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We discuss the possibility of having gravity \localized" in dimension d in a system

where gauge bosons propagate in dimension d+1. In such a circumstance|depending

on the rate of fallo� of the �eld strengths in d dimensions|one might expect the gauge

symmetry in d+1 dimensions to behave like a global symmetry in d dimensions, despite

the presence of gravity. Naive extrapolation of warped long-wavelength solutions of general

relativity coupled to scalars and gauge �elds suggests that such an e�ect might be possible.

However, in some basic realizations of such solutions in M theory, we �nd that this e�ect

does not persist microscopically. It turns over either to screening or the Higgs mechanism

at long distances in the d-dimensional description of the system. We briey discuss the

physics of charged objects in this type of system.
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1. Introduction and Summary

In the study of string dualities and the relation of string theory to �eld theory, the

localization of gauge dynamics (or more general quantum �eld theory dynamics) to a sub-

manifold of spacetime has been analyzed in many contexts. More recently the possibility

of localizing gravity has emerged in the study of cut-o� AdS spaces [1]. It is natural to

wonder therefore whether it is possible to localize gravity along a d-dimensional slice of

spacetime in a system where the gauge �elds of some symmetry group G propagate in d+1

dimensions.

In the most extreme imaginable versions of such a situation, in a d-dimensional descrip-

tion the symmetry G would appear more like a global symmetry than a gauge symmetry.

Field lines would fall o� faster than appropriate for a gauge symmetry in d-dimensions.

On the other hand the conservation of the associated charge would be guaranteed by the

fact that the symmetry was gauged in d+ 1 dimensions. Because gravity is localized to d

dimensions, one would then have a global symmetry in the presence of gravity. Since the

no-hair theorems for black holes in ordinary d-dimensional e�ective �eld theory suggest

strongly that such an e�ect is impossible [2], it is likely that this situation could only occur,

if at all, in systems with an in�nite number of degrees of freedom in a d-dimensional de-

scription. In systems with a holographic description in terms of a low-energy worldvolume

quantum �eld theory on (d-1)-branes, the physics must have a conventional interpretation

in d dimensions.

In this paper we will obtain results consistent with this expectation by analyzing

various systems in M theory. At the level of low-energy e�ective �eld theory in d + 1

dimensions, the e�ect appears possible, even generic. Consider a d+1-dimensional system

involving a gauge theory with �eld strength F coupled to a scalar � and gravity. The

action takes the form

S =

Z
ddxdr

p
g

�
a(�)R + b(�)(r�)2 + c(�)F 2 � �(�)

�
: (1:1)

Here a; b; c and � are general functions of �. Many such systems have \warped" solutions

which give a localized graviton in d dimensions upon integrating over the d+1st coordinate

r in (1.1). The dimensional reduction of the F 2 term can in general behave di�erently from

that of the Einstein term, since its kinetic term involves an extra power of the inverse metric

g�� relative to that of gravity, and since its coupling to the scalar will in general di�er.

At the level of (1.1) (without worrying about its embedding into quantum gravity) there

1



will be a large class of systems for which the coe�cient of the F 2 term will diverge. This

indicates that the long-distance behavior of the F �eld is weaker than that of an ordinary

unscreened un-Higgsed gauge �eld in d dimensions.

One such case is the cuto� AdS5 system with d = 4, which we study in x2.1 In this

system, however, the divergence in the F 2 term is logarithmic in the energy scale of the

dual conformal �eld theory coupled to gravity, so that the e�ect is identical to that of

screening of the charge in 4 dimensions.2 We calculate the electrostatic potential for a

test charge at the \Planck brane" and �nd a result consistent with this interpretation. In

realizations of this system in type IIB supergravity, the charged matter that leads to the

screening is evident, although the e�ect arises from geometry independent of assuming the

presence of charged matter in the bulk.

We also study the pattern of infrared divergences in kinetic terms for arbitrary q-

form gauge potentials in arbitrary dimension. This suggests a \screening" phenomenon

for higher-form �elds in a range of dimensions.

A more interesting case is a linear dilaton solution of string theory, which we consider

in x3. We study in particular the type IIA and type IIB Neveu-Schwarz �vebrane solutions

(for which d = 6). In this case, the string theory solution again has a diverging F 2 term

while the Einstein term survives with a �nite coe�cient upon dimensional reduction from

7d to 6d. The gauge �eld propagates as if in 7d at space in the linear dilaton solution.

However, the IIA solution gets corrected to one localized along the eleventh dimension of

M-theory [5], so that the symmetry is e�ectively Higgsed. In the IIB case one also �nds

a lifting of the RR two-form potential from e�ects occurring in a region where the linear

dilaton solution has broken down.

In x4 we discuss some aspects of the physics of charged black holes that make the

d+ 1 and d dimensional descriptions of these systems consistent. Finally in x5 we discuss
other long-wavelength solutions which naively exhibit this e�ect and discuss prospects for

realizing them in M theory.

One possible application is to the problem of compactifying matrix theory down to

four dimensions. This requires considering D0-branes in a IIA compacti�cation down to

three dimensions. This is problematic in part because of the in�nite classical electrostatic

self-energy of the D0-brane in 3d. If the electric �eld lives in 4d, while gravity is localized

to 3d, this problem may be avoided.

1 Gauge �elds in the bulk of the Randall-Sundrum approach to the hierarchy problem [3] were

studied by [4].
2 We thank E. Witten for pointing this out.
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2. Cuto� AdS Space

In AdS spaces cut o� by a Poincare-invariant \Planck brane", the metric can be

written

ds2 = e�2jrj=Ldx2jj + dr2 (2:1)

where xjj refers to the dimensions along the brane. The dimensional reduction of the

Einstein term in the 5d action gives a �nite 4d Planck scale M4 [1]:

M2
4 /M3

5

Z 1

0

dre�2r=L (2:2)

where M5 is the 5d Planck scale. On the other hand, if we introduce a Maxwell �eld, its

kinetic term in 4d is divergent. In terms of an infrared cuto� R, the corresponding integral

is
1

e2
�
Z R

0

dr / R; (2:3)

which diverges as R !1. From the metric (2.1), this cuto� scale R on the coordinate r

corresponds to -Llog (k0L) where k0 � L�1 is an infrared momentum cuto� along the four

dimensions parameterized by xjj. So this e�ect is quite conventional in four dimensions:

the charge is screened by the charged matter in the 4d conformal �eld theory dual to this

background [6].3

This result agrees with that obtained by a direct calculation of the electrostatic po-

tential of a charge localized on the Planck brane. (See [4] for similar calculations for gauge

�elds in [3], and for example [7][8][9] for analogous calculations of corrections to the grav-

itational propagator.) The electrostatic potential is found by integrating the Maxwell's

equation

rMFMN = �QJN (2:4)

in the background geometry (2.1) in the electrostatic approximation, when the vector po-

tential is AM = (�; 0; 0; 0; 0) and the density current is JM = 1p
g
�(4)(x � x0)(1; 0; 0; 0; 0)

(here x stands for all spatial coordinates in (2.1)). To compute the potential, it is con-

venient to choose the coordinates such that the metric (2.1) is conformally at. De�ning

jzj+ L = L exp(jrj=L), the metric becomes

ds2 =
L2

(jzj+ L)2
(dx2jj + dz2); (2:5)

3 In the realization of AdS5 in the IIB compacti�cation on S5, there is a factor of N2 in the

expression for the renormalized 1=e2. This comes from the factor V ol(S5)=(l8
s
g2
s
) = N2=L3 in

front of the gauge �eld kinetic term.
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while the Maxwell's equations (2.4) reduce to

(jzj +L)(
�0

jzj+ L
)0 + ~r2� = Q�(3)(~x � ~x0)�(z): (2:6)

Since the cuto� AdS5 space is realized with the orbifold symmetry r ! �r, enforcing

this symmetry requires �(z; ~x) = �(jzj; ~x), and so de�ning the variable � = 1 + jzj=L and

Fourier transforming in the longitudinal spatial directions, (2.6) becomes

�2
d2 ~�

d�2
� �

d~�

d�
� �2~k2L2~� = (QL � 2

d~�

d�
)�(�� 1): (2:7)

It is straightforward to see that the only solutions of the homogeneous part of this equation

which are regular on the AdS horizon jzj ! 1 are ~� = A�K1(kL�), where Kn(x) are the

Macdonald functions of index n (also known as modi�ed Bessel functions of the third kind)

and k =
p
~k2. The potential is then determined by choosing the integration constant A

to satisfy the boundary condition 2d
~�
d�

����
�=1

= QL, as required by the �-function source in

(2.7). The solution is

~�(�;~k) = �
Q�

2kK0(kL)
K1(kL�): (2:8)

Returning to the original coordinates of the cuto� AdS space (2.1) and Fourier transform-

ing back, we �nd the electrostatic potential of a particle located on the cuto� brane:

�(r; ~x) = �
Q

2
ejrj=L

Z
d3~k

(2�)3
K1(kLe

jrj=L)

kK0(kL)
ei
~k�(~x�~x0): (2:9)

To diagnose screening, we consider the potential at very long distances j~x�~x0j � L along

the cuto� brane r = 0. This is dominated by the k ! 0 contributions to the integral,

where the momentum space potential is

~�(0; ~k)!
Q

2k2L ln(kL=2)
; (2:10)

which is precisely the potential of a screened charge Q(k) = Q
2L ln(kL=2)

, con�rming the

expectation. We note that in the case of gravity localized to an intersection of n 2 + n-

branes in AdS3+n+1 [10] a similar analysis shows that the screening e�ect persists.

In the case of AdSd+1 for d > 4, the integral determining the gauge coupling is

�nite. In the case d = 3, one also obtains a result consistent with screening behavior: the

electrostatic potential goes like 1=xjj along the brane. This case might be of interest for a

matrix theory formulation of 4d gravity.
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It is instructive to consider the analogous calculations for higher-form gauge potentials.

The kinetic energy is (for a gauge �eld with a q-form �eld strength)

Z
ddxdr

p
gF�1:::�qg

�1�1 : : : g�q�qF�1:::�q : (2:11)

Integrating this over r up to a cuto� R yields an e�ective charge

1

e2q
/ e

R

L
(2q�d) �

1

k
2q�d
0

2q 6= d

R � log(k0) 2q = d

(2:12)

where k0 is an infrared momentum cuto� along the xjj directions. So for 2q � d, the charge

is e�ectively screened at long distance, more strongly for higher-form �eld strengths. It

would be interesting to understand microscopically how this screening occurs{perhaps it

arises from spherical q � 2-branes, which can develop multipole moments as discussed by

Myers in [11]. One caveat is that additional interactions can cause the q�1-form potential

to be lifted at low energies instead. In the next section we will see examples of this

possibility.

It is interesting that the e�ects of light charged matter arise from the AdS part of the

gravity solution alone. In known supersymmetric M-theoretic realizations of AdS solutions,

there is a �ve-dimensional Einstein manifold whose isometries yield gauge symmetries and

whose Kaluza-Klein excitations provide charged matter. At the level of low-energy �eld

theory, one could contemplate a situation where the gauge �eld was present in the bulk

but charged matter lived only on the brane. In such a situation, the 4d behavior of the

Maxwell �eld would be as if there were screening by light charges, but there would be no

dynamical charges in the bulk that could be excited.4 It seems likely that such a situation

does not occur in M theory realizations of AdS (this is certainly true in the case of the

supersymmetric realizations that are most familiar). In particular, as discussed in x4, bulk

charged matter plays a crucial role in black hole physics in these systems.

4 Something somewhat analogous happens in at the conifold singularity in Calabi-Yau moduli

space if the string coupling is taken to zero before the singularity is reached: then the light

wrapped D-branes that are usually responsible for the screening of the RR charge in that system

[12] are decoupled, and the e�ect comes from the singular \throat CFT" [13].
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3. 6d Little String Theories

Consider the N-NS 5-brane solution of type II string theory [14]. It has a string-frame

metric and dilaton
ds2 = dx26 + dr2 + l2sNd
2

3

� = �r
(3:1)

with � = 1=ls
p
N . There is a ux of the three-form NS �eld strength H which stabilizes

the S3 component of the geometry. We want to consider the behavior of gravitons and of

RR gauge potentials in this background.

The decoupled throat theory has this metric with r 2 (�1;+1). For N � 16 we

can cut it o� by considering it as part of a compacti�cation, so the full metric is rather

complicated but asymptotes to (3.1) down the throat r ! +1 of the NS5's. This is similar

to the proposal [15] for realizing the Randall-Sundrum background in string theory via

compacti�cation. The compacti�cation which does this most simply is on the moduli space

of type II on T 4=I4(�1)FL as studied by Kutasov [16] and by Sen [17]. Note that in the

string-realized AdSd+1 cases this was not a possibility, since a compacti�cation transverse

to the brane would explicitly break the SO(10-d) symmetry of the S9�d surrounding the

brane. Here we are not making use of the analogue of that symmetry, but instead are

using the U(1) generated by the IIA RR 1-form potential. To consider N > 16, we would

need a \Planck brane" of the sort considered in [1] in order to cut o� the solution and bind

gravity. We do not know if this has a precise realization in M theory, but will assume so

in discussing this case.

The string coupling grows down the throat of the solution, so most calculations are

out of control far down the throat. The corrections to the solution as discussed for example

in [5] will be important.

The string-frame ten-dimensional action is

Z
d6xdrd
3

�
e�2�(R+ (@�)2) +K2

RR

�
(3:2)

where K is the �eld strength for the RR U(1) gauge �eld of type IIA string theory, or the

�eld strength for the 2-form RR gauge potential of type IIB string theory.

Consider the perturbation g�� ! g�� + h�� in this linear dilaton background, where

�; � run along the 6 dimensions of the 5-branes. Let us dimensionally reduce the system

to 5 + 1 dimensions, and write an e�ective action for the graviton h�� . Though we here

work in string frame, the Einstein frame description of course yields the same results.
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In determining the 6d Einstein term we must integrate over the extra 4 dimensions in

the NS5 background. The contribution of the rest of the compacti�cation is �nite, so the

only issue is the throat. The integral over r relevant for the 6d Planck scale goes like

M4
6 � m5

s

Z
dre�2�r =

m5
s

2�
(3:3)

which is �nite in terms of the string mass scale ms = 1=ls. (Here for simplicity we have

placed the Planck brane at r = 0.)

Now do the same for the RR gauge �eld. It does not couple to the dilaton in string

frame (in its realization with a standard gauge invariance, rather than one intertwined with

the dilaton) [18]. So the integral over r is in�nite. This already shows a de�nite di�erence

from a standard gauge symmetry: as reviewed above, in the AdS cases this integral is

�nite for 1-form gauge potentials in d > 4, reecting the fact that the higher-dimensional

QFTs do not screen the charge via quantum e�ects.

Furthermore, Maxwell's equations are easy to solve here, since we are in at space

with no extra direct couplings to � as far as the RR gauge �eld is concerned. The power

law fallo� of the electric �eld will be as in 7 dimensions rather than 6. So it naively looks

like this is a case where the gauge �eld propagates in one higher dimension than gravity,

which is \localized" in 6d. We will �nd, however, that this is not true; the symmetry is

Higgsed.

In [19], arguments against global symmetries in perturbative string theories were pre-

sented. It should be noted that the e�ect we see here at the level of perturbative string

theory is not in contradiction with the results of [19] for two reasons: (i) perturbation the-

ory breaks down down the throat and (ii) the throat is noncompact (there is a continuum

of modes).

3.1. Type IIA

In the type IIA string theory, the strong coupling limit occuring down the throat

of the solution is better described by the eleven-dimensional limit of M-theory. In this

description, the eleventh circle S1
11 is expanding down the throat of the solution. Lifting

the solution (3.1) directly to eleven-dimensional supergravity gives a con�guration where

M5-branes are \smeared" over the eleventh dimension. For a �nite number N of NS5-

branes, this solution is microscopically corrected to one in whichN M5-branes are localized

at points on S1
11 [5]. For an in�nite number of 5-branes, one can contemplate the smeared
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solution corresponding to a continuus placement of the in�nite number of branes along

the circle, as in analogous cases studied in the context of the AdS/CFT correspondence

[20]. However, as we will review, the scaling of parameters that leads to this solution

invalidates the supergravity approximation and more importantly removes the localization

of the graviton.

Microscopics

Starting with �nite N , we can �nd a microscopic embedding of the cuto� solution

into M theory. This is obtained by the construction of [16], in which the NS5-branes sit at

points in a compacti�cation manifold. The full solution is [5][21]

ds2 = l2pf
� 1

3

�
dx2jj + f(dy211 + dU2 + U2d
2

3)

�

f =

1X
n=�1

NX
i=1

1

[U2 + (y11 � yi +
n
l2
s

)]
3

2

(3:4)

where the yi; i = 1; : : : ;N denote the positions of the N branes on S1
11. The metric is

written here in terms of the coordinate U =
p
N
l2
s

e
rp
Nls .

Since this solution breaks the translation symmetry along S1
11, the U(1) RR 1-form

potential is Higgsed. This is an infrared e�ect in the 6d description. The microphysics

of M theory therefore avoids the issue of a global symmetry arising in 6d, by substituting

spontaneous breaking of the symmetry.

This Higgsing persists in the appropriate N !1 limit. In terms of these coordinates

(which correspond to canonically normalized VEVs of �elds in the (2,0) conformal �eld

theory [21]) the periodicity of y11 is 1=l2s. From (3.1) (with � = 1

ls
p
N
) it is clear that to

localize gravity as N ! 1 we need ls ! 0 so that ls
p
N does not diverge in the limit.

This is also required for having a valid supergravity approximation everywhere [22]. For

evenly-spaced branes, the spacing between branes is �xed:

�y = yi � yi�1 =
1

l2sN
: (3:5)

So what happens in this limit is that the eleventh circle S1
11 expands as N ! 1, leaving

the spacing between branes �xed and the symmetry of interest here broken. The smeared

solution, which preserves the symmetry, could only pertain to a di�erent scaling which

removes the localization of gravity.
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3.2. Type IIB

In the type IIB theory, the relevant gauge potential is the RR 2-form BRR. In this

case, as one increases r, the solution (3.1) crosses over to the D5-brane solution and then

to a description in terms of the SYM theory formed by the light open strings living on the

D5-brane [5]. In the D5-brane and SYM descriptions, the original RR B �eld becomes an

NS B �eld.

In the open string description, the B �eld couples to the worldvolume U(1) gauge

�eld via the Stuckelberg coupling [23]

S =

Z
d10xjdBj2 +

Z
d6x(B � F )2 (3:6)

The second term e�ectively gives a mass to the B �eld. Thus in this case also, the

massless gauge boson gets lifted down the throat of the solution instead of leading to a

global symmetry in 6d. This is consistent with the T-duality to the IIA case on a circle.

4. Black Hole Physics

Even with the conventional d-dimensional understanding that we have come to of the

physics of d+1-dimensional gauge �elds in our systems, the d+1-dimensional picture raises

interesting questions about black hole physics. We will here provide a qualitative discussion

of some of these issues; it would be interesting to �nd concrete black hole solutions in these

backgrounds to study. Schwarzschild black holes were considered in [9]; in the systems we

are considering here the generalization to charged black holes is of interest.

In the AdS cases, the symmetry is unbroken and the charge is conserved (and screened

in low enough dimension). Suppose there is an extreme or nearly extreme black hole of

charge Q and massM centered on the Planck brane in AdS5. Its charge can be measured

by Gauss' law in �ve dimensions, and this charge is conserved overall in the system. In

the four-dimensional description, the charge is screened, and could not be measured at

long distance. One expects quantum mechanically a charged black hole to be quickly

neutralized at long distances by the light charged conformal �eld theory matter in the

system (in analogy to the familiar e�ect in ordinary QED in black hole backgrounds [24]).

How does this occur from the �ve-dimensional point of view? In order to see the

neutralization from this point of view, we need the electric �eld to be strong enough

to make it energetically favorable for charged matter to be pair-produced and to draw
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the negatively charged member of the pair to the black hole (against the gravitational

attraction toward the AdS horizon). Let us assume we have charged matter of mass m

and charge q in the bulk theory. From (2.9) for large jzj one �nds

F 0z /
Qjzj2

L5
(4:1)

So the strength of the electric �eld grows toward the AdS horizon. Since this will eventually

dominate over the mass, we expect an analogue of the Schwinger calculation to imply pair

production (though we have not calculated this e�ect in our background directly). In

terms of the forces on the produced pair, the source Q leads to an electromagnetic force

on the particle of charge q in the z direction of magnitude

fzE:M: /
qQz

L4
: (4:2)

Here we took the particle to be at rest and evaluated the relation f�E:M: = qF�
�
dx�

d�
in our

background �eld con�guration (2.5)(4.1). There is also a gravitational attraction to the

black hole, as well as a gravitational attraction toward the AdS horizon. The latter e�ect

goes like

fzAdS / �m�z��
dx�

d�

dx�

d�
� �mz

1

L2
(4:3)

From (4.2) and (4.3) it is clear that for large enough Q, the electromagnetic force will

dominate. We therefore expect dielectric breakdown from pair production of the charged

matter of mass m to become possible at large enough jzj. For small Q (and small size

relative to the AdS radius), the object does not constitute a black hole from the 4d point

of view in any case.

Another e�ect to consider is the quantum stability of the localization of the charge

Q on the brane. Particles in the bulk fall toward the AdS horizon, and therefore it seems

clear that the charged source will ultimately tunnel into the bulk and fall down the throat.

In the absence of a genuine embedding of the Planck brane into M theory, we cannot

calculate the rate for this tunneling process. To a 4d observer it would look like the

conserved charge is spreading out. The boundary of this region of spreading charge may

behave like a membrane, and the 5d gravity description might provide a way to study

membrane nucleation processes.
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One can similarly consider charged objects in the IIA system of x3 in the regime

where the \throat" solution (3.1) applies. The D0-branes in this background (which are

momentum modes around S1
11) become light down the throat, exponentially in r:

MD0 =
1

e�ls
�

1

ls
e�2�r (4:4)

On the other hand, the electric �eld emanating from a source of charge Q > 0 at the

Planck brane decays like a power:

~E �
Q

(r2 + x2jj)
5

2

: (4:5)

We again expect that for large enough r, the light D0-branes will be pair-produced and

neutralize a charged black hole in this system as well.

There is another intriguing aspect to the physics of charged objects in this sort of

system. In d+1 dimensions one can measure the charge classically using Gauss' law. The

charge that one measures this way is the bare unscreened charge Q. This procedure must

translate into some operation in the d-dimensional description of the system. According to

the IR/UV relationship in holography [25], the d+1-dimensional Gauss' law measurement

always uses information that is longer-wavelength than the size of the object in the d-

dimensional description.

5. More General Solutions

We have seen that in cases where there is a brane interpretation of a warped metric,

M theory conspires to prevent a truly higher-dimensional gauge �eld from arising in a

d-dimensional gravity theory. We expect it is likely that this happens rather generically.

Still, it is interesting to consider backgrounds which, like those discussed here, have such

an e�ect naively in a long-wavelength analysis|but whose microscopic behavior is not yet

understood.

The linear dilaton solution (3.1) arises much more generally than in the NS5-brane

solutions (in general with the d
2
3 piece replaced with something else). Geometrical singu-

larities such as the conifold singularity routinely resolve into a throat with linear dilaton

behavior. This can be seen from the description of such compacti�cations using the tech-

niques of [13]. Some of these cases in fact descend from those considered above via K3
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�bration. It would be very interesting to systematically analyze the behavior of gauge

bosons in many other classically singular geometries.

Another place where linear dilaton solutions arise is in noncritical perturbative string

backgrounds with a tree-level cosmological term. There the linear dilaton solution (3.1)

exists with �2 / (D �Dcrit)=l
2
s . In this case, as before, a naive calculation would suggest

the potential for a delocalized gauge boson. Since the dilaton grows along the direction

r in the solution, strong coupling arises and corrections will be important. With current

technology we cannot say whether this will always lead to conventional 4d behavior or

whether it is conceivable that sometimes 4d e�ective �eld theory will break down in such

a way that a global symmetry of the kind we have been contemplating can persist.

One could similarly consider the dilaton gravity solutions of the type considered in

for example [26]. As we discussed in the introduction, the coupling of the scalar to the

F 2 term can (quite generically) be such that again a naive calculation of the coupling

would suggest a globalization of the symmetry in 4d. However, as above, corrections will

be important (and will rule out some subset of these solutions altogether).

The gravity backgrounds we considered in the bulk of the paper have known holo-

graphic descriptions in terms of a brane worldvolume theory which reduces to ordinary

d-dimensional e�ective quantum �eld theory at low energy. Most backgrounds have no

known holographic description (for some relatively recent considerations of the general

features required see for example [27]), and it is not yet clear what precise form holog-

raphy will take in a generic background. It will be interesting to study the structure of

gauge symmetries in various dimensions once more general backgrounds are understood.

In any case, as it stands, in this paper we have gathered further evidence for the

robustness of the arguments against global symmetries in the context of gravity.

Acknowledgements

We would like to thank T. Banks, S. Dimopoulos, M. Du�, S. Kachru, A. Lawrence,

J. Maldacena, L. Randall, M. Schulz, S. Shenker, and especially E. Witten, for very useful

discussions. We understand N. Arkani-Hamed, M. Porrati, and L. Randall have results

overlapping with ours (particularly in section 2). The work of E.S. is supported by a DOE

OJI grant, by the A.P. Sloan Foundation, and by the DOE under contract DE-AC03-

76SF00515. The work of N.K. and L. S. is supported in part by NSF grant 980115.

12



References

[1] L. Randall and R. Sundrum, \An Alternative to Compacti�cation" Phys. Rev. Lett.

83, 4690 (1999), hep-th/9906064

[2] M. Kamionkowski and J. March-Russell, \Are textures natural?," Phys. Rev. Lett.

69, 1485 (1992), hep-th/9201063; R. Holman, S. D. Hsu, E. W. Kolb, R. Watkins

and L. M. Widrow, \Cosmological texture is incompatible with Planck scale physics,"

Phys. Rev. Lett. 69, 1489 (1992).

[3] L. Randall and R. Sundrum, \A large mass hierarchy from a small extra dimension,"

Phys. Rev. Lett. 83 (1999) 3370 hep-ph/9905221.

[4] A. Pomarol, \Gauge bosons in a �ve-dimensional theory with localized gravity," hep-

ph/9911294; ; H. Davoudiasl, J. L. Hewett and T. G. Rizzo, \Bulk gauge �elds in the

Randall-Sundrum model," Phys. Lett. B473, 43 (2000), hep-ph/9911262.

[5] N. Itzhaki, J. Maldacena, J. Sonnenschein, and Shimon Yankielowicz, \Supergravity

and the Large N Limit of Theories with Sixteen Supercharges", hep-th/9802042.

[6] J. Maldacena, \The large N limit of superconformal �eld theories and supergravity,"

Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200; E. Witten, \Anti-de Sit-

ter space and holography," Adv. Theor. Math. Phys. 2, 253 (1998) hep-th/9802150;

S. S. Gubser, I. R. Klebanov and A. M. Polyakov, \Gauge theory correlators from

non-critical string theory," Phys. Lett. B428, 105 (1998), hep-th/9802109.

[7] M. J. Du� and J. T. Liu, \On the equivalence of the Maldacena and Randall-Sundrum

pictures," hep-th/0003237.

[8] S. S. Gubser, \AdS/CFT and gravity," hep-th/9912001.

[9] A. Chamblin, S. W. Hawking and H. S. Reall, \Brane-world black holes," Phys. Rev.

D61, 065007 (2000), hep-th/9909205; R. Emparan, G. T. Horowitz and R. C. Myers,

\Exact description of black holes on branes," JHEP 0001, 007 (2000), hep-th/9911043;

S. B. Giddings, E. Katz and L. Randall, \Linearized gravity in brane backgrounds,"

JHEP 0003, 023 (2000), hep-th/0002091.

[10] N. Arkani-Hamed, S. Dimopoulos, G. Dvali and N. Kaloper, \In�nitely large new

dimensions," Phys. Rev. Lett. 84, 586 (2000), hep-th/9907209.

[11] R. C. Myers, \Dielectric branes," JHEP 9912, 022 (1999), hep-th/9910053.

[12] A. Strominger, \Massless black holes and conifolds in string theory," Nucl. Phys.

B451, 96 (1995), hep-th/9504090.

[13] E. Witten, \Phases of N=2 Theories in Two Dimensions" Nucl. Phys. B403, 159

(1993), hep-th/9301042.

[14] A. Strominger, \Heterotic Solitons," Nucl. Phys. B343, 167 (1990); C. G. Callan,

J. A. Harvey and A. Strominger, \Supersymmetric string solitons," hep-th/9112030.

[15] H. Verlinde, \Holography and compacti�cation," hep-th/9906182.

[16] D. Kutasov,\Orbifolds and Solitons," Phys. Lett. B383, 48 (1996), hep-th/9512145.

13

http://xxx.lanl.gov/abs/hep-th/9906064
http://xxx.lanl.gov/abs/hep-th/9201063
http://xxx.lanl.gov/abs/hep-ph/9905221
http://xxx.lanl.gov/abs/hep-ph/9911294
http://xxx.lanl.gov/abs/hep-ph/9911294
http://xxx.lanl.gov/abs/hep-ph/9911262
http://xxx.lanl.gov/abs/hep-th/9802042
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/0003237
http://xxx.lanl.gov/abs/hep-th/9912001
http://xxx.lanl.gov/abs/hep-th/9909205
http://xxx.lanl.gov/abs/hep-th/9911043
http://xxx.lanl.gov/abs/hep-th/0002091
http://xxx.lanl.gov/abs/hep-th/9907209
http://xxx.lanl.gov/abs/hep-th/9910053
http://xxx.lanl.gov/abs/hep-th/9504090
http://xxx.lanl.gov/abs/hep-th/9301042
http://xxx.lanl.gov/abs/hep-th/9112030
http://xxx.lanl.gov/abs/hep-th/9906182
http://xxx.lanl.gov/abs/hep-th/9512145


[17] A. Sen,\Duality and Orbifolds," Nucl. Phys. B474, 361 (1996), hep-th/9604070.

[18] E. Witten, \String theory dynamics in various dimensions," Nucl. Phys. B443, 85

(1995), hep-th/9503124.

[19] T. Banks, L. Dixon, \Constraints On String VacuaWith Space-Time Supersymmetry,"

Nucl. Phys. B307, 93 (1988).

[20] See for example P. Kraus, F. Larsen and S. P. Trivedi, \The Coulomb branch of gauge

theory from rotating branes," JHEP 9903, 003 (1999), hep-th/9811120; M. Cvetic,

S. S. Gubser, H. Lu and C. N. Pope, \Symmetric potentials of gauged supergravities

in diverse dimensions and Coulomb branch of gauge theories," hep-th/9909121.

[21] O. Aharony, M. Berkooz, D. Kutasov, and N. Seiberg, \Linear Dilatons, NS5-branes,

and Holography", hep-th/9808149.

[22] S. Minwalla and N. Seiberg, \Comments on the IIA NS5-brane," JHEP 9906, 007

(1999), hep-th/9904142.

[23] E. Witten, \Bound States of Strings and p-branes" Nucl. Phys. B460, 335 (1996),

hep-th/9510135.

[24] G. W. Gibbons, \Vacuum Polarization And The Spontaneous Loss Of Charge By

Black Holes," Commun. Math. Phys. 44, 245 (1975).

[25] L. Susskind and E. Witten, \The holographic bound in anti-de Sitter space," hep-

th/9805114.

[26] O. DeWolfe, D. Z. Freedman, S. S. Gubser and A. Karch, \Modeling the �fth dimension

with scalars and gravity," hep-th/9909134.

[27] O. Aharony and T. Banks, \Note on the quantum mechanics of M theory," JHEP

9903, 016 (1999), hep-th/9812237.

14

http://xxx.lanl.gov/abs/hep-th/9604070
http://xxx.lanl.gov/abs/hep-th/9503124
http://xxx.lanl.gov/abs/hep-th/9811120
http://xxx.lanl.gov/abs/hep-th/9909121
http://xxx.lanl.gov/abs/hep-th/9808149
http://xxx.lanl.gov/abs/hep-th/9904142
http://xxx.lanl.gov/abs/hep-th/9510135
http://xxx.lanl.gov/abs/hep-th/9805114
http://xxx.lanl.gov/abs/hep-th/9805114
http://xxx.lanl.gov/abs/hep-th/9909134
http://xxx.lanl.gov/abs/hep-th/9812237

