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We discuss the generation of superpotentials in d = 4, N = 1 supersymmetric field

theories arising from type IIA D6-branes wrapped on supersymmetric three-cycles of a

Calabi-Yau threefold. In general, nontrivial superpotentials arise from sums over disc

instantons. We then find several examples of special Lagrangian three-cycles with nontriv-

ial topology which are mirror to obstructed rational curves, conclusively demonstrating

the existence of such instanton effects. In addition, we present explicit examples of disc

instantons ending on the relevant three-cycles. Finally, we give a preliminary construc-

tion of a mirror map for the open string moduli, in a large-radius limit of the type IIA

compactification.
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1. Introduction

“The importance of instanton computations in string theory and in M-theory can

hardly be overstated.”[1]

– J.A. Harvey and G. Moore

There are many important motivations for studying the physics of D-branes on Calabi-

Yau threefolds in type II string theories (or orientifolds thereof). To begin with, space-

filling branes provide a microscopic construction of brane world models with N = 1 su-

persymmetry. In addition, physical objects in these theories (such as the moduli space of

vacua and the superpotential) have a geometric expression. Hence, these theories provide a

rich new context for studying quantum geometry viaN = 1 field theories, along the lines of

previous work on N = 2 brane probe theories [2]. For a fairly recent introductory review,

see [3]; recent work on this subject has appeared e.g. in [4,5,6,7,8,9,10,11,12,13,14,15].

Consider a compactification of type IIA string theory on a Calabi-Yau threefold M .

A single D6 brane wrapped on a supersymmetric three-cycle Σ ⊂ M realizes a 4d N = 1

quantum field theory.1 In [6], we began to explore the consequences of mirror symmetry for

such brane worldvolume theories (related work appears in [16,17,18]). We found that the

moduli space of vacua has complex dimension b1(Σ), to all orders in σ-model perturbation

theory. Any superpotential must be generated by nonperturbative worldsheet effects, i.e.

disc instantons. Now, choose Σ so that the mirror cycle C is a rational curve in the mirror

threefold W . The mirror of the above D6-brane is a D5-brane wrapped on C×IR4. When C

has obstructed first-order deformations, the deformation is described by a massless scalar

field with a higher-order superpotential; this superpotential is described exactly by classical

geometry [4,6]. Mirror symmetry implies a disc instanton-generated superpotential for the

IIA D6 brane. Ideally we could use this to compute the instanton sum exactly. The first

obstacle to this program is that the explicit construction of such D-brane mirror pairs is

quite difficult, and examples of compact special Lagrangian three-cycles with b1(Σ) 6= 0

have been scarce.

In this paper, we further this program by providing examples of such pairs, and

developing a preliminary understanding of the structure of the instanton sums and the

1 To avoid RR tadpoles, one can take M to be noncompact, or consider a full orientifold model

which also has orientifold planes. Alternatively, since we will be working at tree level, one can

consider a non-space filling brane whose worldvolume theory still has 4 supercharges, and view

the superpotentials we compute in that context.
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mirror map. We begin in §2 with a more detailed review of supersymmetric D-branes in

Calabi-Yau compactifications. These have a standard classification as A-type or B-type

branes [19], which roughly correspond to special Lagrangian cycles and holomorphic cycles,

respectively. The superpotentials on B-type branes arise from classical geometry [4,6] and

we review the geometry of three specific examples (two with nontrivial superpotentials

and one without). We also discuss the qualitative features of superpotentials for A type

branes. In §3, we give an explicit construction of the special Lagrangian three cycles which

are mirror to the explicit examples of B-type branes discussed in §2. In particular, we

find examples of smooth three-cycles with nonvanishing b1 whose mirrors are obstructed

curves. This effectively proves the existence of disc instanton-generated superpotentials.

We also give explicit examples of disc instantons, i.e. holomorphic discs with boundary

in a nontrivial homology class on the special Lagrangian cycle. In §4, we use mirror

symmetry to make some statements about the instanton-generated superpotential for our

A-type examples. We first discuss a mechanism by which disc instanton effects in our

examples could (partially) cancel at special loci in closed string moduli space. We then

give a preliminary description of the mirror map for open string moduli in one example.

We close with a discussion of promising future directions in §5.

2. Superpotentials from D-branes

2.1. A-type and B-type branes

There are two distinct classes of supersymmetric branes in Calabi-Yau compactifica-

tions: A-type and B-type branes [19] (which can be constructed as boundary states in the

topological A- and B-twisted sigma models respectively, following the notation of [20]). To

help distinguish between these cases, we will denote by M a Calabi-Yau used for studying

A-type branes, and by W a Calabi-Yau used for studying B-type branes. When we give

examples in later sections, mirror pairs will be identified by using a common subscript,

(Mi,Wi). In geometric language, B-type branes correspond to branes wrapped on holo-

morphic 0,2,4 and 6-cycles of a Calabi-Yau W ; while A type branes correspond to branes

wrapped on a special Lagrangian three-cycle Σ ⊂ M . In both cases, one has to choose
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a gauge field configuration on the D-brane; the supersymmetry-preserving bundles corre-

spond to flat bundles for A-type branes and to stable, holomorphic bundles for B-type

branes.2

Assuming the branes to be space-filling, one can prove the following general results

about the dependence of the N = 1 brane worldvolume action on the Calabi-Yau moduli:

• The superpotential for B-type branes depends only on the complex structure moduli,

while FI terms depend only on Kähler moduli.

• The mirror story holds for A-type branes: the superpotential depends only on Kähler

moduli, while the FI terms depend on complex structure moduli.

The statements about the superpotential were proven using worldsheet techniques in [4].

The correspondence between FI terms and Calabi-Yau moduli has been explored in [3,23];

explicit examples of superpotentials for B-type branes were given in [4,6].

As with closed string σ-models, the open string σ-model coupling constants (in which

one expands σ-model perturbation theory) are related to the choice of the Kähler form on

W , and not to the complex structure. It follows that for B-type branes one can determine

the superpotential exactly at σ-model tree level, using classical geometry. In contrast, for

A-type branes (at least for a single brane, which is the case of interest to us here) the

superpotential is entirely determined by “stringy” disc instanton corrections [6].

2.2. Superpotentials for B-type branes

Information about the superpotential for B-type branes is contained in the deforma-

tion theory for these branes (and for the gauge bundles on those branes). We will review

here the case of branes wrapping curves in a threefold [4], since these are the examples we

use in this paper.

For a holomorphic curve C in a Calabi-Yau threefold W , the number of first-order

holomorphic deformations is d = dimH0(C,NC), where NC is the normal bundle of C ⊂W .

For a single D5-brane wrapping C in type IIB string theory, this leads to d massless neutral

chiral supermultiplets (in addition to the U(1) vector multiplet). A superpotential for chiral

multiplets naturally corresponds to an obstruction to extending the associated first-order

deformations to higher order.

2 We are being schematic. A more precise discussion of B-type branes as coherent sheaves can

be found in [21]; supersymmetric configurations with NS 2-form moduli turned on can be found

in [22].
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Geometrically, the obstruction can only arise if H1(C,NC) is nontrivial. For simplicity,

we only consider a one-parameter deformation. If one chooses a small parameter ε, and

tries to find a finite holomorphic deformation order by order in ε, one computes that the

obstruction to finding a solution at each order is represented by an element of H1(C,NC)

[24]. In particular, if there is a nonzero obstruction at order εn, then this geometry is

naturally described by a superpotential of the form W = Φn+1.3

The simplest example of such obstructed curves begins with a threefold with n isolated

curves, as a particular deformation of the complex structure causes these curves to coincide.

They become a single curve C of multiplicity n, and this curve has an obstruction at order

n to holomorphic deformations. Physically this is described by n massive vacua coalescing

into a single vacuum with superpotential Φn+1.4

The B-type examples we will study realize this construction from the following starting

point [25,26]. Begin with a Calabi-Yau threefold which contains a rational curve C fibered

over a genus-g curve Sg. One may canonically associate an element ω ∈ H1,0(Sg) with a

non-toric5 first order deformation of the complex structure. The differential ω generically

has (2g − 2) simple zeros, which correspond to the isolated rational curves in the family

Sg which survive the deformation. At points of positive codimension in complex moduli,

these curves can coincide and form curves of higher multiplicity.6 There is a natural su-

perpotential for a single D5-brane wrapped on some fiber Cz over a point z ∈ Sg, described

in [6]. The local modulus φ of the rational curve Cz over z can be thought of as an element

of the holomorphic tangent space T 1,0
z Sg, and it is the scalar component of a superfield Φ.

The superpotential is then:

W (Φ;ω) = 〈ω,Φ〉 +
1

2!
〈∂〈ω,Φ〉,Φ〉 +

1

3!
〈∂〈∂〈ω,Φ〉,Φ〉,Φ〉 + · · · , (2.1)

3 Of course the correct normalization of the fields, and thus of the superpotential, depends on

the Kähler metric, which we will not compute in this paper.
4 The situation is actually a bit more complicated than this. Our assertion only pertains to

the case NC = O⊕O(−2). It is an open problem to classify the possible superpotentials that can

yield a single curve with multiplicity n, even in the next simplest case NC = O(1)⊕O(−3). An

example in this case is the superpotential W (Φ,Ψ) = Φ2Ψ + Ψ3, corresponding to a curve with

multiplicity 4.
5 We will be studying hypersurfaces in weighted projective space: for these examples the

non-toric complex structure deformations are those which are not monomial deformations of the

defining equation.
6 In all of these cases, NC = O ⊕O(−2), so our previous discussion applies.
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evaluated at z. Here 〈 , 〉 is the usual inner product between forms and vectors, and ∂ is

the Dolbeault operator on Sg. It is easy to see that the expansion in (2.1) can be truncated

after (2g − 1) terms without changing the location and multiplicity of the critical points

of W .

Below are three examples which realize this general framework. These will be our

testing ground for a discussion of open-string mirror symmetry. The considerations of [6]

yield some predictions for the mirror three-cycles which we will give at the end of these

examples: we will describe and explore the mirror examples in §3.

Example I

Consider the Calabi-Yau hypersurface W1 of degree 8 in IP4
1,1,2,2,2 , defined for example

by the equation

p = z8
1 + z8

2 + z4
3 + z4

4 + z4
5 = 0. (2.2)

W1 has a singularity at z1 = z2 = 0, inherited from the ambient weighted projective space.

Blowing up this Z2 singularity yields a family of IP1s, parametrized by the genus 3 curve

S3:

z4
3 + z4

4 + z4
5 = 0. (2.3)

The non-toric deformations associated to H(1,0)(S3) generically lift the family S3 of IP1s,

leaving four isolated IP1s.

One can see the non-toric deformations explicitly, by considering an equivalent de-

scription of W1 as a complete intersection of a quartic and a quadric in CIP5 following

[25]. One sees the equivalence by setting the homogeneous coordinates (y0, · · · , y5) of CIP5

equal to (z2
1 , z

2
2 , z1z2, z3, z4, z5). Then the quadric equation

y2
2 = y0y1 (2.4)

of rank three is automatically satisfied. The model in IP5 obviously has complex structure

moduli which deform (2.4) to an equation of higher rank. If one deforms the quadric to

have rank four or fewer, then one is still describing points in the complex structure moduli

space of W1.7 Deformations to quadrics of rank greater than four correspond to making an

extremal transition from W1 to another Calabi-Yau space. One finds a three-dimensional

7 To see this, note that both (2.4) and the rank 4 quadric y0y1 = y2y3 can be desingularized

by the same blowup y0 = y2 = 0, hence both blowups fit into the same moduli space.
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space of deformations of the quadric which leave one in the moduli space of W1, hence

there are three non-toric deformations. This story is described in full generality (in the case

of a family of IP1s parameterized by a genus g curve, and the corresponding g non-toric

deformations) in [26].

It is evident that when one deforms (2.4) by a term which increases the rank to

four, e.g. y2
3, one destroys the family of IP1s. This is because the family is located at

y0 = y1 = y2 = 0 (which is the same as z1 = z2 = 0); the addition of y2
3 to (2.4) would

then force z3 = 0 also. But then the former genus 3 curve (2.3) collapses to the four points

z4
4 + z4

5 = 0. Hence, instead of a one-parameter family there are now 4 isolated IP1s.

Upon wrapping a single D5-brane on a member of the family of IP1s one finds a U(1)

gauge theory in four dimensions with a single neutral chiral multiplet φ parameterizing a

local neighborhood in S3. After a generic non-toric deformation described by ω, (2.1) will

describe a superpotential with four massive vacua.

In the mirror manifold M1, the non-toric deformations have the following description.

Toric Kähler moduli in weighted projective space arise from the volume of the space,

the blow-up parameters for the fixed loci of the Greene-Plesser orbifold group, and blow-

up parameters for any singularities of the weighted projective space which intersect the

Calabi-Yau. If the CY hypersurface intersects one of these loci n+1 times, the toric Kähler

deformation changes the size of all n + 1 divisors simultaneously, while the remaining n

“non-toric” moduli change the relative sizes.

In our examples, mirror symmetry demands the following statement about the three-

cycles Σ ⊂ M1 mirror to C ⊂ W1. At the locus in Kähler moduli space with the three

non-toric moduli turned off, we have a unique first-order deformation which by [27,6]

requires b1(Σ) ≥ 1. (If the inequality is not saturated, the instanton sum must give b1 − 1

chiral multiplets a mass.) The instanton-generated superpotential for one of these moduli

must vanish until the non-toric deformations are turned on, and then the moduli space

generically splits into four massive vacua.

Example II

Our next example arises from orbifolding W1 and S3 ⊂ W1. Define the threefold W2

as an orbifold of W1 by the Z4 × Z4 discrete group with generators

(1, i, i, 1,−1), (1, 1, 1, i,−i) . (2.5)

6



Once again we have a family of IP1s at z1 = z2 = 0. The curve (2.3) becomes a genus-1

curve S1, after orbifolding by (2.5). Thus, if we wrap a D5-brane around a member of this

family, there is a single parameter in the superpotential W associated to the holomorphic

differential on the curve S1. The corresponding superpotential (2.1) is just

W (Φ) = cΦ , (2.6)

where c is related to the magnitude of the non-toric blowup. When c 6= 0 there are no

supersymmetric vacua: the auxiliary field F in the chiral multiplet is non-vanishing, and

since we are coupled to closed string theory the 4d gravitino gains a mass. This is in keeping

with the fact that after the deformation, the holomorphic spheres have all disappeared.

In the absence of coupling to gravity, one can redefine the supercharges so that the

superpotential (2.6) does not break supersymmetry; it simply adds a harmless constant

to the Lagrangian. This is reflected clearly in the geometry of the example. In a local

neighborhood of the g = 1 curve of IP1s in W2, the manifold looks like a product of an A1

ALE space and a T 2. This local geometry is hyperkähler and so has a family of complex

structures, parametrized by an S2. Upon performing the non-toric deformation (2.6), one

can choose a different complex structure so that there are still holomorphic curves. Since

W2 is not hyperkähler, this is prevented by the global geometry at finite volume. Hence,

global features of W2 are important in determining that supersymmetry is broken, a fact

which clearly reflects the need to couple the D-brane worldvolume theory to gravity in

order to diagnose the supersymmetry breaking.

If M2 is the mirror of W2, the mirror cycles Σ ⊂M2 to our family of IP1s should also

live in a one-dimensional family, so that b1(Σ) ≥ 1. The non-toric Kähler deformation of

M2 breaks supersymmetry entirely via disc instanton effects.

Example III

In our final example, the geometry of B-type supersymmetric cycles does not support

a nontrivial superpotential for the wrapped D5-brane theory, which has a moduli space at

all values of the complex structure of the ambient threefold.

Let M3 be the orbifold of W1 from Example I by the Z2 symmetry generated by g̃:

g̃ = (1, 1, 1,−1,−1) (2.7)

We will consider B-type branes on the mirrorW3 ofM3. In W3 there is still a one-parameter

family of IP1s, parametrized by a IP1 (roughly obtained by orbifolding the genus 3 curve
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in W1). Because IP1 has no holomorphic one forms, this model does not admit non-toric

deformations which destroy the family of holomorphic spheres. Therefore, there is never a

nontrivial superpotential, for any complex structure.

Mirror symmetry requires that M3 has a one-parameter family of supersymmetric

three-cycles. This would be most simply realized by a family of three-cycles Σ with b1(Σ) =

1. In this case, in contrast to Examples I and II, no Kähler deformation ofM3 should lead to

a nontrivial disc instanton generated superpotential, so the family of three cycles survives

quantum corrections even after deformations of closed string Kähler moduli.

2.3. Qualitative features of superpotentials for A-type branes

Coordinates on the moduli space of A-type branes

Let M be a general Calabi-Yau threefold, and Σ ⊂ M a special Lagrangian three-

cycle. For simplicity, assume b1(Σ) = 1, and assume there is a single holomorphic disc

instanton D bounded by a representative γ of the generating class in H1(Σ). The cycle Σ

moves in a one-dimensional family in σ-model perturbation theory; as discussed in [17,6],

we can parameterize this family locally by a modulus field φ:

φ = Area(D) + ia (2.8)

where the area is measured in string units, and a is an axion (the Wilson line of the brane

U(1) gauge field around γ).

This was the picture given in [6], but a moment’s thought indicates that it should

be modified. Consider for example a special Lagrangian torus in T 6. There are clearly

no holomorphic discs bounding the cycles of T 6, but this does not mean that there is no

moduli space for the special Lagrangian subcycle. Indeed there is a simple ansatz which

naturally generalizes the above. Begin with a reference three-cycle Σ0 in some family Σt,

defined by an embedding ft : Σ0 ↪→M . Choose a family of deformations constructed from

a harmonic form in some class in H1(Σ0) [27]. Then choose some one-cycle γ0 ∈ Σ0 whose

class in H1(Σ0) is dual to this cohomology class via the metric. As t varies in the chosen

family of deformations, ft(γ) will sweep out some tube T in M . A natural coordinate φ is:

φ =

∫
T

ω + i

∫
γt

At (2.9)

where ω is the Kähler form on M and At is a flat connection on Σt. When the tube is

holomorphic, the real part is simply the area of the tube.
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Finding nontrivial superpotentials

Before launching into a detailed discussion of specific three-cycles mirror to the above

examples, we would like to gain some general and intuitive understanding of the form of

the superpotentials directly in the language of the three-cycle geometry.

Following [18], the sum over multiple covers of D yields a superpotential

W = ±
∞∑
n=1

e−nφ

n2
. (2.10)

The sign here depends on details of the fermion determinants around the instanton solution

[16]. It follows from (2.10) that

∂W

∂φ
∼ ±

∞∑
n=1

e−nφ

n
= ∓log(1− e−φ). (2.11)

This has a single critical point at φ =∞, which from (2.8) is the open string analogue of

large radius. Of course one expects that to reach φ =∞, M must be at some infinite-radius

point.

Now, suppose instead that we have k disc instantons Di bounding the same homology

class γ ∈ H1(Σ). Di may differ by homology classes in M . Choose Re(φ) to be the area

of D1. The exponential of the action for instanton Di is that for D1 times a factor qi, the

exponential of the (complexified) volume of [Di −D1] ∈ H2(M). Finally, assume each of

these discs are isolated. The resulting superpotential is:

W =
k∑
i=1

∞∑
n=1

σi
e−nφ

n2
qni , (2.12)

where σi is the sign of the σ-model fermion determinant for the instanton Di. The super-

symmetric vacua satisfy:
k∑
i=1

σilog(1− qie
−φ) = 0 . (2.13)

This is equivalent to a polynomial equation in e−φ, whose degree is the greater of #{i |

σi = 1} and #{i | σi = −1} . Note that the critical points need not all be at large radius.

The precise locations of the critical points depend on the closed string Kähler moduli

through the qi.

We get similar results when we include new disc instantons in the class dγ for varying

d. The general result is that if we have ki disc instantons in classes diγ, then (assuming for
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simplicity that all the fermion determinants are positive) there are
∑
kidi supersymmetric

vacua. For families of discs some open-string version of the Gromov-Witten invariants of

closed string instantons should replace ki.

The main point of this discussion is that it is not difficult to imagine one-parameter

families of special Lagrangian manifolds which yield, after disc instanton corrections, a

discrete set of supersymmetric vacua. This is fortunate as the mirrors of the B-brane

configurations discussed in §2.2 must exhibit this behaviour.

Another lesson is that string instanton effects alter our expectations of the topology

of our three-cycles. The natural physical measure of b1(Σ) within σ-model perturbation

theory is the number of massless chiral multiplets for a single D6-brane wrapped on this

cycle. However, disc instanton effects may well give some of these chiral multiplets a mass,

in which case there is no obvious physical distinction between the original three-cycle and

a cycle with smaller b1.

Special features of A-cycles arising as real slices

We will be focusing on special Lagrangian three-cycles constructed as the fixed point

locus of antiholomorphic involutions acting on M , in other words antiholomorphic maps

σ : z → z̄ which square to the identity. The standard example, which we will use in

every case, is the real slice arising as the fixed point set of zi → z̄i. In this case, for each

holomorphic disc we get a conjugate holomorphic disc. If f : D → M is a holomorphic

map, we can define its conjugate holomorphic disc g : D → M by g(z) = f(z̄). Upon

gluing these discs together we find that for any special Lagrangian submanifolds obtained

as fixed points of antiholomorphic involutions, holomorphic disc instantons always come

as two halves of a rational curve in M . Furthermore, it is natural to conjecture that as

this special Lagrangian cycle moves through a family Σt, one may find a set of one-cycles

γt ∈ Σt whose images in M sweep out this rational curve.

The superpotential can be derived from a variant of (2.12). Let IP be the rational

curve in question, and t be the integral of the complexified Kähler form of M over IP. Let z

be the action of the instanton described by f ; the action for the instanton described by g is

then t− z. Assuming the fluctuation determinants have the same sign, the superpotential

one gets from summing over multiple covers is up to overall sign:

W = Li2(1− e−z) + Li2(1− e−t+z) . (2.14)

It is easy to see that this has a supersymmetric vacuum at z = t/2. At this point in the

open- and closed string moduli space the superpotential is that of the local model in [18].
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3. Constructing the mirror three-cycles

The next step to fleshing out the mirror map for open strings is, of course, to charac-

terize the mirror map for the submanifolds on which they end. In this section we will find

explicit special Lagrangian three-cycles mirror to elements of the families of IP1s described

in the examples above.

3.1. Strategy for identifying mirror cycles

At an arbitrary point in the closed string moduli space, it will be fairly difficult to

find explicit mirror cycles. Instead we focus on loci of the moduli space with physical and

mathematical significance. In our B-cycle examples, the family of IP1s around which we

intend to wrap D5-branes are known to have zero volume at some submanifold in the full

(complex and Kähler) moduli space; these points occur when the resolutions of the orbifold

singularities discussed above have been turned off (along with the associated NS-NS 2-form

moduli). We may identify these points physically by studying BPS D2-branes wrapped

on the same cycles in type IIA string theory.8 These D2-branes form massless (vector)

multiplets at this discriminant locus as guaranteed by the BPS formula.

In type IIB on the mirror CY, the BPS formula implies that a wrapped D3-brane

must become massless at the mirror discriminant locus. Since the mass receives no closed

string worldsheet instanton corrections, we need simply find the mirror discriminant locus

and the vanishing three-cycle via classical geometry. We will discuss the identification

of this pair of cycles in W1 ⊂ IP4
1,1,2,2,2 and its mirror; the same logic leads to a similar

identification in all of our examples.

The mirror manifold M1 of W1 is easily constructed using the Greene-Plesser con-

struction [28]. One quotients W1 by a suitable maximal group of scaling symmetries,

leaving only two complex structure deformations of M1. These can be represented by the

coefficients of the monomials z1 · · · z5 and z4
1z

4
2 in the defining equation for M1.

Let us work on the locus in moduli space where the defining equation is:

(z4
1 − z

4
2)2 − 2εz4

1z
4
2 + z4

3 + z4
4 + z4

5 = 0. (3.1)

Here we have set the coefficient of z1 · · · z5 to zero; this subspace of the complex structure

moduli space of Y intersects the discriminant locus at {ε = 0 , ε = −2}. These two points

8 All of our statements are at string tree level so we can be cavalier about changing brane

dimension like this.
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in moduli space can be seen to determine the same CY manifold by redefining z2 by an

eighth root of unity. Now, we want to construct a supersymmetric three-cycle which is

mirror to a member of the family of IP1s on W1, discussed in §2.2. At least near large

complex structure, δz1 · · · z5 is the complex deformation of M1 mirror to the size of the

projective space W IP4
1,1,2,2,2. Furthermore, we can identify ε as mirror to the modulus

controlling the size of the exceptional IP1 in W1, as explained in [25]. Therefore, we are

looking for a three-cycle Σ ⊂ M1 which collapses as ε → 0. This identification of mirror

moduli holds in the other cases as well. We will find a particular such three-cycle Σ as a

component of the fixed point locus of a real involution acting on the A-model CY. Some

set of fixed points of the Greene-Plesser quotient intersect the three-cycle, and the details

of the resolution of these singularities will determine the topology of Σ.

In the following subsections we study the mirrors of the examples considered in §2.

Mirror symmetry reverses the order of increasing complexity, so we will examine the three

examples in reverse order.

3.2. Example III

In this example the three-cycle topology is the simplest, since the fewest blowups are

required. Recall that M3 is the orbifold of W1 by g̃ = (1, 1, 1,−1,−1). The only fixed

points are at z4 = z5 = 0, so we introduce a second C∗ action and a new coordinate

z6, where the second C∗ acts by (z4, z5, z6) → (λz4, λz5, λ
−2z6). The defining equation is

modified to:

(z4
1 − z

4
2)2 − 2εz4

1z
4
2 + z4

3 + z2
6(z4

4 + z4
5) = 0, (3.2)

so that the manifold is preserved by this second C∗. Now consider the real involution:

σ : (z1, · · · , z6)→ (z1, · · · , z6) .

We obtain a three-cycle N as the fixed point locus of σ (N has two components, which

are basically two copies of the desired three-cycle Σ). We will see below that it vanishes

as ε → 0. For the rest of this subsection, we take z1, · · · , z6 to be real (since we wish to

work on the fixed point locus of σ).

We use the C∗ action of the IP4 to set z2 = 1; we will see presently that we will not

need to leave this coordinate patch. Furthermore, we define:

x = z4
1 , Q = z4

3 + z2
6(z4

4 + z4
5), A = 2ε+ ε2 . (3.3)

12



Solving (3.2) for x in terms of the remaining variables we find:

x = 1 + ε±
√
A−Q. (3.4)

We have two branches of solutions for x, which meet when Q = A. The real slice includes

only the region A ≥ Q, since otherwise x = z4
1 would be imaginary.

Next, we blow up the orbifold singularity induced by g̃ using the language of symplectic

quotients. We introduce a new Kähler parameter r in the following “D-term equation”

(c.f. [29]):

|z4|
2 + |z5|

2 − 2|z6|
2 = r (3.5)

in the description of the full complex manifold M1: along the real locus we can dispense

with the absolute values. Note that in the full CY we have to gauge away the U(1)

under which (z4, z5, z6) have charges (1, 1,−2). Since the zi are real on N , the only gauge

transformation which acts as an identification on N is (z4, z5, z6) 7→ (−z4,−z5, z6), i.e. the

orbifold by g̃.

Next, we can solve (3.5) for z4:

z4 = ±
√
r − z2

5 + 2z2
6 . (3.6)

This gives two branches for z4 which are glued together along the hyperbola z2
5 − 2z2

6 = r.

Reality of z4 requires that r ≥ z2
5 − 2z2

6 . These conditions bound z2
3 , z

2
5, z

2
6 from above,

allowing us to stay on the patch where z2 = 1.

Consider the regime 0 < ε << 1, r > ε. The region Q ≤ A intersects the region of

real z4 in a region with the topology of a solid cylinder, as pictured below.

Making the orbifold identification merely halves the circumference of this cylinder.

The two branches of solutions for z4 and the two branches of solutions for z4
1 give rise to

four copies of this cylinder, which are glued along the loci where the z4 branches meet and

the z1 branches meet (the sheet of hyperbolas and Q = A respectively). The gluing along

the boundaries of the z4 branches yields two solid tori; gluing along the boundaries of the

z1 branches then yields the closed three-manifold Σ ∼ S2×S1, which has b1(Σ) = 1. Note

that N consists of two copies of Σ, one with z1 > 0, and the other with z1 < 0 (we will

abuse notation and call both copies by the same name, since in any case they are identical).

Because Σ is a smooth special Lagrangian three-cycle with b1 = 1, it is guaranteed

by McLean’s theorem to come in a family of special Lagrangian cycles of real dimension

one [27]. Since Q is positive semidefinite on the real slice, when ε → 0 the locus Q ≤ A

13



z3z8

z5

Fig. 1: z4 is real between the walls; x is real inside the tube.

collapses and the two components of N are no longer finite-volume three-manifolds. We

identify the two components of N with two members of the family of IP1s in W3.

A D6 brane wrapping Σ would naively yield, in the transverse 3+1 dimensions, a 4d

N = 1 field theory with U(1) gauge group and a single neutral chiral multiplet φ. Although

φ has no superpotential to all orders in sigma model perturbation theory (this is the string

theory analog of McLean’s theorem), φ can receive a superpotential from disc instantons

[6]. In this case, we know from the mirror B-model geometry that there are no non-toric

deformations which would lift the moduli space of supersymmetric IP1s. This implies that

there is no disc-generated superpotential in this case.

Disc Instantons

Some explicit examples of disc instantons with boundary on Σ can be constructed in

this example. Consider the upper half plane parametrized by u. Let z1, · · · , z6 be given by

(z1, · · · , z6) = (a1u, a2u, a3u
2, 1, 1, 0) . (3.7)

We take the ai to be real; this guarantees that the boundary of the disc (where u is real)

is mapped to Σ.

14



The disc must lie in M3, which means that:

(a4
1 − a

4
2)2 − 2εa4

1a
4
2 + a4

3 = 0 . (3.8)

Solutions to (3.8) provide holomorphic maps into M3 with boundary on Σ. In fact this

ansatz yields a one-parameter family of discs: the constraint (3.8) eliminates one of the

ai and the freedom to rescale the u plane fixes another, but there is one free parameter

left in the ansatz. The fact that mirror symmetry implies that there is no disc-generated

potential in this case suggests that there is a cancellation between the contributions of

different discs. We will discuss such a mechanism in §4.

3.3. Example II

The mirror M2 of W2 is constructed by orbifolding W1 by the Z4 group generated

by g = (1, 1,−1, i, i). The group element g2 = (1, 1, 1,−1,−1) is the symmetry by which

we orbifolded in Example III, so we should still perform the resolution above. However,

g itself fixes the locus z3 = z4 = z5 = 0, which must be independently blown up. This

is achieved by introducing another variable, z7, and another C∗ action - the charges are

summarized in the following table:

z1 z2 z3 z4 z5 z6 z7

C∗1 1 1 2 2 2 0 0

C∗2 0 0 0 1 1 −2 0

C∗3 0 0 2 1 1 0 −4.

The defining equation is modified to

(z4
1 − z

4
2)2 − 2εz4

1z
4
2 + z2

7z
4
3 + z7z

2
6(z4

4 + z4
5) = 0. (3.9)

We will use z3, z5, and z6 as coordinates on the real slice, N , which is the fixed point

locus of

σ : (z1, · · · , z7)→ (z1, · · · , z7) .

Redefining

x = z4
1 , Q = z2

7z
4
3 + z7z

2
6(z4

4 + z4
5), A = 2ε+ ε2 (3.10)

we find:

x = z4
2(1 + ε±

√
A−Q) . (3.11)
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On the real slice, the D-term equations for C∗2,3 read

z2
4 + z2

5 − 2z2
6 − r2 = 0, 2z2

3 + z2
4 + z2

5 − 4z2
7 − r3 = 0 . (3.12)

Solving (3.12) for z4 and z7 we find:

z4 = ±
√
r2 − z2

5 + 2z2
6

and

z7 = ±

√
1

2
(r2 − r3 + z2

3 + z2
6) . (3.13)

If we choose Kähler moduli so that r2 > r3, then z7 never vanishes, and the two branches

of solutions never meet. On the branch where z7 > 0, Q = z2
7z

4
3 + z7z

2
6(z4

4 + z4
5) is positive

semidefinite as in §3.2, and (3.11) tells us that this component of the real slice vanishes as

ε→ 0. The other component of the real slice does not shrink on this locus and so is of no

interest to us. Under the restriction that z4 = ±
√
r2 − z2

5 + 2z2
6 is real, the three-cycle of

interest again resides on the patch where z2 = 1 (for this regime in closed string moduli

space). The determination of topology goes through in complete analogy with Example

III, and we again find two components of the real slice N , each of which is topologically

S2 × S1. We again call the components Σ.

So we see again that a D6-brane on Σ has a one-dimensional moduli space to all

orders in σ-model perturbation theory. The non-toric deformation of W2 which lifts the

moduli space of supersymmetric IP1s must in fact map to a small deformation of the

Kähler structure of M2. This deformation cannot change the topology of Σ, since Σ is

a smooth three-cycle and the deformation can be made arbitrarily small. Hence, for the

moduli spaces of the mirror pair to match, the non-toric Kähler deformation must activate

a disc-generated superpotential. We give further evidence for this below.

Disc Instantons

For this example we can again construct explicit examples of disc instantons with

boundary on Σ. Using the holomorphic quotient description of M2, we fix the three C∗

actions to set z4 = z5 = z7 = 1.

Consider the upper half plane parametrized by u. Let z1, · · · , z7 be given by

(z1, · · · , z7) = (a1u, a2u, a3u
2, 1, 1, 0, 1) (3.14)

Again the ai are real, so that the boundary of the disc u ∈ IR is mapped to Σ.

In order that the disc lies in M2, a1,2,3 must again satisfy Eq. (3.8). As before, we

find a one-parameter family of holomorphic maps of the disc into M2 with boundary on

Σ.
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3.4. Example I

This example provides the richest spectrum of phenomena for the A-cycles in M1 as

we have to perform the most blowups. Augmenting the weighted projective space by the

following additional variables and C∗ actions allows us to resolve all singularities which

intersect the three-cycle:

z1 z2 z3 z4 z5 z6 z7 z8 w1 w2 w3

C∗1 1 1 2 2 2 0 0 0 0 0 0

C∗2 0 0 0 1 1 −2 0 0 0 0 0

C∗3 0 0 1 0 1 0 −2 0 0 0 0

C∗4 0 0 1 1 0 0 0 −2 0 0 0

C∗5 0 0 2 1 1 0 0 0 −4 0 0

C∗6 0 0 1 2 1 0 0 0 0 −4 0

C∗7 0 0 1 1 2 0 0 0 0 0 −4 .

The defining equation for M1 is:

0 = (z4
1 − z

4
2)2 − 2εz4

1z
4
2 + z2

7z
2
8w

2
1w2w3z

4
3 + z2

6z
2
8w1w

2
2w3z

4
4 + z2

6z
2
7w1w2w

2
3z

4
5

≡ (z4
1 − z

4
2)2 − 2εz4

1z
4
2 +Q .

(3.15)

We will use z3, z4 and z5 as our independent variables. Solving the D-term equations

associated to C∗2, C∗3 and C∗4 for z6, z7 and z8 on the real slice gives

z6 = ±

√
1

2
(−r2 + z2

4 + z2
5)

z7 = ±

√
1

2
(−r3 + z2

3 + z2
5)

z8 = ±

√
1

2
(−r4 + z2

3 + z2
4).

(3.16)

where r2,3,4 are the Kähler parameters controlling the sizes of the associated exceptional

divisors in M1. Similarly, solving the D-terms for the fifth through seventh C∗s gives

w1 = ±

√
1

4
(−r5 + 2z2

3 + z2
4 + z2

5)

w2 = ±

√
1

4
(−r6 + z2

3 + 2z2
4 + z2

5)

w3 = ±

√
1

4
(−r7 + z2

3 + z2
4 + 2z2

5).

(3.17)
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Observe that 4w2
1 = 2z2

7 + 2z2
8 + r3 + r4− r5. If we choose r3 + r4 > r5, the right-hand

side of this equation is positive definite on the real slice. This means that w1 will never

vanish and the branch where it is negative is a disconnected component of the real slice. By

choosing r2 +r3 > r7 and r2 +r4 > r6 we can similarly assure that w2 and w3 do not vanish

on the real slice. Considerations of toric geometry produce a geometric phase defined by a

collection of inequalities which include the three mentioned above.9 On the branch where

the wi are all positive, the function Q defined above will be positive semidefinite and this

component will shrink when ε→ 0.

The analysis of the topology of this component Σ of the real slice is included in

the appendix. The conclusion is that in the regime of Kähler moduli considered above,

b1(Σ) = 5. In particular, Σ is a connected sum of 5 copies of S1 × S2. Since the mirror

IP1 has only a one dimensional moduli space, while by McLean’s theorem Σ would move

in a 5-dimensional family, we are guaranteed the presence of a disc-instanton generated

superpotential which lifts most of these flat directions.

4. Mirror symmetry and the superpotential

We are interested in computing the superpotential for the A-type examples in §3,

by finding a mirror map for the open string moduli. In this section we will make some

progress in this direction. We will start in §4.1 by arguing that the features of the mirror

B-type examples near the toric locus are captured by certain features of disc instantons

in our A-type examples. In §4.2 we will find a large-complex-structure limit of the B-type

examples for which the disc instantons of the mirror three-cycle will be large, and construct

a mirror map for the chiral multiplet in this limit.

4.1. The superpotential near the toric locus

Recall that for examples I and II, mirror symmetry requires the following story. The

ambient Calabi-Yau M1 (resp. M2) has g non-toric deformations with g = 3 (resp. 1); these

arise because the hypersurface intersects g of the divisors of the (orbifolded) weighted

projective space twice, to create two divisors in the hypersurface. At the “toric locus”

9 The phase is produced from a suitable triangulation of the triangle whose vertices correspond

to the monomials z4
3 , z

4
4 , z

4
5 . The other vertices used on the triangulation are the midpoints of the

three sides, and the midpoints of the line segments joining the pairs of these midpoints.
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these divisors have the same size. At this point the three-cycles we study must have a one-

dimensional moduli space (namely a genus-g curve). As we leave this locus, we acquire a

superpotential and are left with 2g− 2 isolated three-cycles. We argue here that there will

be different disc contibutions which cancel on the toric locus.

In our A-cycle examples, the defining equation for the threefold M may be written

as:

0 = (z4
1 − z

4
2)2 − 2εz4

1z
4
2 +Q , (4.1)

where Q is a function of all the variables zk>2 other than z1 and z2. It follows that on the

hypersurface:

(z4
1)± = z4

2(1 + ε±
√
A−Q) (4.2)

with A = 2ε+ ε2. Consider the map, i : M → M , which fixes zk>2 but flips the branches

of z4
1 . We claim that this is an isometry of M at the toric locus. Note that i induces a map

on the toric part of the cohomology: i∗ : H2
toric(M)→ H2

toric(M). This happens to be the

identity and so preserves the Kähler class on M . Furthermore, it preserves the complex

structure, and so by Yau’s theorem [30] it preserves the metric on M .

The non-toric Kähler deformations are odd under i∗. To see this, let us describe

them in more detail following [26]. In our examples M is a hypersurface in the quotient

IP4
1,1,2,2,2/Γ, where Γ is the relevant Greene-Plesser (GP) (sub)group. If Γ has elements

which fix the locus z3 = z4 = z5 = 0 (and not just varieties which contain it such as

z3 = z4 = 0), this locus must be blown up to desingularize M . The Kähler parameters

controlling these blow-ups have a natural mirror description in toric geometry [25,26].

Within the lattice of exponents of monomials in the ambient space of W , the allowed

monomials (preserved by the subgroup of the GP group complementary to Γ) lie on a

polyhedron. The lattice points on the lines and faces of this polyhedron correspond to

divisors in M and monomial deformations of W . In particular the lattice points cor-

responding to z4
3,4,5 in W form the vertices of a triangular face of this polyhedron and

control the monomial deformations of the Riemann surface Sg ⊂W . The g interior points

can be used to construct the holomorphic differentials of Sg, so they are associated to the

non-toric deformations which destroy the family of IP1s over Sg.

In M these g interior points denote the Kähler parameters controlling the blowup of

z3 = z4 = z5 = 0. The exceptional divisors intersect the hypersurface twice in M , at

the loci (z4
1)± = z4

2(1 + ε ±
√
A). The non-toric moduli control the relative sizes of these

divisors in M . Since the map i defined above interchanges these two loci, and the non-toric
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deformations change their relative sizes, i can no longer be an isometry away from the toric

locus. Furthermore, at the toric locus i will change the sign of the non-toric deformation.

The map i lifts naturally to a map on holomorphic discs. Hence, these discs should

come in pairs related by i. It is plausible that on the toric locus, the sign of the contribution

in Eq. (2.12) is changed by i; then the disc instanton contributions of the pair will cancel

in the superpotential. This could come about through the action of i on fermion zero

modes or on the pfaffian. When i is not an isometry, the areas of the discs related by i

will differ, so their contributions to W will no longer cancel.

Note that this cancellation cannot happen for every disc at the toric locus. In partic-

ular, in example I we find that b1(Σ) = 5 while the true moduli space is one dimensional.10

This suggests that the involution i changes the sign of the contribution of discs with

boundaries in only one class of H1(Σ). There is clearly much to understand here.

The set of examples we have considered fits into the more general framework discussed

in [26]. The B-model CY in general contains a family of AN singularities fibered over a

genus g curve. Upon resolving this family, one then finds N families of IP1s. There are g

interior points on the relevant face of the toric diagram, and therefore g non-toric complex

structure deformations which destroy each family. Furthermore, the defining equation for

the A-model CY will be of degree N + 1 in one of the variables, x, which is single-valued

under the GP orbifold (the analog of x = z4
1), leading to N + 1 branches of solutions. g

toric divisors each intersect these N + 1 branches once. On the toric locus, the Galois

group, SN+1, of the defining equation will act via isometries on the CY by interchanging

the branches of solutions for x, leading to cancellations between discs. Upon turning on the

non-toric Kähler moduli, these isometries are broken allowing a nontrivial superpotential.

4.2. The mirror map

One of our long-term goals is to use mirror symmetry to find the explicit form of the

instanton sums for A-type branes. Of course this sum is automatically computed in the

B-model, but we require a mirror map for the open string fields in order that this be of any

use. In the context of our models, this means the following. The B-brane moduli space is

parametrized by the complex coordinate z on a genus g surface, while the A-brane moduli

space is parametrized via (2.8) by the disc area A and Wilson line a. Thus, defining

q = e−φ , (4.3)

10 At special degenerate points in the complex structure moduli space of W1, the dimension of

the moduli space of the mirror IP1 enlarges to two, but never to five.
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we would like to find a map z(q).

As in the closed string case, this will be easiest around “large radius” or “large complex

structure” points, in particular when Re(φ) is large so that the instanton action is small

and classical geometry is a reasonable guide. We therefore search for a map in a region of

large radius of our IIA models, and in the mirror large complex structure limit of our IIB

models. In this limit we can identify the mirror of the large-disc limit of the A-cycle moduli

space with a particular point on the B-cycle moduli space. Finally, since the superpotential

is explicitly computable in the B-model side, we can use our previous intuition about the

A-type superpotentials to guess at an explicit mirror map in this limit.

We will work exclusively with Example I in this section.

The large-complex-structure limit of W1

On the manifold M1, we are interested in the large radius limit. In particular, the

sizes of discs ending on the real slice are determined by sizes of rational curves (as shown

in §2.3), so we demand that the exceptional divisors which intersect the three-cycle are

large. The mirror locus in the complex structure moduli space of W1 is specified by the

defining equation

p = αz2
3z4z5 + βz3z

2
4z5 + γz3z4z

2
5 = 0 (4.4)

with α, β, γ large and at fixed ratios (recall that these monomials correspond to the toric

divisors in M1). (4.4) can be rewritten as

z3z4z5 (αz3 + βz4 + γz5) = 0 . (4.5)

This degeneration is similar to the large complex structure limit discussed in [31]. It is

described by four IP3s at z3 = 0, z4 = 0, z5 = 0 and αz3 + βz4 + γz5 = 0 which intersect

as shown in the figure.

Each IP3 is identical to the others and joins them in a symmetrical way. As in [31]

where the example of the quintic at large complex structure is discussed, in this large

complex structure limit of W1 it is easy to write down a flat Kähler metric. Let us

examine the metric on z3 = 0 near the locus z4 = 0. We may use the C∗ action on the

W IP4 to set z5 = 1. The standard residue formula yields the following expression for the

holomorphic (3, 0) form Ω in this degenerate limit:

Ω =

∫
p=0

dz1 . . . dz5

p
=

dz1dz2dz4

z4(βz4 + γ).
(4.6)
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3

4

5

345

Fig. 2: M1 in the large complex structure limit. The lines represent IP3s labeled by

which coordinate vanishes on them. ‘345’ denotes the one where αz3 +βz4 +γz5 =

0. This picture also accurately portrays the degeneration of the curve S3 where

z1 = z2 = 0, in which case the lines represent IP1s.

Near z4 = 0 the Ricci-flat metric is clearly:

dz2
1 + dz2

2 +
1

γ2
d(ln z4)2 . (4.7)

Elsewhere on the slice it is:

dz2
1 + dz2

2 + dζ2, (4.8)

where

ζ =
1

γ
ln
βz4 + γ

z4
(4.9)

Sg in this limit lives at z1 = z2 = 0. It is a chain of four IP1s, one in each IP3 and

joined as in fig. 2. The genus-3 structure is clear from this figure. The metric is simply

induced from Eq. (4.9). In particular it is clear that the different components are joined

along infinite cylinders, parameterized by ln zi for zi → 0. This then is the asymptotic

moduli space for a D5-brane wrapped on an element of the family of IP1s at z3 = 0 near

z4 = 0.

The large-radius limit of M1

In the mirror M1 there are three toric divisors which are taken to be large: near the

toric locus, this means that all relevant divisors are large since the toric modulus controls

the sum of the sizes of the exceptional divisors.
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The moduli of the A-type branes are the areas of discs; according to our discussion

at the end of §2.3 these discs live in pairs forming IP1s in the Poincaré dual class of these

toric divisors. When the brane wraps a real slice it bisects these IP1s. Let us parameterize

the IP1 by an altitudinal angle θ and an azimuthal angle ρ. The equator is θ = 0 and the

real slice intersects this equator. Let 2πR be the circumference of the equator. R will be a

function of α, β, γ via the mirror map for closed strings. As the three-cycle moves through

its moduli space, it will sweep out the IP1 by intersecting it at fixed θ. We choose the

open-string modulus so that φ is the area of the smaller disc. For θ close to zero, a natural

metric on the disc coordinate is:

ds2 = dA2 + da2 = 2πR4 cos θ(dθ)2 +
1

(2πR)2 cos2 θ
(dα)2 , (4.10)

where α ∈ [0, 2π]. Near θ = 0 we can set cos θ = 1 and this is clearly a cylinder, with the

periodic direction given by the Wilson line.

Asymptotic identification of the coordinates

Let us take β, γ ∈ IR. Up to overall normalizations of the fields we roughly identify

ln z4 = φ (4.11)

due to the periodicity of the imaginary parts of each side of this equation. This use of the

periodicity is similar to the use of monodromy properties in identifying the closed string

mirror map. Note that the correct normalization of the fields is extracted from the so far

unknown Kähler metric. Thus our map is only good up to some overall constant.

Computing the superpotential

As reviewed in §2, the deformation along the non-toric locus can be specified by the

choice of a holomorphic differential. Let p̃ be the defining polynomial for Sg ⊂ W1 at

z1 = z2 = 0. The general holomorphic differential can be writtten as:

ω =

∫
p̃=0

z3dz4dz5 + z4dz3dz5 + z5dz3dz4

p̃
(az3 + bz4 + cz5) . (4.12)

On the locus z3 = 0, this becomes:

ω =
dz5

z5(βz4 + γz5)
(bz4 + cz5) +

dz4

z4(βz4 + γz5)
(bz4 + cz5) . (4.13)
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We can concentrate on the region near z4 = 0 by using the C∗ action of W1 to fix z5 = 1.

Then

ω =
dz4

z4(βz4 + γ)
(bz4 + c) . (4.14)

In the flat coordinates x we write ω = f(x)dx. As shown in [6], W ′(Φ) = f(Φ) for the

associated chiral multiplet. This superpotential clearly has a single vacuum at z4 = −c/b.

It is easy to see that there is a single such vacuum in each of the IP1 components of S3 in

this limit, for a total of 2g − 2 = 4 isolated vacua.

We wish to make contact with the large-disc limit of the toric locus of the A-cycle

moduli space. Therefore we push the vacuum to infinite distance by sending c → 0. In

this limit,

Wζ(ζ) = bz(ζ) =
γ

eγζ − β
(4.15)

for the superpotential of the B-brane. If the A-cycle superpotential were dominated by a

single pair of discs, the corresponding superpotental would be that in Eq. (2.14). Certainly

as z4 → 0 and φ → ∞, (4.15) and (2.14) are equal to lowest order in z4 and e−φ, given

(4.11).

Our candidate superpotentials are equal only to lowest order as we only have an

asymptotic mirror map at present. There are several complications in constructing an

exact mirror map. First, in this example the three-cycle has up to five classical moduli. All

but one gain masses from instanton corrections, but the remaining moduli space may be a

nontrivial submanifold of the classical moduli space. So our formulae for the superpotential

as a function of this modulus are undoubtedly rather schematic.

Secondly, we have assumed that the only contributions are a disc D ∈ H2(M1,Σ)

plus its three images arising from the anti-holomorphic involution and the map i discussed

in §4.1. Of course there may be higher-degree contributions nD which are not multiple

covers, and there may be contributions from discs D′ for which [D−D′] lies in a nontrivial

class in H2(M1). We leave these issues for future work.

Finally, we have not yet found a global topology of the moduli space of A-branes

which matches the topology of the moduli space of the B-branes, even in this degenerate

limit.
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5. Discussion

In this paper, we have presented explicit examples of three-cycles with nontrivial

topology which are mirror to two-cycles which have either obstructed holomorphic defor-

mations or no deformations. After the results of [6], this clearly shows that there is a disc

instanton generated superpotential for the moduli of such cycles. We have certainly not

given a complete formulation of the mirror map in these examples, but we have made a

first step by presenting an analog of the monomial-divisor mirror map for closed string

moduli [32].

Although we lack the full power of N = 2 special geometry that exists for closed

string mirror symmetry, the structure of the N = 1 theory we are studying gives us some

information. In particular, the superpotential W must be holomorphic in the appropriate

variables. Therefore, in limits where one has an open string modulus φ which is periodic

with period 2πi, the superpotential must be a holomorphic function of eφ. This together

with some detailed knowledge of the behavior of W at singularities should be enough to

determine the function entirely.

We can also draw some general lessons from this work and the results of [6]. As with

closed strings, in making mathematical statements using mirror symmetry one must take

the instanton corrections into account. For instance, there is a general conjecture that

fundamentally, mirror symmetry is a relation between the Lagrangian submanifolds of a

threefold and the semistable coherent sheaves on its mirror [33]. The fact that stringy

nonperturbative effects prevent generic special Lagrangian three-cycles from being super-

symmetric indicates that this comparison will be complicated.

It would be interesting to study these issues in the presence of orientifolds (required for

tadpole cancellation), as a step towards genuine model-building.11 Many of the results of

this paper and [4,6] rest on the fact that from the σ-model point of view, the superpotential

is essentially a topological quantity and can be computed in an appropriately twisted

theory. Since N = 2 worldsheet supersymmetry is a consequence of N = 1, d = 4

spacetime supersymmetry [34], the twisted theories will still make sense in the presence of

orientifolds.

Another subject worth exploring is the behavior of the topology of a given special

Lagrangian cycle Σ as the closed string parameters vary. It is clear from some of our

11 We would like to thank S. Sethi for a discussion of these points.
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examples that the topology of Σ can change as one varies Kähler parameters of the am-

bient Calabi-Yau space. For instance, in the example we discuss in Appendix A, different

choices of the blow-up parameters r2,3,4 yield three-cycles of different topology in the same

homology class.
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Appendix A. Some Details Concerning Example I

In this appendix we determine the topology of Σ, the component of the real slice of

the mirror of IP1,1,2,2,2[8] on which all of the wi are positive. In §3.4 we have shown that

such a component exists when

r3 + r4 > r5, r2 + r4 > r6, r2 + r3 > r7. (A.1)

In this case, we can simply ignore the wi since their values are uniquely specified by the

values of our coordinates z3, z4, z5. Furthermore, we will choose a regime in moduli space

where

ε >> ri, r1 >> ri (A.2)

for all i ≥ 2.
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As in the simpler examples, we solve the defining equation for x = z4
1 by

x = 1 + ε±
√
A−Q. (A.3)

We have set z2 = 1 again. We will see that the other variables charged under C∗1 are

bounded on Σ and so Σ is entirely contained in this coordinate patch. The locus B ≡

{Q = A} where the two branches of x are joined is a big (not quite round) ball in the IR3

coordinatized by z3,4,5. The branches of x are then two copies of this ball glued along the

boundary. The loci where the branches of z6,7,8 are joined are three tubes surrounding

the coordinate axes and ending on B. The region where all variables are real is the part

of the inside of B which is outside the union of these tubes. Suppose we are in a regime

of moduli where r3 + r4 < r2. Then the tubes surrounding the z3 and z4 axes will both

intersect the one surrounding the z5 axis, but not each other, like this:

6

7

7

6

8

Fig. 3: The real slice is the ball with the tubes removed. The tubes are labeled

according to which branches are glued along them.

Now divide by the orbifold group which maps the real slice to itself. It acts by flipping

signs in pairs:

(z3, z4, z5) ∼ (z3,−z4,−z5) ∼ (−z3, z4,−z5) ∼ (−z3,−z4, z5).

After performing this identification, the plumbing fixture surrounding the origin depicted

in fig. 3 becomes a half-cigar (where z8 = 0) ending on B with two smaller tubes coming

off of it (where z6 = 0 and z7 = 0 respectively) and ending on B as well.

Next, glue the two x-branches along B. This produces an S3 with the following set

removed: The locus where z8 becomes imaginary is now a full cigar, and the z6 = 0 and

z7 = 0 loci are two handles coming off of this cigar.
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6

6

7

8

Fig. 4: A fundamental domain for the orbifold action on the real slice (glue along

the dotted lines with matching arrows).

76
8

Fig. 5: The real slice is the ball with the blob in the middle excised.

An S3 with the z8-cigar removed is again a three-ball; the two handles coming off of the

cigar become tunnels through this three-ball.

8

67

Fig. 6: The previous picture turned inside-out. The real slice is now the inside of

the ball minus the two tunnels. The boundary of the ball is where z8 = 0.
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We take four copies of this creature to represent the two branches each of z6 and z7.

They are glued in pairs along the tunnels. To see what this is we must use the fact that

gluing handlebodies along a tunnel is the same as gluing along a tube that contains a

handle.

a c

db
Fig. 7: Gluing handlebodies (in particular, solid cylinders) along a tunnel is the

same as connecting them via a tube with a handle in it.

After we do this gluing, we find a solid genus 5 surface for each branch of z8. The

boundary of this surface is where z8 = 0.

8

7+ 7-

6+

6-

Fig. 8: Our special Lagrangian three-cycle is obtained by gluing two of these along

their boundaries via the trivial identification. The numbers along the top and left

indicate which branch each ball represents.

29



Since the two different branches for z8 meet at z8 = 0, we now glue two copies of the

genus 5 surface together along their boundaries. In general, two solid genus g surfaces glued

in this manner describe a Heegaard splitting of a connected sum of g copies of S2 × S1.

Hence, this three-cycle has b1(Σ) = 5.
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