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1 Introduction

Virtual Compton scattering �p ! p (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton's structure. Particular interest has been raised by

the description of this process in the limit of large initial photon virtuality Q2 = �q2
[1, 2, 3, 4, 5]. Even though the �nal state photon is on-shell, one �nds that the

deeply virtual process probes the elementary quark structure of the proton near the

light-cone as an e�ective local current, or in other words, that QCD factorization

applies [3, 6, 7]

In contrast to deep inelastic scattering, which measures only the absorptive part

of the forward virtual Compton amplitude, Im T�p!�p, deeply virtual Compton scat-

tering allows the measurement of the detailed momentum and spin structure of pro-

ton matrix elements for general squared momentum transfer t = (P � P 0)2. In

addition, the interference of the amplitudes for virtual Compton scattering and the

Bethe-Heitler process, where the photon is emitted from the lepton line, leads to

an electron-positron asymmetry in the e�p! e�p cross section which is propor-

tional to the real part of the Compton amplitude [8]. The imaginary part can be

accessed through various spin asymmetries [9]. The deeply virtual Compton ampli-

tude �p ! p is related by crossing to another important process, � ! hadron

pairs at �xed invariant mass, which can be measured in electron-photon collisions

[1, 10].
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Figure 1: The virtual Compton amplitude �(q) + p(P )! (q0) + p(P 0).

To leading order in 1=Q, the deeply virtual Compton scattering amplitude factor-

izes as the convolution in x of the amplitude for hard Compton scattering on a quark

line with skewed parton distributions H(x; �; t); E(x; �; t), fH(x; �; t); and eE(x; �; t) of
2



the target proton. Here x is the light-cone momentum fraction of the struck quark,

and � = Q2=(2P � q) plays the role of the Bjorken variable known from deep inelastic

scattering. One can also interpret these distributions in terms of virtual quark-proton

scattering amplitudes as de�ned in the covariant parton model [8, 11, 12].

There are remarkable sum rules connecting H(x; �; t) and E(x; �; t) with the cor-

responding helicity conserving and helicity ip electromagnetic form factors F1(t) and

F2(t) and gravitational form factors Aq(t) and Bq(t) for each quark and anti-quark

constituent [2]. For example, the gravitational form factors are given by

Z 1

0

dx

1� �
2

x� �
2

1� �
2

[H(x; �; t) + E(x; �; t)] = Aq(t) +Bq(t) : (1)

Thus deeply virtual Compton scattering is related to the quark contribution to the

form factors of a proton scattering in a gravitational �eld. The total anomalous

gravito-magnetic moment B(t = 0) vanishes identically when summed over all con-

stituents [13]. In the present work the close connection between skewed parton dis-

tributions and hadronic form factors will become apparent. To emphasize this rela-

tionship, we will refer to H;E; fH and eE as \generalized Compton form factors".

It has long been known that the conventional parton distributions which describe

deep inelastic scattering can be represented in terms of the squared light-cone Fock-

state wavefunction of the proton target [14]. This representation reects the fact that

parton distributions can be understood as probability densities. In contrast, virtual

Compton scattering always involves non-zero momentum transfer, and a probabilistic

interpretation of skewed parton distributions is not possible. However, these distribu-

tions can still be constructed from speci�c overlap integrals of the proton wavefunc-

tions. They can in fact be regarded as interference terms between wavefunctions for

di�erent parton con�gurations, containing information on the proton structure that

is not accessible at the level of probability densities. This overlap representation is

the focus of the present work.

There are three distinct integration regions in x. In the domain where � < x <

1, the generalized form factors H, E, fH and eE correspond to the situation where

one removes a quark from the initial proton wavefunction at light-cone momentum

fraction x = k+=P+ and transverse momentum ~k? and re-inserts it into the �nal-state

wavefunction of the proton with the same chirality, but with light-cone momentum

fraction x � � and transverse momentum ~k? � ~�?. The domain � � 1 < x < 0

corresponds to removing an antiquark with momentum fraction ��x and re-inserting
it with momentum �x, both momentum fractions being positive as they must. In

the remaining integration domain, 0 < x < �, the photons scatter o� of a virtual

quark-antiquark pair in the initial proton wavefunction: the quark of the pair has

light-cone momentum fraction x and transverse momentum ~k?, whereas the anti-

quark has light-cone momentum fraction � � x and transverse momentum ~�? � ~k?.
This domain is unique to skewed parton distributions and does not appear in the
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usual parton densities, where � = 0.

In the case of matrix elements of space-like currents, one can choose the spe-

cial frame (P � P 0)+ = 0, as in the Drell-Yan-West representation of the space-like

electromagnetic form factors [15]. Thus given the light-cone wavefunctions, one can

construct space-like electromagnetic, electroweak, gravitational couplings, or any local

operator product matrix element from their overlap [13, 16]. This overlap is diago-

nal in parton number. In the case of deeply virtual Compton scattering, the proton

matrix elements require the computation of the diagonal, parton number conserving,

matrix element n ! n for the regions � < x < 1 and � � 1 < x < 0 [17]. However,

it also involves an o�-diagonal n + 1 ! n � 1 convolution for 0 < x < �, where the

parton number is decreased by two. This domain occurs since the current operator of

the �nal-state photon with positive light-cone momentum fraction � can annihilate a

quark-antiquark pair in the initial proton wavefunction. This type of overlap has �rst

been identi�ed in the context of the form factors which control time-like semi-leptonic

B decay [18]. As we shall see, there are underlying relations between Fock states of

di�erent particle number which interrelate the two types of overlap.

It also should be noted that the calculation of deep inelastic structure functions

and space-like form factors requires the light-cone frame choice (P � P 0)+ 6= 0 in

one-space and one-time theories for (P � P 0)2 6= 0. Explicit non-perturbative results

for space-like form factors and structure functions of QCD(1+1) with NC !1 have

been given by Einhorn [19]. The application to deeply virtual Compton scattering in

QCD(1 + 1) has recently been given by Burkardt [20].

In order to illustrate the general formalism for 3 + 1 theories, we will present an

explicit calculation of deeply virtual Compton scattering on a fermion in quantum

electrodynamics at one-loop order. The Feynman amplitudes which are evaluated are

shown in Fig. 2. The QED calculation [13, 16] is patterned after the structure which

occurs in the one-loop Schwinger �=2� correction to the electron magnetic moment.

In e�ect, we will represent a spin-1
2
system as a composite of a spin-1

2
fermion and

spin-one vector boson with arbitrary masses. The one-loop model illustrates the

interrelations between Fock states of di�erent particle number as required by the

boost invariance of space-like form factors or, equivalently, by the � independence of

the �rst moment in x of the generalized Compton form factorsH(x; �; t) and E(x; �; t).

The one-loop model can be further generalized by applying spectral Pauli-Villars

integration over the constituent masses. The resulting form of light-cone wavefunc-

tions provides a template for parametrizing the structure of relativistic composite

systems and their matrix elements in hadronic physics. For example, this model has

recently been used to clarify the connection of parton distributions to the constituents'

spin and orbital angular momentum and to other observables of the composite sys-

tem such as its electromagnetic and gravitational moments and form factors [13].

The model also provides a self-consistent form for the wavefunctions of an e�ective

4



k k

 q

 q
 q'=q+∆

 q'=q+∆

 P'=P–∆  P'=P–∆

k–∆ k–∆

(a) (b) 2-2000
8530A2

P
P

P–k P–k

k+q

k–q–∆

Figure 2: One-loop covariant Feynman diagrams for virtual Compton scattering in

QED.

quark-diquark model of the valence Fock state of the proton wavefunction.

This paper is organized as follows. After introducing the necessary kinematics in

Section 2, we review in Section 3 the representation of deeply virtual Compton scat-

tering in terms of generalized form factors, and the sum rules connecting them with

the form factors of the electromagnetic and gravitational currents. In Section 4 we

represent the generalized Compton form factors in terms of light-cone wavefunctions,

starting from the Fock state representation of a composite system. The following sec-

tion applies this framework to the explicit cases of QED at one loop. We summarize

our results in Section 6. Throughout our paper we shall use momentum variables

as employed by Radyushkin [3], which provide an intuitive parametrization in the

context of wavefunction overlaps. In the Appendix we give our main formulae in the

momentum variables of Ji [2], which make the symmetry between the incoming and

outgoing proton more explicit.

2 The Kinematics of Virtual Compton Scattering

We begin with the kinematics of virtual Compton scattering

�(q) + p(P )! (q0) + p(P 0) ; (2)

see Fig. 3. We specify the frame by choosing a convenient parametrization of the

light-cone coordinates for the initial and �nal proton:

P =

 
P+ ; ~0? ;

M2

P+

!
; (3)
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Figure 3: Light-cone time-ordered contributions to deeply virtual Compton scattering.

Only the contributions of leading power in 1=Q are illustrated. These contributions

illustrate the factorization property of the leading twist amplitude.
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P 0 =

0
@(1� �)P+ ; �~�? ;

M2 + ~�2
?

(1� �)P+

1
A ; (4)

where M is the proton mass. We use the component notation V = (V +; ~V?; V
�), and

our metric is speci�ed by V � = V 0�V z and V 2 = V +V �� ~V 2
?
. The four-momentum

transfer from the target is

� = P � P 0 =

0
@�P+ ; ~�? ;

t+ ~�2
?

�P+

1
A ; (5)

where t = �2. In addition, overall energy-momentum conservation requires �� =

P� � P 0�, which connects ~�2
?
, �, and t according to

t = 2P �� = ��
2M2 + ~�2

?

1� � : (6)

As in the case of space-like form factors, it is convenient to choose a frame where

the incident space-like photon carries q+ = 0 so that q2 = �Q2 = �~q 2
?:

q =

0
@0 ; ~q? ;

(~q? + ~�?)
2

�P+
+
�M2 + ~�2

?

(1� �)P+

1
A ; (7)

q0 =

0
@�P+ ; ~q? + ~�? ;

(~q? + ~�?)
2

�P+

1
A : (8)

Thus no light-cone time-ordered amplitudes involving the splitting of the incident

photon can occur. The variable � is �xed from (3) and (7) as

2P � q = (~q? + ~�?)
2

�
+
�M2 + ~�2

?

1� � : (9)

We will be interested in deeply virtual Compton scattering, where Q2 is large com-

pared to the masses and �t. Then, we have
Q2

2P � q = � (10)

up to corrections in 1=Q2. Thus � plays the role of the Bjorken variable in deeply

virtual Compton scattering. For a �xed value of �t, the allowed range of � is given

by

0 � � � (�t)
2M2

0
@
vuut1 +

4M2

(�t) � 1

1
A : (11)

The choice of parametrization of the light-cone frame is of course arbitrary. For

example, in the Appendix, we show how one can conveniently utilize a \symmetric"

frame for the incoming and outgoing proton, which has manifest symmetry under

crossing P $ P 0.
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3 The Generalized Form Factors of Deeply Virtual

Compton Scattering

The virtual Compton amplitude M��(~q?; ~�?; �), i.e., the transition matrix element

of the process �(q) + p(P ) ! (q0) + p(P 0), can be de�ned from the light-cone

time-ordered product of currents

M��(~q?; ~�?; �) = i

Z
d4y e�iq�yhP 0jTJ�(y)J�(0)jP i ; (12)

where the Lorentz indices � and � denote the polarizations of the initial and �nal

photons respectively. An essential characteristic of deeply virtual Compton scattering

in light-cone gauge is that any soft interaction with the target which occurs between

the light-cone times of the incident and �nal photon is power-law suppressed as 1=Q.

Similarly, the diagrams in which the photons hit two di�erent quark lines in the

target are also higher twist. We can then replace the fully interacting currents J�(y)

and J�(0) by the quark currents j�(y) and j�(0) of the non-interacting theory, which

have simple matrix elements in the free Fock basis. The leading contribution thus

factorizes as a hard-scattering amplitude involving the elementary photon interactions

on a quark line convoluted with the non-perturbative light-cone wavefunctions of the

protons, see Fig. 3. In the limit Q2 !1 at �xed � and t the Compton amplitude is

thus given by

M IJ(~q?; ~�?; �) = �I� �
�J
� M��(~q?; ~�?; �) = �e2q

1

2 �P+

Z 1

��1
dx (13)

�
�
tIJ(x; �) �U(P 0)

�
H(x; �; t) + + E(x; �; t)

i

2M
�+�(���)

�
U(P )

sIJ(x; �) �U(P 0)

�fH(x; �; t) +5 +
eE(x; �; t) 1

2M
5(��+)

�
U(P )

�
;

where �P = 1
2
(P 0 + P ). In getting (13) we used the relations 1+1 = 2+2 = +

and 1+2 = �2+1 = i+5. For simplicity we only consider one quark with

avor q and electric charge eq here and in the sequel. Throughout our analysis we

will use the Born approximation to the photon-quark amplitude. The radiative QCD

corrections to this process have been calculated to order �s in [6, 21].

For circularly polarized initial and �nal photons (I; J are " or #)) we have

t ""(x; �) = t ##(x; �) =
1

x� i� +
1

x� � + i�
; (14)

s ""(x; �) = � s ##(x; �) =
1

x� i� �
1

x� � + i�
;

t "#(x; �) = t #"(x; �) = s "#(x; �) = s #"(x; �) = 0 :
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The two photon polarization vectors in light-cone gauge are given by

�";# =

0
@0 ; ~� ";#

?
;
~�
";#
?
� ~k?

2k+

1
A ; ~�

";#
?

= � 1p
2

 
1

�i
!
; (15)

where k denotes the appropriate photon momentum. The polarization vectors satisfy

the Lorentz condition k � � = 0. For a longitudinally polarized initial photon, the

Compton amplitude is of order 1=Q and thus vanishes in the limit Q2 ! 1. At

order 1=Q there are several corrections to the simple structure in Eq. (13). Those

corrections which correspond to the evaluation of the diagrams in Fig. 3 to accuracy

1=Q can be described by functions related to the form factors H, E or fH, eE through

Wandzura-Wilczek type integral relations. In other contributions the hard scattering

is no longer on a single quark line, so that new non-perturbative functions appear.

For details we refer to [5, 22].

In (13) the generalized form factors H, E and fH, eE are de�ned through matrix

elements of the bilinear vector and axial vector currents on the light-cone:Z
dy�

8�
eixP

+y�=2 hP 0j � (0) +  (y) jP i
���
y+=0;y?=0

(16)

=
1

2 �P+
�U(P 0)

�
H(x; �; t) + + E(x; �; t)

i

2M
�+�(���)

�
U(P ) ;

Z
dy�

8�
eixP

+y�=2 hP 0j � (0) +5  (y) jP i
���
y+=0;y?=0

=
1

2 �P+
�U(P 0)

� fH(x; �; t) +5 +
eE(x; �; t) 1

2M
5(��+)

�
U(P ) :

We can compare these generalized form factors for the Compton amplitude with

the matrix elements of the electromagnetic and gravitational currents. For the elec-

tromagnetic current eqJ
�(y) = eq � (y)

� (y), one has the usual Dirac and Pauli form

factors

hP 0jJ�(0)jP i = �U(P 0)

�
F1(t) 

� + F2(t)
i

2M
���(���)

�
U(P ) ; (17)

where for later convenience we have not included the charge eq in the de�nitions of the

current and the form factors. For the form factors of the energy-momentum tensor

for a spin-1
2
composite system, one de�nes [2, 23]

hP 0jT ��(0)jP i = �U(P 0)

�
Aq(t) 

(� �P �) +Bq(t)
i

2M
�P (���)�(���)

+ Cq(t)
1

M
(���� � g���2)

�
U(P ) ; (18)

where a(�b�) = 1
2
(a�b� + a�b�) and

T �� =
i

4

�
� �
�!
@ � � � �

 �
@ � 

�
+ f � ! � g (19)

9



is the quark part of the energy-momentum tensor. These form factors can be com-

puted in a form similar to that of the virtual Compton amplitude if we choose the

light-cone frame where the virtual photon or graviton has momentum q+ = �P+ and

~q? = ~�?. In the electromagnetic case, the coupling of the current eqJ
+(0) on the

quark line is identical to the Compton amplitude with e2q t
IJ replaced simply by the

quark charge eq. One �ndsZ 1

��1

dx

1� �
2

H(x; �; t) = F1(t) ; (20)

Z 1

��1

dx

1� �
2

E(x; �; t) = F2(t) ;

Analogous sum rules relate fH and eE with the form factors of the axial vector current

J
�
5 (y) = � (y)�5 (y). The factors 1 � �=2 in (20) appear because we use Ji's

normalization convention for the Compton form factors, which involves �P+ on the

right-hand side of (16), and at the same time parametrize light-cone momentum

fractions with respect to P+ = (1� �=2) �P+. In the Appendix we will give our main

formulae in the parametrization of Ji, where momentum fractions refer to �P+.

In the case of the gravitational form factors, the derivative coupling in the graviton

current T++ brings in an extra factor x� �=2. Then, one gets the sum rule [2]Z 1

��1

dx

1� �
2

x� �
2

1� �
2

[H(x; �; t) + E(x; �; t)] = Aq(t) + Bq(t) : (21)

The gravitational form factor Cq(t) cancels for the combination H + E, as we shall

show shortly.

When we take the � = + component in (17), the factors of the two terms in the

right hand side are given by

1

2 �P+
�U(P 0; �0)+ U(P; �) =

p
1� �
1� �

2

Æ�; �0 ; (22)

1

2 �P+
�U(P 0; �0)

i

2M
�+�(���)U(P; �) = � �2

4(1� �

2
)
p
1� � Æ�; �0

+
1p
1� �

���1 � i�2

2M
Æ�;��0 ;

where � = �1 is the light-cone helicity of the initial fermion. Then, in the light-

cone formalism, the Dirac and Pauli form factors can be identi�ed from the helicity-

conserving and helicity-ip vector current matrix elements:*
P 0; "

�����J
+(0)

2 �P+

�����P; "
+

=

p
1� �
1� �

2

F1(t) � �2

4(1� �
2
)
p
1� � F2(t) ; (23)

*
P 0; "

�����J
+(0)

2 �P+

�����P; #
+

=
1p
1� �

�1 � i�2

2M
F2(t) : (24)

10



For the matrix element (18) of the energy-momentum tensor we also need

1

2M
�U(P 0; �0)U(P; �) =

1� �
2p

1� � Æ�; �0 �
1p
1� �

���1 � i�2

2M
Æ�;��0 : (25)

One easily checks that (22) and (25) satisfy the Gordon identity. With this we have*
P 0; "

�����T
++(0)

2( �P+)2

�����P; "
+

=

p
1� �
1� �

2

Aq(t) � �2

4(1� �
2
)
p
1� � Bq(t)

+
�2

(1� �
2
)
p
1� � Cq(t) ; (26)

*
P 0; "

�����T
++(0)

2( �P+)2

�����P; #
+

=

(
1p
1� � Bq(t)

� �2

(1� �
2
)2
p
1� � Cq(t)

)
�1 � i�2

2M
: (27)

Combining (26) and (27), we get

1

1� �
2

*
P 0; "

�����T
++(0)

2( �P+)2

�����P; "
+
+

2M

�1 � i�2

*
P 0; "

�����T
++(0)

2( �P+)2

�����P; #
+

=

p
1� �

(1� �
2
)2

[Aq(t) + Bq(t)] ; (28)

whereas from (23) and (24) we have

1

1� �
2

*
P 0; "

�����J
+(0)

2 �P+

�����P; "
+
+

2M

�1 � i�2

*
P 0; "

�����J + (0)

2 �P+

�����P; #
+

=

p
1� �

(1� �
2
)2

[F1(t) + F2(t)] : (29)

Using that H and E involve the same proton helicity structure as F1 and F2, see (16)

and (17), one obtains Ji's sum rule (21) from the connection between T++(0) and the

non-local current de�ning H and E.

In (20) we can separate three distinct regions of integration:

(1� �=2)F1(t) (30)

=

Z 0

��1
dx H(n!n)(x; �; t) +

Z �

0
dx H(n+1!n�1)(x; �; t) +

Z 1

�
dx H(n!n)(x; �; t)

where

H(x; �; t) = H(n!n)(x; �; t) [�(x� �) + �(�x)] (31)

+ H(n+1!n�1)(x; �; t) �(� � x) �(x) :

11
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⊥1, 0⊥
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Figure 4: Light-cone time-ordered contributions to spacelike form factors. The sum

of the two contributions is �-independent at �xed t = �2.

Similarly,

(1� �=2)F2(t) (32)

=

Z 0

��1
dx E(n!n)(x; �; t) +

Z �

0
dx E(n+1!n�1)(x; �; t) +

Z 1

�
dx E(n!n)(x; �; t)

with

E(x; �; t) = E(n!n)(x; �; t) [�(x� �) + �(�x)] (33)

+ E(n+1!n�1)(x; �; t) �(� � x) �(x) :

From the point of view of the form factors F1(t) and F2(t), the division of the x-

integrals into separate domains � � 1 < x < 0, 0 < x < �, and � < x < 1 is an

artifact of the light-cone frame choice. The two types of contributions to space-like

form factors are illustrated in Fig. 4. In the region � < x < 1 a quark is scattered

o� the current, whereas the region � � 1 < x < 0 corresponds to scattering of an

antiquark. For 0 < x < �, however, the current annihilates a quark-antiquark pair in

the target.

The x-integrals of (1� �=2)�1H(x; �; t) and (1� �=2)�1E(x; �; t) are independent
of � as a consequence of Lorentz invariance. Thus, the contributions of the n, n� 1,

12



and n+ 1 particle light-cone wavefunctions are in fact not independent. This deeply

reects the underlying frame invariance of the light-cone Fock representation [24],

which ensures the independence of the form factors from the frame choice for the

graviton or photon momentum �+ = �P+ as long as �2 = t is kept �xed.

To see how this occurs in a simple example, we shall consider the matrix element

for the scattering of two scalar particles, k + (P � k) ! �+ (P ��), in �3 theory.

In order to make the result resemble the integrand of a form factor, we parametrize

k+ = xP+ and �+ = �P+. The particle with momentum � represents the external

current, whereas the other external particles are on their mass shell, k2 = (P � k)2 =
(P��)2 = m2. Four-momentum conservation implies k�+(P�k)� = ��+(P��)�.
The Born amplitude from exchanging a scalar particle with momentum �� k in the

t-channel receives two time-ordered contributions in light-cone perturbation theory,

see Fig. 5:

Mk+(P�k)!�+(P��) =
g2�(� � x)

(�� k)+
�
(P � k)� � (P ��)� � (~�?�

~k?)2+m2

(��k)+
+ i�

� (34)

+
g2�(x� �)

(k ��)+
�
k� ��� � (~k?�~�?)2+m2

(k��)+
+ i�

� :

Since the particle with momentum � represents the external current we have treated

it as an on-shell particle with mass squared �2, so that �� = (~�2
?+�2)=�+ appears

in the energy denominator of the second term [14]. Then, the sum of the light-cone

contributions must agree with the covariant result

Mk+(P�k)!�+(P��) =
g2

(k ��)2 �m2 + i�
(35)

independent of �. In fact, replacing (P � k)� � (P ��)� with �� � k� in the �rst

term, we see that the identity is trivial since the two denominators inM are identical,

di�ering only in whether 0 < x < � or � < x < 1 as determined by the arbitrary

choice of frame.

The scattering amplitude can also be interpreted as a simple model for a scalar

current form factor hP ��jJ(0)jP i : In this model, one interprets the initial state jP i
as a wave packet of the incident particles with momenta P � k and k. The particle

with momentum � represents again the particle coupling to the current. The two

light-cone time-ordered contributions of M correspond to the 3 ! 1 and 2 ! 2

light-cone wavefunction overlap contributions to the form factor, respectively. Thus

in this simple model, the division of contributions from the 3 ! 1 and 2 ! 2 light-

cone wavefunctions corresponds simply to the partition of a common x integrand into

regions 0 < x < � and � < x < 1.

13
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P
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∆

∆ ∆
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Figure 5: Light-cone time-ordered contributions from t-channel exchange in the scat-

tering process k + (P � k)! �+ (P ��) in �3 theory.

4 The Light-Cone Fock Representation of Deeply

Virtual Compton Scattering

The light-cone Fock expansion of hadrons is constructed by quantizing QCD at

�xed light-cone time � = t + z=c and forming the invariant light-cone Hamiltonian:

HLC = P+P� � ~P 2
?, see [25]. While the momentum generators P+ and ~P? are kine-

matical, i.e., they are independent of the interactions, the generator P� = i d
d�

gen-

erates light-cone time translation. The eigen-spectrum of HLC gives the entire mass

spectrum of the color-singlet hadron states in QCD, together with their respective

light-cone wavefunctions. In particular, the proton state satis�es HLC j pi =M2j pi.
Such equations can be solved in principle using the discretized light-cone quantization

(DLCQ) method [26]. The expansion of the proton eigensolution j pi on the eigen-

states fjnig of the free Hamiltonian HLC(g = 0) gives the light-cone Fock expansion:

��� p(P
+; ~P?)

E
=

X
n

nY
i=1

dxi d
2~k?ip

xi 16�3
16�3Æ

 
1�

nX
i=1

xi

!
Æ(2)

 
nX
i=1

~k?i

!
(36)

�  n(xi; ~k?i; �i)
���n; xiP+; xi ~P? + ~k?i; �i

E
:

The light-cone momentum fractions xi = k+i =P
+ and ~k?i represent the relative mo-

mentum coordinates of the QCD constituents. The physical transverse momenta are

~p?i = xi ~P? + ~k?i: The �i label the light-cone spin projections Sz of the quarks and

gluons along the quantization direction z. The n-particle states are normalized as

D
n; p0i

+; ~p 0
?i; �

0

i

���n; pi+; ~p?i; �iE =
nY
i=1

16�3p+i Æ(p
0

i
+ � pi+) Æ(2)(~p 0?i � ~p?i) Æ�0i�i : (37)
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Here and in the following we will not display the other quantum numbers of the

partons, i.e., color and quark avor. We will also not discuss the case where a Fock

state contains partons with identical helicity, avor, and color. For a discussion of

these points we refer to [27].

The solutions of HLC j pi = M2j pi are independent of P+ and ~P?; thus given

the eigensolution Fock projections hn; xi; ~k?i; �ij pi /  n(xi; ~k?i; �i), the wavefunc-

tion of the proton is determined in any frame [14]. The light-cone wavefunctions

 n(xi; ~k?i; �i) encode all of the bound state quark and gluon properties of hadrons,

including their momentum, spin and avor correlations, in the form of universal

process- and frame-independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting

from the Fock state representation for both the incoming and outgoing proton, using

the boost properties of the light-cone wavefunctions, and evaluating the matrix ele-

ments of the currents for a quark target. One can also directly evaluate the non-local

current matrix elements (16) in the same framework. In the following we will con-

centrate on the generalized Compton form factors H and E. Formulae analogous to

our results can be obtained for fH and eE.
For the n ! n diagonal term (�n = 0), the relevant current matrix element at

quark level is

Z
dy�

8�
eixP

+y�=2
D
1; x01P

0+; ~p 0?1; �
0

1

��� � (0) +  (y) ��� 1; x1P+; ~p?1; �1

E ���
y+=0;y?=0

(38)

=
q
x1x

0
1

q
1� � Æ(x� x1) Æ�0

1
�
1
;

where for de�niteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and

E in the domain � � x � 1 [17]:

p
1� �
1� �

2

H(n!n)(x; �; t) � �2

4(1� �
2
)
p
1� � E(n!n)(x; �; t) (39)

=
q
1� �

2�n X
n;�i

Z nY
i=1

dxi d
2~k?i

16�3
16�3Æ

0
@1� nX

j=1

xj

1
A Æ(2)

0
@ nX
j=1

~k?j

1
A

� Æ(x� x1)  " �

(n) (x
0

i;
~k0
?i; �i)  

"

(n)(xi;
~k?i; �i) ;

1p
1� �

�1 � i�2

2M
E(n!n)(x; �; t) (40)

=
q
1� �

2�n X
n;�i

Z nY
i=1

dxi d
2~k?i

16�3
16�3Æ

0
@1� nX

j=1

xj

1
A Æ(2)

0
@ nX
j=1

~k?j

1
A

� Æ(x� x1)  " �

(n) (x
0

i;
~k0
?i; �i)  

#

(n)(xi;
~k?i; �i) ;
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where the arguments of the �nal-state wavefunction are given by

x01 =
x1 � �
1� � ; ~k0?1 =

~k?1 �
1� x1
1� �

~�? for the struck quark,

x0i =
xi

1� � ;
~k0
?i =

~k
?i +

xi

1� �
~�? for the spectators i = 2; � � � ; n.

(41)

One easily checks that
Pn

i=1 x
0

i = 1 and
Pn

i=1
~k0?i = ~0?. In Eqs. (39) and (40) one

has to sum over all possible combinations of helicities �i and over all parton numbers

n in the Fock states. We also imply a sum over all possible ways of numbering the

partons in the n-particle Fock state so that the struck quark has the index i = 1.

Analogous formulae hold in the domain � � 1 < x < 0, where the struck parton

in the target is an antiquark instead of a quark. Some care has to be taken regarding

overall signs arising because fermion �elds anticommute. For details we refer to

[17, 27].

For the n+1! n�1 o�-diagonal term (�n = �2), let us consider the case where
quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current

leaving n� 1 spectators. Then xn+1 = � � x1 and ~k?n+1 = ~�?�~k?1. The remaining

n� 1 partons have total plus-momentum (1� �)P+ and transverse momentum �~�?.

The current matrix element now isZ
dy�

8�
eixP

+y�=2
D
0
��� � (0) +  (y) ��� 2; x1P+; xn+1P

+; ~p
?1; ~p?n+1; �1; �n+1

E ���
y+=0;y?=0

(42)

=
q
x1xn+1 Æ(x� x1) Æ�1��n+1 ;

and we thus obtain the formulae for the o�-diagonal contributions to H and E in the

domain 0 � x � �:
p
1� �
1� �

2

H(n+1!n�1)(x; �; t) �
�2

4(1� �
2
)
p
1� � E(n+1!n�1)(x; �; t) (43)

=
q
1� �

3�n X
n;�i

Z n+1Y
i=1

dxi d
2~k?i

16�3
16�3Æ

0
@1� n+1X

j=1

xj

1
A Æ(2)

0
@n+1X

j=1

~k?j

1
A

� 16�3Æ(xn+1 + x1 � �) Æ(2)
�
~k?n+1 + ~k?1 � ~�?

�
� Æ(x� x1)  " �

(n�1)(x
0

i;
~k0?i; �i )  

"

(n+1)(xi;
~k?i; �i) Æ�1 ��n+1 ;

1p
1� �

�1 � i�2

2M
E(n+1!n�1)(x; �; t) (44)

=
q
1� �

3�n X
n;�i

Z n+1Y
i=1

dxi d
2~k?i

16�3
16�3Æ

0
@1� n+1X

j=1

xj

1
A Æ(2)

0
@n+1X

j=1

~k?j

1
A

� 16�3Æ(xn+1 + x1 � �) Æ(2)
�
~k?n+1 + ~k?1 � ~�?

�
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� Æ(x� x1)  " �

(n�1)(x
0

i;
~k0
?i; �i )  

#

(n+1)(xi;
~k?i; �i) Æ�1 ��n+1 ;

where i = 2; � � � ; n label the n � 1 spectator partons which appear in the �nal-state

hadron wavefunction with

x0i =
xi

1� � ;
~k0
?i =

~k
?i +

xi

1� �
~�? : (45)

We can again check that the arguments of the �nal-state wavefunction satisfy
Pn

i=2 x
0

i =

1,
Pn

i=2
~k0
?i = ~0?. We imply in (43) and (44) a sum over all possible ways of number-

ing the partons in the initial wavefunction such that the quark with index 1 and the

antiquark with index n + 1 annihilate into the current.

The powers of
p
1� � in (39), (40) and (43), (44) have their origin in the in-

tegration measures in the Fock state decomposition (36) for the outgoing proton.

The fractions x0i appearing there refer to the light-cone momentum P 0+ = (1� �)P+,

whereas the fractions xi in the incoming proton wavefunction refer to P+. Transform-

ing all fractions so that they refer to P+ as in our �nal formulae thus gives factors ofp
1� �. Di�erent powers appear in the n ! n and n + 1 ! n � 1 overlaps because

of the di�erent parton numbers in the �nal state wavefunctions.

5 The Virtual Compton Amplitude in QED

The light-cone Fock state wavefunctions corresponding to the quantum uctuations of

a physical electron can be systematically evaluated in QED perturbation theory. The

covariant Feynman amplitudes which contribute to the virtual Compton amplitude at

one-loop order were illustrated in Fig. 2. The corresponding light-cone time-ordered

contributions for frames in which q+ = 0 are shown in Fig. 6.

The physical electron is the eigenstate of the QED Hamiltonian. As discussed in

Section 4, the expansion of the QED eigenfunction of the electron on the complete

set fjnig of HLC(e = 0) eigenstates produces the Fock state expansion. Each Fock-

state wavefunction of the physical electron with total spin projection Jz = �1
2
is

represented by the function  Jz

n (xi; ~k?i; �i), where

ki = (k+i ;
~k?i; k

�

i ) =

0
@xiP+; ~k?i;

~k2
?i +m2

i

xiP+

1
A (46)

speci�es the momentum of each constituent and �i speci�es its light-cone helicity in

the z direction.

The quantum uctuations of the electron at one-loop generate two types of light-

cone wavefunctions, j e�i and j e�e�e+i, in addition to renormalizing the one-electron
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Figure 6: Light-cone time-ordered contributions to deeply virtual Compton scattering

on an electron in QED at one-loop order. Note that the contribution of �gure (e) is

suppressed at large q2 since the hard propagator with transverse momentum ~k?+ ~q?
extends over two light-cone time orderings. The contributions of �gures (c) and (d)

correspond to the overlap of one-particle and three-particle Fock states. The three-

particle Fock states occurs at the intermediate light-cone time indicated by the middle

vertical dashed line.
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state. The two-particle Fock state for an electron with Jz = +1
2
has four possible

spin combinations for the electron and photon in ight:

���	"

two particle(P
+; ~P? = ~0?)

E
=

Z
dx d2~k?q

x(1� x) 16�3
(47)

�
 
"

+ 1

2
+1
(x;~k?)

����+1

2
+ 1 ; xP+ ; ~k?

�
+  

"

+ 1

2
�1
(x;~k?)

����+1

2
� 1 ; xP+ ; ~k?

�

+  
"

�
1

2
+1
(x;~k?)

�����12 + 1 ; xP+ ; ~k?

�
+  

"

�
1

2
�1
(x;~k?)

�����12 � 1 ; xP+ ; ~k?

� �
;

where the two-particle states jszf ; szb; x;~k?i are normalized as in (37). szf and s
z
b denote

the z-component of the spins of the constituent fermion and boson, respectively, and

the variables x and ~k? refer to the momentum of the fermion. The wavefunctions

can be evaluated explicitly in QED perturbation theory using the rules given in

Refs. [14, 16]: 8>>>>>>><
>>>>>>>:

 
"

+ 1

2
+1
(x;~k?) = �

p
2 �k1+ik2

x(1�x)
' ;

 
"

+ 1

2
�1
(x;~k?) = �

p
2 k1+ik2

1�x
' ;

 
"

�
1

2
+1
(x;~k?) = �

p
2 (M � m

x
)' ;

 
"

�
1

2
�1
(x;~k?) = 0 ;

(48)

where

'(x;~k?) =
ep
1� x

1

M2 � ~k2
?
+m2

x
� ~k2

?
+�2

1�x

: (49)

Similarly, the wavefunctions for an electron with negative helicity are given by

8>>>>>>><
>>>>>>>:

 
#

+ 1

2
+1
(x;~k?) = 0 ;

 
#

+ 1

2
�1
(x;~k?) = �

p
2 (M � m

x
)' ;

 
#

�
1

2
+1
(x;~k?) = �

p
2 �k1+ik2

1�x
' ;

 
#

�
1

2
�1
(x;~k?) = �

p
2 k1+ik2

x(1�x)
' :

(50)

In (48) and (50) we have generalized the framework of QED by assigning a mass

M to the external electrons in the Compton scattering process, but a di�erent mass

m to the internal electron lines and a mass � to the internal photon line [16]. The

idea behind this is to model the structure of a composite fermion state with mass M

by a fermion and a vector constituent with respective masses m and �.

In the domain � < x < 1, for a general value of � between 0 and 1, we have

p
1� �
1� �

2

H(2!2)(x; �; t) � �2

4(1� �

2
)
p
1� � E(2!2)(x; �; t) (51)
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=

Z
d2~k?

16�3

h
 
" �

+ 1

2
+1
(x0; ~k0

?
) 

"

+ 1

2
+1
(x;~k?) +  

" �

+ 1

2
�1
(x0; ~k0

?
) 

"

+ 1

2
�1
(x;~k?)

+  
" �

�
1

2
+1
(x0; ~k0

?
) 

"

�
1

2
+1
(x;~k?)

i
;

1p
1� �

(�1 � i�2)

2M
E(2!2)(x; �; t) (52)

=

Z
d2~k?

16�3

h
 
" �

+ 1

2
�1
(x0; ~k0

?
) 

#

+ 1

2
�1
(x;~k?) +  

" �

�
1

2
+1
(x0; ~k0

?
) 

#

�
1

2
+1
(x;~k?)

i
;

where

x0 =
x� �
1� � ;

~k0
?
= ~k

?
� 1� x

1� �
~�? : (53)

These contributions correspond to the overlap of the two-particle Fock components

of the electron as illustrated in Figs. 6(a) and 6(b). The generalized form factors

H(2!2)(x; �; t) and E(2!2)(x; �; t) are zero in the domain � � 1 < x < 0, which corre-

sponds to emission and reabsorption of an e+ from a physical electron. Contributions

to H(n!n)(x; �; t) and E(n!n)(x; �; t) in that domain only appear beyond one-loop

level.

At this point, a comment is in order on the large ~k? behavior of the overlap inte-

grals (51) and (52). They are logarithmically divergent, which reects the fact that

the matrix elements de�ning parton distributions have to be regulated and renormal-

ized in the ultraviolet. The dependence of parton distributions on the renormalization

scale can be calculated perturbatively and is expressed in the well-known evolution

equations. A physically intuitive way to implement this in our context is to introduce

an upper cuto� in the invariant mass of the Fock states [14], which roughly speaking

corresponds to an upper cuto� in the transverse parton momenta. How this is to

be done in detail, and how it leads to the evolution equations for the generalized

Compton form factors [1, 2, 3] is beyond the scope of the present paper.

We will also require three-constituent wavefunctions corresponding to two elec-

trons and one positron in ight:

 Jz

s
z

1
s
z

2
s
z

3

(x1; x2; x3; ~k1?; ~k2?; ~k3?) =MJz

sz
1
sz
2
sz
3

e'(x1; x2; x3; ~k1?; ~k2?; ~k3?); (54)

where according to our numbering convention spelled out after (45) the index 1 refers

to the electron with mass m, the index 2 to the electron with mass M , and the index

3 to the positron. The denominator part of the wavefunction e' is given by

e'(x1; x2; x3; ~k1?; ~k2?; ~k3?) = e2

1� x1
(55)

� 1�
M2 � m2+~k2

1?

x1
� �2+~k2

1?

1�x1

��
M2 � m2+~k2

1?

x1
� M2+~k2

2?

x2
� m2+~k2

3?

x3

� :
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The numerator factors MJz

sz
1
sz
2
sz
3
in (54) in QED are given in Table 1.

In the wave functions (54) the positron and the electron with index 2 originate in

the splitting of the intermediate photon, corresponding to the diagrams of Fig 6(c)

and (d). We note that there is also a contribution to the three-particle wavefunctions

where the photon splits into the positron and the electron with index 1. These terms

do not contribute to deeply virtual Compton scattering because of charge conjugation

invariance; see Fig. 7(a). They do contribute in the calculation of the electromagnetic

vertex as shown in Fig. 7(b), where they provide the vacuum polarization correction

for the external photon. This correction is usually excluded in the de�nition of the

electromagnetic form factors F1 and F2, and thus of the �rst moments of H and E.

We will therefore discard the corresponding contributions to H(x; �; t) and E(x; �; t)

in the following.

9-2000
8530A9(a) (b)

Figure 7: Light-cone time-ordered diagrams where the electron coupling to the ex-

ternal current originates from the splitting of an intermediate photon. Diagram (a)

for deeply virtual Compton scattering vanishes because of Furry's theorem. The cor-

responding diagram (b) for the electromagnetic vertex gives the vacuum polarization

correction for the external photon.

The electron in QED also has a one-particle component:

���	";#
one particle(P

+; ~P? = ~0?)
E
=

Z
dx d2~k?p
x 16�3

16�3Æ(1� x) Æ2(~k?)  (1)

�����12 ; xP+; ~k?

�
(56)

where the one-constituent wavefunction is given by

 (1) =
p
Z: (57)
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Table 1. Numerator factors of the three-constituent wavefunctions in QED. We only

list those helicity combinations for which sz1 = �sz3.

J
z

s
z
1 s

z
2 s

z
3

1
2
M

J
z

sz
1
sz
2
sz
3

+ 1
2

+ 1
2

+ 1
2
�

1
2

�

k
1

1
�ik

2

1

x1(1�x1)
(
k
1

3
+ik2

3

x3
+

k
1

1
+ik2

1

1�x1
) �

k
1

1
+ik2

1

1�x1
(
k
1

2
�ik

2

2

x2
+

k
1

1
�ik

2

1

1�x1
)

+ 1
2

�

1
2

+ 1
2

+ 1
2

�(M �

m

x1
) (M

x2
+ m

x3
)

+ 1
2

+ 1
2
�

1
2
�

1
2

�

k
1

1
+ik2

1

1�x1
(M
x2

+ m

x3
)

+ 1
2

�

1
2
�

1
2

+ 1
2

(M �

m

x1
) (

k
1

2
+ik2

2

x2
+

k
1

1
+ik2

1

1�x1
)

�

1
2

+ 1
2

+ 1
2
�

1
2

�(M �

m

x1
) (

k
1

2
�ik

2

2

x2
+

k
1

1
�ik

2

1

1�x1
)

�

1
2

�

1
2

+ 1
2

+ 1
2

k
1

1
�ik

2

1

1�x1
(M
x2

+ m

x3
)

�

1
2

+ 1
2
�

1
2
�

1
2

�(M �

m

x1
) (M

x2
+ m

x3
)

�

1
2

�

1
2
�

1
2

+ 1
2

�

k
1

1
+ik2

1

x1(1�x1)
(
k
1

3
�ik

2

3

x3
+

k
1

1
�ik

2

1

1�x1
) �

k
1

1
�ik

2

1

1�x1
(
k
1

2
+ik2

2

x2
+

k
1

1
+ik2

1

1�x1
)

Here
p
Z is the wavefunction renormalization of the one-particle state and ensures

overall probability conservation. Since we are working consistently to O(�), we can
set Z = 1 in the 3! 1 wavefunction overlap contributions. In the domain 0 < x < �,

we then have
p
1� �
1� �

2

H(3!1)(x; �; t) � �2

4(1� �
2
)
p
1� � E(3!1)(x; �; t) (58)

=
q
1� �

Z
d2~k?

16�3

�
 "
+
1
2
+
1
2
�
1
2

(x; 1� �; � � x; ~k?;�~�?; ~�? � ~k?)

+  "
�
1
2
+1
2
+1
2

(x; 1� �; � � x;~k?;�~�?; ~�? � ~k?)
�
;

1p
1� �

(�1 � i�2)

2M
E(3!1)(x; �; t) (59)

=
q
1� �

Z
d2~k?

16�3

�
 #
+1
2
+1
2
�
1
2

(x; 1� �; � � x; ~k?;�~�?; ~�? � ~k?)

+  #
�
1
2
+
1
2
+
1
2

(x; 1� �; � � x;~k?;�~�?; ~�? � ~k?)
�
:
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These contributions correspond to the overlap of the three-particle and one-particle

Fock components as illustrated in Figs. 6(c) and 6(d).

The �rst moments (30) and (32) of the generalized Compton form factors at one

loop give the one-loop space-like form factors F1 and F2. The corresponding light-

cone time-ordered diagrams are shown in Fig. 8. As in our simple example discussed

at the end of Section 4, the sum of the two diagrams must give the same result as

the corresponding Feynman diagram in covariant perturbation theory. The division

of the integral over x in the form factors (30) and (32) into contributions from n! n

and n+ 1! n� 1 transitions is again a consequence of an arbitrary choice of frame

and of light-cone direction, and the sum of the contributions is thus independent of

the light-cone variable �.

We also note that the integrands in (30) and (32) have to be continuous at the

point x = � which separates n ! n and n + 1 ! n � 1 transitions. In other words,

the generalized form factors H(x; �; t) and E(x; �; t) must be continuous functions

of x at x = �. This is required for the loop integral (13) of the Compton amplitude

to exist, given the form (14) of the hard scattering subprocess. The continuity of H

and E in one-loop QED can readily be checked from our results (51), (52), (58), (59).

The underlying relations between the one, two, and three particle wavefunctions of

the electron reect again the Lorentz frame invariance of the light-cone Fock state

representation.

6 Conclusions

A central goal of quantum chromodynamics is to determine the structure of hadrons

in terms of their quark and gluon degrees of freedom. As we have shown in this paper,

the deeply virtual Compton exclusive process �p! p provides a direct window into

hadron substructure which goes well beyond inclusive measures.

The deeply virtual Compton amplitude has a simple representation in terms of

the light-cone Fock wavefunctions of the target, factorizing as the convolution of

a hard perturbative amplitude, corresponding to Compton scattering on a quark

current, with the initial and �nal state light-cone wavefunctions of the target hadron.

The light-cone Fock representation provides an explicit and physical representation

of the leading-twist operator product decomposition for the deeply virtual Compton

amplitude. As in the case of time-like semi-leptonic decays of hadrons [18], there

are two distinct contributions: a parton-number conserving diagonal overlap integral

of light-cone wavefunctions, plus an additional �n = �2 contribution where the

quark-antiquark pair of the initial state is annihilated.

The light-cone Fock representation also provides a direct derivation of the identity

between the form factor densities H(x; �; t) and E(x; �; t) which appear in deeply

virtual Compton scattering and the corresponding integrands of the Dirac and Pauli
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(a)
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P
P–k

∆

(b)

1– ζ, – ∆
→

⊥

x– ζ, k
→

⊥ – ∆
→

⊥

ζ, ∆
→

⊥

1–x,–k
→

⊥ 

x, k
→

⊥ 

1, 0
→

⊥

(c)

1– ζ, – ∆
→

⊥

ζ–x, ∆
→

⊥– k
→

⊥

ζ, ∆
→

⊥

1–x,–k
→

⊥ 

x, k
→

⊥ 

1, 0
→

⊥

= +

ζ<x<1 0<x<ζ

Figure 8: Light-cone time-ordered contributions to the form factors of an electron in

QED at one-loop order. The spacelike form factors are independent of the choice of

� at �xed t = �2. In particular, if � = 0 the contribution of amplitude (c) to the

matrix elements of J+(0) vanishes.

form factors F1(t) and F2(t), and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. Thus deeply virtual Compton scattering

e�ectively provides access to the form factors of a proton scattering in a gravitational

�eld.

A remarkable feature of these sum rules is the fact that the integrals over x

of (1 � �=2)�1H(x; �; t) and (1 � �=2)�1E(x; �; t) are independent of the value of

�. This invariance is due to the Lorentz frame-independence of the light-cone Fock

representation of space-like local operator matrix elements. This frame independence

in turn reects the underlying connections between Fock states of di�erent parton

number implied by the QCD equations of motion.

We have illustrated our general formalism by computing deeply virtual Compton

scattering on the quantum uctuations of a fermion in QED at one loop. These

forms can be simply generalized using Pauli-Villars spectral integrals to provide a

self-consistent model of hadron structure. Such a model builds in all of the constraints

of Lorentz invariance, including Jz conservation and the required connections of the

n, n � 1, and n + 1-particle Fock states. Such a model thus provides the simplest

possible template for parametrizing and interrelating hadronic structure as measured

by form factors, deep inelastic scattering and deeply virtual Compton scattering.
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Appendix: Formulae in the Symmetric Frame

It is often convenient to choose a \symmetric" light-cone frame for the momenta of

the initial and �nal target proton which has �! �� symmetry. In this frame, one

parametrizes the initial and �nal target momenta as [2]:

P =

0
@(1 + �) �P+ ; ~�?=2 ;

M2 + ~�2
?=4

(1 + �) �P+

1
A ; (60)

P 0 =

0
@(1� �) �P+ ; �~�?=2 ;

M2 + ~�2
?
=4

(1� �) �P+

1
A : (61)

The four-momentum transfer from the target then reads

� =

0
@2� �P+ ; ~�? ;

(t+ ~�2
?)

2� �P+

1
A ; (62)

and one has

t = �4�
2M2 + ~�2

?

1 � �2
: (63)

Notice that our de�nition of the transfer � has the opposite sign of Ji's. Again we

choose a light-cone frame where the incident space-like photon carries q+ = 0:

q =

0
@0 ; ~q? ;

(~q? + ~�?)
2

2� �P+
+
2�(M2 + ~�2

?=4)

(1� �2) �P+

1
A ; (64)

q0 =

0
@2� �P+ ; ~q? + ~�? ;

(~q? + ~�?)
2

2� �P+

1
A :

In the same way as in Section 2 one can relate � to the invariants of the problem.

Taking the limit of large Q2 at small t and comparing with (10) we obtain the relation

� =
2�

1 + �
: (65)

We remark that the symmetric frame just introduced and the one described by (3)

to (8) are related by a transverse boost. One �nds that the transverse components

of � in the two frames are related by

~�?

���
Eq: (5)

=
1

1 + �
~�?

���
Eq: (62)

: (66)
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The deeply virtual Compton amplitude can now be written as

M IJ(~q?; ~�?; �) = �e2q
1

2 �P+

Z 1

�1
d�x (67)

�
�
�tIJ(�x; �) �U(P 0)

�
H(�x; �; t) + + E(�x; �; t)

i

2M
�+�(���)

�
U(P )

�sIJ(�x; �) �U(P 0)

�fH(�x; �; t) +5 +
eE(�x; �; t) 1

2M
5(��+)

�
U(P )

�

with

�t ""(�x; �) = �t ##(�x; �) =
1

�x+ � � i� +
1

�x� � + i�
; (68)

�s ""(�x; �) = � �s ##(�x; �) =
1

�x+ � � i� �
1

�x� � + i�
;

�t "#(�x; �) = �t #"(�x; �) = �s "#(�x; �) = �s #"(�x; �) = 0 :

for circularly polarized photons. The variable �x is related to x in Section 3 by

x =
�x + �

1 + �
(69)

and is again chosen such as to make symmetry relations under �! �� most trans-

parent.

Using the transformation rules (65), (66), and (69) it is straightforward to trans-

late all our results into the variables in the symmetric frame. For convenience, we

give in the following our main formulae explicitly. The spinor products in (22) and

(25) now read

1

2 �P+
�U(P 0; �0)+ U(P; �) =

q
1� �2 Æ�; �0 ; (70)

1

2 �P+
�U(P 0; �0)

i

2M
�+�(���)U(P; �) = � �2p

1� �2 Æ�; �0

+
1p

1� �2
���1 � i�2

2M
Æ�;��0 ;

1

2M
�U(P 0; �0)U(P; �) =

1p
1� �2 Æ�; �0

� 1p
1� �2

���1 � i�2

2M
Æ�;��0 ; (71)

and the sum rules for the form factors take the simple forms

Z 1

�1
d�x H(�x; �; t) = F1(t) ; (72)
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Z 1

�1
d�x E(�x; �; t) = F2(t) ;Z 1

�1
d�x �x [H(�x; �; t) + E(�x; �; t) ] = Aq(t) +Bq(t) :

The Fock state representations of the Compton form factors H and E are again

more symmetric with respect to the initial and �nal state proton if we use the variables

of the symmetric frame, although at the price of somewhat more involved relations

between the di�erent momentum variables. For the n ! n diagonal term (�n = 0)

we obtain in the domain � � �x � 1:

q
1� �2 H(n!n)(�x; �; t) � �2p

1� �2 E(n!n)(�x; �; t) (73)

=
q
1� �

2�nq
1 + �

2�n X
n;�i

Z nY
i=1

dxi d
2~k?i

16�3
16�3Æ

0
@1� nX

j=1

xj

1
A Æ(2)

0
@ nX
j=1

~k?j

1
A

�Æ(�x� x1)  " �

(n) (x
0

i;
~k0?i; �i)  

"

(n)(yi;
~l?i; �i);

1p
1� �2

�1 � i�2

2M
E(n!n)(�x; �; t) (74)

=
q
1� �

2�nq
1 + �

2�n X
n;�i

Z nY
i=1

dxi d
2~k?i

16�3
16�3Æ

0
@1� nX

j=1

xj

1
A Æ(2)

0
@ nX
j=1

~k?j

1
A

�Æ(�x� x1)  " �

(n) (x
0

i;
~k0
?i; �i)  

#

(n)(yi;
~l?i; �i);

where

x01 =
x1 � �
1� � ; ~k0?1 =

~k?1 � 1� x1
1� �

~�?

2
for the �nal struck quark,

x0i =
xi

1� � ;
~k0
?i =

~k?i +
xi

1� �
~�?

2
for the �nal (n� 1) spectators,

(75)

and

y1 =
x1 + �

1 + �
; ~l?1 = ~k?1 +

1� x1
1 + �

~�?

2
for the initial struck quark,

yi =
xi

1 + �
; ~l?i = ~k?i � xi

1 + �

~�?

2
for the initial (n� 1) spectators.

(76)

We can again check that
Pn

i=1 x
0

i = 1 and
Pn

i=1
~k0
?i = ~0?. We also have

Pn
i=1 yi = 1

and
Pn

i=1
~l?i = ~0? as required. From (75) and (76) we see that the variable �x = x1

corresponds to the average momentum fraction (y1P
+ + x01P

0+)=(P+ + P 0+) of the

struck quark before and after the scattering.
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For the n+1! n�1 o�-diagonal term (�n = �2), let us consider the case where
partons 1 and n + 1 of the initial wavefunction annihilate into the current leaving

n � 1 spectators. The �nal state n � 1 parton wavefunction then has arguments

(i = 2; � � � ; n)
x0i =

xi

1� � ;
~k0
?i =

~k?i +
xi

1� �
~�?

2
: (77)

We can check that
Pn

i=2 x
0

i = 1 and
Pn

i=2
~k0
?i = ~0?. The initial state n + 1 parton

wavefunction has arguments (i = 1; � � � ; n+ 1),

y1 =
x1 + �

1 + �
; ~l?1 = ~k?1 +

1� x1
1 + �

~�?

2
; (78)

yn+1 =
xn+1 � �
1 + �

; ~l?n+1 = ~k?n+1 � 1 + xn+1

1 + �

~�?

2
;

yi =
xi

1 + �
; ~l?i = ~k?i � xi

1 + �

~�?

2
for i = 2; � � � ; n :

This satis�es
Pn+1

i=1 yi = 1,
Pn+1

i=1
~l?i = ~0? as required. The o�-diagonal amplitude is

non-zero in the domain �� � �x � �. There, the formulae for the generalized form

factors of the deeply virtual Compton amplitude are

q
1� �2 H(n+1!n�1)(�x; �; t) �

�2p
1� �2 E(n+1!n�1)(�x; �; t) (79)

=
q
1� �

3�nq
1 + �

1�n X
n;�i

Z n+1Y
i=1

dxi d
2~k?i

16�3

� 16�3Æ

0
@1 + � �

n+1X
j=1

xj

1
A Æ(2)

0
@ ~�?

2
�

n+1X
j=1

~k?j

1
A

� 16�3Æ(xn+1 + x1 � 2�) Æ(2)
�
~k?n+1 + ~k?1 � ~�?

�

� Æ(�x� x1)  " �

(n�1)(x
0

i;
~k0?i; �i)  

"

(n+1)(yi;
~l?i; �i) Æ�1��n+1 ;

1p
1� �2

(�1 � i�2)

2M
E(n+1!n�1)(�x; �; t) (80)

=
q
1� �

3�nq
1 + �

1�n X
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dxi d
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16�3

� 16�3Æ

0
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n+1X
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1
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0
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2
�

n+1X
j=1

~k?j

1
A
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� Æ(�x� x1)  " �

(n�1)(x
0

i;
~k0
?i; �i)  

#

(n+1)(yi;
~l?i; �i) Æ�1��n+1 :
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