonlinear Lie generator exp

(
:
X
i=3

Hi :

)
can be solved with explicit integrable

polynomial [8].

The canonical transformation to eliminate the H1 is equivalent to �rst locating the refer-

ence orbit ~z0(s) and then transferring the coordinates (x; y) in the Cartesian frame to a new

set of coordinates (X; Y ) in the reference orbit frame. In general, the reference orbit cannot

be obtained analytically and so a numerical solution is needed. To avoid repeated calcula-

tion of the reference orbit for each particle with di�erent energy, we calculate only once the

reference orbit in truncated Taylor expansion of Æ � �p=p0, where �p = p� p0. The �rst-

order coeÆcients of the expansion is the dispersion function given in Eq. (17). Note that

the accuracy of the reference orbit calculation has nothing to do with symplecticity, that is,

even if the reference orbit is not exactly calculated up to the computer machine precision,

the process does not violet the symplectic condition. The coeÆcients of the transformed

Hamiltonian and the Lie generators are also parameterized in truncated Taylor series. Be-

cause the reference orbit is solved by the canonical transformation of Hamilton's equations,

feed-down e�ects from higher-order multi-poles are automatically included.

In summary, we have developed a method to track particle motion in a 3-dimensional

magnetic �eld that can be represented by Ax and Ay. This method can be applied to

analyze nonlinear beam dynamics and generates accurate maps for insertion devices with

complicated magnetic �eld such as the EPU insertion devices, the fringe �eld of bending

magnets, and the super-conducting wavelength shifter.
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