
ar
X

iv
:h

ep
-p

h/
00

06
09

7 
v4

   
19

 S
ep

 2
00

0

SLAC-PUB-8469

June 2000

The g − 2 of the Muon in Localized Gravity Models ∗

H. Davoudiasl, J.L. Hewett, and T.G. Rizzo

Stanford Linear Accelerator Center

Stanford University

Stanford CA 94309, USA

Abstract

The (g−2) of the muon is well known to be an important model building constraint

on theories beyond the Standard Model. In this paper, we examine the contributions

to (g − 2)µ arising in the Randall-Sundrum model of localized gravity for the case

where the Standard Model gauge fields and fermions are both in the bulk. Using the

current experimental world average measurement for (g − 2)µ, we find that strong

constraints can be placed on the mass of the lightest gauge Kaluza-Klein excitation for

a narrow part of the allowed range of the assumed universal 5-dimensional fermion mass

parameter, ν. However, employing both perturbativity and fine-tuning constraints we

find that we can further restrict the allowed range of the parameter ν to only one

fourth of its previous size. The scenario with the SM in the RS bulk is thus tightly

constrained, being viable for only a small region of the parameter space.

∗Work supported by the Department of Energy, Contract DE-AC03-76SF00515



The existence of extra spacetime dimensions has recently been suggested[1, 2, 3]

as a means to explain the hierarchy. In one scenario of this kind from Arkani-Hamed,

Dimopoulos, and Dvali (ADD)[1], the apparent hierarchy is generated by a large volume for

the extra dimensions. In this case, the fundamental Planck scale in 4+n-dimensions, M , can

be reduced to the TeV scale and is related to the observed 4-d Planck scale, MP l, through

the volume Vn of the compactified dimensions, M
2

P l = VnM
2+n. In a second scenario due

to Randall and Sundrum (RS)[2], the observed hierarchy is induced through an exponential

warp factor which arises from a non-factorizable geometry. An exciting feature of these

approaches is that they both lead to concrete and distinctive phenomenological tests[4, 5] at

the TeV scale.

In addition to collider tests, loop-order processes, such as rare transitions which are

suppressed in the Standard Model (SM) or radiative corrections to perturbatively calculable

processes, can provide complementary information about new physics. One such traditional

quantity is the (g − 2) of the µ[6]. Currently the SM prediction is approximately 1σ higher

than that of the World Average measured value, with the difference between the theoretical

and experimental results being aexpµ − aSMµ = (43 ± 45) × 10−10, where a = (g − 2)/2. This

corresponds to a 95% CL upper bound on the magnitude of a new negative contribution,

∆aµ, of −3.1 × 10−9. The E821 experiment at BNL is expected to reduce the experimental

error on aexpµ by approximately an order of magnitude during the next few years to the level

of 0.35ppm which is below the current SM theory error of 0.60ppm. The SM error will also

decrease in the future as more data on the R ratio in the low energy region becomes available.

The size of the contribution to (g − 2)µ in the ADD scenario has been calculated in Ref.[7]

and results in interesting constraints. In this paper, we examine this quantity within the RS

model in the case where the SM fields propagate in the bulk with the expectation from our

earlier work[8] that existing data will yield interesting bounds over a region of the parameter
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space. With an anticipated ten-fold increase in the experimental precision in the not too

distant future, these bounds should soon improve if no signal for new physics is observed.

In its original construction, the RS model consists of two 3-branes each being stabilized[9]

at an S1/Z2 orbifold fixed point with a separation of πrc between the branes in an additional

dimension denoted as rcφ. The model initially postulated that only gravity was allowed to

propagate in the higher dimensional anti-deSitter bulk with the SM fields being confined

to one of the 3-branes. The exponential ‘warp’ factor e−krcφ, with k being a 5-d space-time

curvature parameter of order the Planck scale, is responsible for generating the observed hier-

archy assuming the scale of physics on the SM brane located at φ = π is Λπ = MP le
−krcπ ' 1

TeV with krc ∼ 11 − 12. The usual 4-d Planck scale and that of the original 5-d theory are

found to be related via M
2

P l = M3
5/k. Recently, a series of authors[8, 10] have considered

peeling the SM gauge and matter fields off of the wall in the limit where their back-reaction

on the RS metric can be ignored. (There are a number of arguments which strongly suggest

that if the Higgs is the source of electroweak symmetry breaking it must remain on the

wall[8, 10].) It is the existence of these SM bulk fields that allows for a potentially sizeable

contribution to (g − 2)µ. In what follows we use the notation as defined in the last paper

listed in Ref.[8].

When the SM gauge and matter fields are allowed to propagate in the bulk, there are

three parameters that need to be specified to determine the phenomenological predictions

of the RS model: c ≡ k/MP l which is expected to lie in the range 0.01 to 1, the common

dimensionless bulk mass parameter for the fermions ν ≡ m/k, where m represents the

5-d fermion mass, which is expected to be of order unity, and the mass of the lightest

gauge, fermion or graviton Kaluza-Klein(KK) excitation. We remind the reader that a

common value of ν for all fermions is not a necessary assumption but is certainly the simplest
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choice and the one which naturally avoids constraints associated with flavor changing neutral

currents. For a fixed value of ν,the entire KK spectrum is determined for all fields once the

mass of a single KK excitation is known. We recall that the KK spectrums for gravitons,

fermions, and gauge bosons are related[8] by the roots of various Bessel functions and that

all gauge bosons, i.e., gluons, W ’s, Z’s and γ’s, have essentially the same excitation spectra.

Note that the limits we obtain below are derived under the assumption that no other

new physics is present beyond what is considered here. As with all bounds obtained via

indirect means, the presence of additional new interactions may cancel the loop effects and

erase or ease the constraints.

Consider the situation where we have two fermions in the bulk, D and S, which have

the quantum numbers of an SU(2)L doublet and singlet with weak hypercharges Y = −1/2

and −1, respectively. Following the notation of our previous work, their interactions with

the gauge fields can be described by the action,

SfV =
∫
d4x

∫
rc dφ

√
G
[
V M
n

(
i

2
S γnDMS + h.c.

)
− sgn(φ)mSSS + (S → D

)
], (1)

where, G is the determinant of the metric tensor, V is the vielbein, DM is a covariant

derivative and h.c. denotes the Hermitian conjugate term. Here, as discussed above, we will

assume that mD = mS = kν. Note that gauge interactions do not mix the D and S fields.

The D and S fields also interact with the Higgs isodoublet field(s), H0, which reside on the

wall, i.e.,

SfH =
λ

k

∫
d4x

∫
dφ
√
G SDH0 δ(φ− π) + h.c., (2)

with λ being a dimensionless Yukawa coupling. Due to the KK mechanism the fields

D
(n)
L,R and S

(n)
L,R form separate 4-d towers of Dirac fermions which are degenerate level by

level. The KK expansion can be written as D =
∑
D

(n)
L (x)χ(n)(φ) + D

(n)
R (x)τ (n)(φ) and
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S =
∑
S

(n)
L (x)τ (n)(φ) + S

(n)
R (x)χ(n)(φ) where the ν-dependent χ(τ ) fields are Z2 even(odd)

and are given explicitly in our previous paper. Note that the Z2 orbifold symmetry al-

lows couplings of the type DL
(n)
S

(m)
R + h.c. but not ones of the form DR

(n)
S

(m)
L + h.c. since

the Z2 odd wavefunctions vanish on both of the boundaries. After shifting the Higgs field

H0 → ekrcπH so that it is canonically normalized, the value of λ is fixed as a function of

ν by the requirement that the coupling of the DL and SR zero modes obtains a mass, mµ,

once the Higgs gets a vev, v4 = vSM/
√

2 with vSM ' 246 GeV. (It is thus important to

observe that in a theory with a fixed value of ν the set of Yukawa couplings λf associated

with the set of SM fermions is clearly hierarchical.) This then fixes the couplings between a

Higgs, a zero mode fermion and any tower member to be CffH
0i = (−1)i mµ

v4

√
F , as well as

the coupling between two different tower members and the Higgs as C ffH
ij = (−1)i+j mµ

v4
F

(up to a possible ν-dependent sign where),

F = 2
∣∣∣
1− ε2ν+1

1 + 2ν

∣∣∣, (3)

with ε = e−krcπ ∼ 10−16. Note that for negative values of ν, the factor F grows exponentially

large.

In terms of the D and S fields, the operator which generates the anomalous magnetic

dipole moment of the µ can be written as D
(0)
L σµνS

(0)
R + h.c.. This reminds us that this

operator and the muon mass generating term have the same isospin and helicity structure

such that a Higgs interaction is required in the form of a mass insertion to connect the two

otherwise decoupled zero modes. We can think of this mass insertion as the interaction of a

fermion with an external Higgs field that has been replaced by its vev.

Helicity flips play an important role in evaluating the contributions to (g − 2)µ since
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SR(p)
O

S R
(i)

D L
(j)

A µ (k)
(n)

D L(p')
O

SR(p)
O

SR
(i)

DL
(j)

H(k)

γν(q)γν(q)

DL(p')
O
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Figure 1: Typical Feynman diagrams for the gauge and Higgs boson contribution to (g−2)µ.
The mass insertion is denoted by the cross.

muon KK excitations are now propagating inside the loop. As is well-known, for non-chiral

couplings the contribution to the anomalous magnetic moment of a light fermion can be

enhanced when a heavy fermion of mass mh participates inside the loop[11]. There are a

number of diagrams that can contribute to (g − 2)µ at one loop of which two are shown in

Fig. 1. The diagram on the left corresponds to the exchange of a tower of the 4-d neutral

gauge bosons, γ(n) and/or Z(n), which we will now discuss in detail. Due to gauge invariance

we are free to choose a particular gauge in order to simplify the calculation. Here, we

make use of the ξ = 1 unitary gauge where the 4-d propagator is just the flat space metric

tensor[12]. Hence, the loops with the 4-d components of the gauge fields and the ones with

the fifth component need to be considered separately. In this example, the mass insertion

takes place inside the loop before the photon is emitted. Clearly there are three other

diagrams of this class: two with the mass insertion on an external leg and the third with the

mass insertion inside the loop but after the photon is emitted. The amplitude arising from
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this vector exchange graph is given by

MV = CLCRC
ffA
0in C

ffA
0jn ū(p′) (−ieγµ)PLi

ˆ6p′ +mj

p̂′2 −m2
j

(−ieγν)PL

× i
ˆ6p+mj

p̂2 −m2
j

(imijPR) i
ˆ6p+mi

p̂2 −m2
i

(−ieγµ)PR u(p)
−i

k2 −m(n) 2
A

+ h.c. , (4)

where CL,R are the corresponding couplings of the SM gauge boson to the µ in units of e

and p̂(p̂′) = p(p′)− k. The coefficients CffA
0in are the reduced couplings between a zero mode

fermion, a fermion tower member of mass mi and the nth gauge boson tower member. Here

mi and mj are the masses of the D or S fermionic KK states and m
(n)
A are the masses of the

KK gauge tower states. Note that the mass insertion, mij, comes with a chirality factor that

can be determined from the action SfH; numerically, mij = CffH
ij v4. The amplitude where

the mass insertion comes after the photon emission can be easily obtained by interchanging

i and j in the resulting final amplitude expression. When the mass insertion occurs on an

external leg it connects a zero mode with a tower mode and is given by m0i = CffH
0i v4. With

some algebra it is straightforward to show that the corresponding amplitudes obtained in

the two cases with external insertions are suppressed in comparison to the case of internal

insertion by a factor of order ∼ m2
µ/M

2
KK , where MKK is a typical large KK mass. In the

case of the W gauge boson tower graphs, since the W couples only to the D’s, the mass

insertion must occur on the incoming leg of the graph and the photon is emitted from the

W ; this graph can also be shown to produce a sub-leading contribution by a factor of order

∼ m2
µ/M

2
KK . Thus, W tower graphs can be safely ignored in comparison to those arising

from the Z and γ towers and the resulting contribution from all of the 4-d vector exchanges,
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neglecting the subleading terms, is given by

∆aAµ =
∑

i,j,k

−3C2
VKαmijmµ

π
×

∫ 1

0
dx

∫ 1−x

0
dy

[
x(1− x− y)

m2
j(1 − x− y) +m2

iy +m
(k)2
A x

+ (i→ j)

]
, (5)

where the sum is over all internal KK states, the i→ j represents the addition of the other

internal insertion graph and C2
V = CffA

0ik C
ffA
0jk with K given by

K =

[
1 +

(1 − 4xw)2 − 1

16xw(1 − xw)

]
, (6)

where xw = sin2 θw ' 0.2315. Note that since the coefficients CffA
0ik behave as ∼ 1/

√
F [8]

and mij ∼ F we may expect that the ν dependence of ∆aAµ to be rather weak. In principle

the sum extends over all of the internal KK states but in practice we find that truncating

the sum after the first 20-40 members of each tower leads to a rather stable result.

The next class of graphs is similar to the 4-d vector exchange, but in the ξ = 1 gauge,

now involves the fifth component of the original 5-d field. Here it is important to recall that

these fifth components are Z2 odd fields thus connecting SL(DL) with SR(DR). The action

SfH in Eq.(2) demonstrates that the Higgs boson does not interact with odd fields since they

vanish on the wall. From this observation we conclude that in the case of fifth component

vector exchanges the mass insertions can only occur on the external legs. By following similar

algebraic manipulations as before it is easy to show that all of these contributions are always

subleading by factors of order ∼ m2
µ/M

2
KK and thus their contribution to (g − 2)µ can be

safely neglected.

Next, we turn to the possibility of Higgs exchange, also shown in Fig. 1. Ordinarily,

one might dismiss such contributions as being small but they now involve the off-diagonal
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Higgs couplings discussed above which contain powers of the factor F which grows large

rapidly as ν grows negative. The amplitude for the Higgs graph shown in the figure is given

by

MH = CffH
0i CffH

0j ū(p′) iPR i
ˆ6p′ +mi

p̂′2 −m2
i

(−ieγν)PR i
ˆ6p+mi

p̂2 −m2
i

× (imijPL) i
ˆ6p+mj

p̂2 −m2
j

iPR u(p)
i

k2 −m2
H

+ h.c. , (7)

using the notation above. Here the coefficients CFFH
0i are the reduced couplings of a Higgs

boson to a zero mode fermion and an ith fermion tower member. The amplitude where the

insertion and emission occur with the opposite order can be obtained in a straightforward

manner and, as we now expect, the two diagrams with external insertions can be shown

to be subleading. Combining the two dominant Higgs amplitudes we find the following

contribution to ∆aµ:

∆aHµ =
∑

i,j

C2
Hmijmµ

16π2

∫ 1

0
dx

∫ 1−x

0
dy

[
(1 − x− y)(3y − 3x− 1)

m2
i (1 − x− y) +m2

jy +m2
Hx

+ (i→ j)

]
, (8)

where C2
H = CffH

0i CffH
0j with mH being the Higgs boson mass. The i → j term results

from the addition of the other internal emission graph. (In our numerical analysis below we

assume mH = 120 GeV; these results are not very sensitive to this particular choice.) Since

CffH
0i behave as ∼

√
F and mij ∼ F we expect ∆aHµ to have a strong ν dependence and

to grow very rapidly as ν becomes increasingly negative. As in the vector case, truncating

the sum over the KK fermion contributions after the first 20-40 tower members have been

included yields a numerically stable result.

What are the other potential contributions to (g − 2)µ in the RS model? The radion

is the zero mode remnant scalar resulting from the KK decomposition of the 5-d graviton

8



field. Since it couples diagonally to KK tower members, as does the zero mode graviton and

photon, the µ continues through the diagram and no KK modes are excited. Loops involving

radions[13] are thus easily shown to be small[14] since both the radion couplings and the

mass insertions in this case are not accompanied by any compensating powers of F . These

contributions can be safely neglected.

The last remaining potential contribution arises from graviton loops which may be

calculated via the Feynman rules given in [15] with small modifications due to the fact that

the SM fields are now in the bulk and have nontrival Z2 parity. These diagrams lead to

amplitudes which are found to be log-divergent and lead to cutoff (Λ) dependent results

and are thus not well-defined. The divergences, which occur in all graviton diagrams, arise

due to the fact that the operator describing, e.g., the fermion-fermion-graviton interaction

is dimension-five and involves an additional power of fermion momentum.

This differs significantly from the results obtained by Graesser [7] in the case of the

ADD model, where it was found that the total contribution to (g − 2)µ due to gravity

is finite. This difference arises from a number of sources: (i) in the ADD model the SM

fields lie on the wall and only gravitons are allowed to propagate in the bulk, whereas

in the version of the RS model under consideration here, both the SM gauge fields and

fermions propagate in the bulk. (ii) In the ADD case, the graviton couplings are universal

for all KK tower members whereas in the RS scenario the couplings are KK excitation state

dependent and also differ for fermions and gauge bosons for arbitrary values of ν. (iii) In

the ADD case, each of the 5 diagrams shown in Fig. 1 of Graesser [7] was found to be

log divergent with their sum, however, being finite, since the divergences cancel at each

KK level. In the RS case, these cancellations cannot occur due to both the breakdown in

universality of the graviton couplings and the fact that the complete calculation of each

diagram involves different coupling coefficients and different numbers of KK states. For
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example, in the diagram where the graviton is emitted off the fermion KK line, we must

sum over the triple product of coefficients CffG
0ik C

ffG
0jk mij. On the otherhand, the diagram

involving the gauge-gauge graviton vertex we must instead sum over the quartic product of

coefficients CffA
0ik C

AAG
0k` CffG

0n` min, where the sum extends over the KK towers for two fermions,

one graviton, and one photon. Since the evaluation of the coefficients involve ν-dependent

integrals over Bessel functions, it is highly unlikely that the divergences encountered in each

class of diagrams can sum to zero unless a theorem demands that it be so. Thus, we expect

that the complete contribution due to gravity to remain log divergent when all diagrams are

summed.

We can, however, make an estimate of the size of these graviton contributions. As

in the case of vector and Higgs boson exchange we expect graphs with internal insertions

proportional to F to dominate. Since the relevant vertex couplings C ffG
0ik scale as ∼ 1/

√
F [8]

we do not expect the graviton contribution to be strongly ν dependent as was also the case

for vector exchange. An order of magnitude estimate suggests that

∆aGµ '
∑

ijk

CffG
0ik C

ffG
0jk mijmµ

16π2Λ2
π

log

[
Λ2

m2
KKk

]
, (9)

with the cutoff Λ expected to be of order Λπ. The origin of the various terms in this estimate

are easy to identify: the C’s are vertex functions, the (16π2)−1 is a typical loop factor, the Λ−1
π

appears in all graviton couplings to SM fields, and the mijmµ arises in the usual single mass

insertion approximation as seen above. The log Λ2 is the divergence discussed above and

mKKi represents canonical KK-tower masses which appear in the loop. Note that Λπ →∞

as mKKi → ∞ and thus ∆aGµ → 0 as the KK mass gets large. Inserting typical values of

the parameters we estimate that ∆aGµ should certainly be less than 10−(9−10) and thus is at

most comparable to the vector boson contribution. (An explicit calculation of the diagram
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containing the γffG vertex confirms this expectation.) As we will see this means that the

graviton exchange contributions will then have very little effect upon our results.

Figure 2: Bounds on the parameter ν from considerations of (g−2)µ. The horizontal dotted
curve shows the value of −∆aAµ while the steeply rising dotted curve is that for −∆aHµ ; both
of which are calculated assuming the mass of the first KK gauge state to be 1 TeV. The
vertical dash dotted line arises from the Yukawa coupling perturbativity constraint discussed
in the text while the left(right)solid line arises from the corresponding µ(top) no fine-tuning
mass constraint. Regions to the left of these lines are excluded. The horizontal dashed line
is the current experimental upper bound at 95% CL.

Let us now turn to our numerical results which are summarized in Fig. 2. We first

remind the reader that for a fixed value of ν specifying the mass of any single KK tower

state determines the entire KK spectrum for fermions, gauge bosons and gravitons. Here

we take the mass of the lightest gauge KK state to be 1 TeV with the results for both the

vector and Higgs contributions scaling as ∼ (1 TeV/MKK)2. In our previous work[8] we have

shown that for values of ν >∼ −0.3 the masses of the KK states as well as Λπ are required

to be in the multi-TeV range, disfavoring this model as a solution to the hierarchy problem.
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Also we noted that when ν <∼ −0.9 the Yukawa couplings of the fermions became too large,

hence for we display the range of ν in Fig. 2 to be between −0.3 and −1.

The first result to notice is the value of ∆aAµ corresponding to the essentially ν-

independent horizontal dotted curve. This ν independence is only approximate and results

from the scale of the figure as ∆aAµ varies by a factor of order a few as ν increases up to 2.

This curve lies about an order of magnitude below the current experimental (g − 2)µ bound

implying that we should obtain no reasonable constraint on the KK masses arising from this

contribution unless there is a substantial change in both the experimental central value and

the error. The rising dotted line is the Higgs boson contribution which we note is rather

small over most of the interesting range of ν. Scaling the curve to allow for the first KK

masses to only be as large as a few to 10 TeV, we find that the region to the left of ν ' −0.70

is excluded. This rules out a reasonable fraction, ' 30%, of the preferred allowed range of ν

remaining subsequent to our last analysis[8].

There are however two other points to consider. First, a quick examination of the

perturbative bound on the Yukawa couplings in the Higgs graph shown in Fig. 1 also yields

a constraint. Imposing the weak requirement that C2
H = CffH

0i CffH
0j < 16π2 we obtain

the dash-dotted line in Fig. 2 at ν ' −0.77 excluding the region to its left. A second,

perturbative-like bound can also be extracted from the Higgs loop in Fig.1 when we remove

the photon line and consider the resulting mass renormalization contribution[16]. We next

demand the no fine-tuning requirement that the finite part of this graph be not much larger

than mµ; from this we explicitly obtain the constraint that C2
Hmij/16π2 be not much greater

than mµ. This then excludes the region to the left of the solid line at ν ' −0.64 and results

in a stronger bound than that obtained from the present experimental value of (g − 2)µ. Of

course one could repeat this exercise for the case of the top quark provided the value of ν

12



is universal. In this case, the value of C2
Hmij is increased by the factor (mt/mµ)2 and the

resulting bound is drastically strengthened. We find that the region to the left of ν ' −0.44

would now be excluded by this analysis; these considerations now exclude more than ' 75%

of the previously preferred range of ν and leaves only the relatively narrow window between

−0.30 and −0.44 as allowed. This would seem to greatly disfavor the possibility of the SM

being in the RS bulk in the case of a universal mass parameter, ν.

In conclusion the present experimental measurements of (g− 2)µ do not place signifi-

cant constraints on localized gravity models with the SM field content in the bulk for most of

the allowed range of ν. However, requiring that one loop corrections to the fermion masses

be of the same order as the measured fermion mass, so that no fine tuning of the param-

eters in the Lagrangian are necessary, severly constrains the allowed bulk mass parameter

space. This result is obtained assuming that the value of ν is flavor independent and that the

5-d Yukawa couplings of the fermions are hierarchical. Given these assumptions, however,

placing the SM field content in the bulk is tightly constrained by the above considerations.
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