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Abstract

The phenomenology of the Randall-Sundrum model of localized gravity is analyzed

in detail for the two scenarios where the Standard Model (SM) gauge and matter �elds

are either con�ned to a TeV scale 3-brane or may propagate in a slice of �ve dimensional

anti-deSitter space. In the latter instance, we derive the interactions of the graviton,

gauge, and fermion Kaluza-Klein (KK) states. The resulting phenomenological signa-

tures are shown to be highly dependent on the value of the 5-dimensional fermion mass

and di�er substantially from the case where the SM �elds lie on the TeV-brane. In

both scenarios, we examine the collider signatures for direct production of the graviton

and gauge KK towers as well as their induced contributions to precision electroweak

observables. These direct and indirect signatures are found to play a complementary

role in the exploration of the model parameter space. In the case where the SM �eld

content resides on the TeV-brane, we show that the LHC can probe the full parameter

space and hence will either discover or exclude this model if the scale of electroweak

physics on the 3-brane is less than 10 TeV. We also show that spontaneous electroweak

symmetry breaking of the SM must take place on the TeV-brane.

�Work supported by the Department of Energy, Contract DE-AC03-76SF00515



1 Introduction

A novel approach which exploits the geometry of extra spacetime dimensions has been re-

cently proposed[1, 2, 3] as a means to resolving the hierarchy problem. In one such scenario

due to Arkani-Hamed, Dimopoulos, and Dvali (ADD)[1], the apparent hierarchy is generated

by a large volume for the extra dimensions. In this case, the fundamental Planck scale in

4 + n-dimensions, M , can be brought down to a TeV and is related to the observed 4-d

Planck scale through the volume Vn of the compacti�ed dimensions, M2
P l = VnM

2+n. In an

alternative scenario due to Randall and Sundrum (RS)[2], the observed hierarchy is created

by an exponential warp factor which arises from a 5-dimensional non-factorizable geometry.

An exciting feature of these approaches is that they both a�ord concrete and distinctive

phenomenological tests[4, 5]. Furthermore, if these theories truly describe the source of the

observed hierarchy, then their signatures should appear in experiment at the TeV scale.

The purpose of this paper is to explore the detailed phenomenology that arises in the

non-factorizable geometry of the RS model. We will examine the cases where the Standard

Model (SM) gauge and matter �elds can propagate in the additional spacial dimension, de-

noted as the bulk, as well as being con�ned to ordinary 3+1 dimensional spacetime. The

broad phenomenological features of the latter case were spelled out in Ref. [5]. Here, we

expand on this previous work by considering the e�ects in precision electroweak observables

and investigating a wider range of collider signatures, including the case of lighter graviton

Kaluza-Klein (KK) excitations. We also show that the LHC can probe the full parameter

space of this model and hence will either discover or exclude it if the scale of electroweak

physics on the 3-brane is less than 10 TeV. The experimental signatures of the former sce-

nario, where the SM �elds reside in the bulk, are considered here for the �rst time. As we will

see below, this possibility introduces an additional parameter, given by the 5-dimensional
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mass of the fermion �elds, which has a dramatic inuence on the phenomenological con-

sequences and yields a range of experimental characteristics. While the general features of

these signatures remain indicative of this type of geometry, the various details of the di�erent

cases can be taken to represent a wide class of possible models similar in nature to the RS

scenario. We also present an argument which shows that spontaneous electroweak symmetry

breaking must be con�ned to the Standard Model 3-brane.

The Randall-Sundrum model consists of a 5-dimensional non-factorizable geometry

based on a slice of AdS5 space with length �rc, where rc denotes the compacti�cation radius.

Two 3-branes, with equal and opposite tensions, rigidly reside at S1=Z2 orbifold �xed points

at the boundaries of the AdS5 slice, taken to be y = rc� = 0; rc�. The 5-dimensional

Einstein's equations permit a solution which preserves 4-dimensional Poincar�e invariance

with the metric

ds2 = e�2�(�)���dx
�dx� � r2cd�

2 ; (1)

where the Greek indices extend over ordinary 4-d spacetime and �(�) = krcj�j. Here k is

the AdS5 curvature scale which is of order the Planck scale and is determined by the bulk

cosmological constant � = �24M3
5k

2, where M5 is the 5-dimensional Planck scale. The 5-d

curvature scalar is then given by R5 = �20k2. Examination of the action in the 4-d e�ective

theory yields the relation

M
2

P l =
M3

5

k
(1� e�2krc�) (2)

for the reduced 4-d Planck scale. The scale of physical phenomena as realized by the 4-d at

metric transverse to the 5th dimension y = rc� is speci�ed by the exponential warp factor.

TeV scales can naturally be attained on the 3-brane at � = � if gravity is localized on the

Planck brane at � = 0 and krc ' 11�12. The scale of physical processes on this TeV-brane is

then �� �MP le
�krc�. The observed hierarchy is thus generated by a geometrical exponential
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factor and no other additional large hierarchies appear. It has been demonstrated[6] that

this value of krc can be stabilized without the �ne tuning of parameters by minimizing

the potential for the modulus �eld, or radion, which describes the relative motion of the 2

branes. In the original construction of the RS model utilizing this stabilization mechanism,

gravity and the modulus stabilization �eld may propagate freely throughout the bulk, while

the SM �elds are assumed to be con�ned to the TeV (or SM) brane at � = �. The 4-d

phenomenology of this model is governed by only two parameters[5], given by the curvature

k and ��. The radion, which receives a mass during the stabilization procedure, is expected

to be the lightest new state and admits an interesting phenomenology[7] which we will not

consider here.

This scenario has enjoyed immense popularity in the recent literature, with the cos-

mological/astrophysical [8], string theoretic[9], and phenomenological implications all being

explored. We note that similar geometrical con�gurations have previously been found to

arise in M/string theory[10]. In addition, extensions of this scenario where the higher di-

mensional space is non-compact[11], i.e., rc ! 1, as well as the inclusion of additional

spacetime dimensions and branes[12] have been discussed.

Given the success of the RS scenario, it is logical to ask if it can be extended to include

other �elds in the bulk besides gravity and the modulus stabilization �eld. It would appear to

be more natural for all �elds to have the same status and be allowed to propagate throughout

the full dimensional spacetime. In addition, Garriga et al.[13] have recently shown that the

Casimir force of bulk matter �elds themselves may be able to stabilize the radion �eld. In

the case of non-warped, toroidal compacti�cation of extra dimensions, bulk gauge �elds can

lead to an exciting phenomenology which is accessible at colliders[14, 15]. The possibility of

placing gauge �elds in the bulk of the RS model was �rst considered in Ref. [16]. In this case

the couplings of the KK gauge bosons are greatly enhanced in comparison to those of the
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SM by a factor of
p
2�krc ' 8:4. An analysis of their contributions to electroweak radiative

corrections was found to constrain the mass of the �rst KK gauge boson excitation to be in

excess of 25 TeV, implying that the physical scale of the � = � brane, ��, must exceed 100

TeV. By itself, if the model is to be relevant to the hierarchy problem with �� being near

the weak scale, this disfavors the presence of SM gauge �elds alone in the RS bulk.

This endeavor has recently been extended to consider fermion bulk �elds. Grossman

and Neubert[17] investigated this possibility in an e�ort to understand the neutrino mass

hierarchy. Using their results, Kitano[18] demonstrated that bounds on avor changing

processes such as �! e also force the KK gauge bosons to be heavy for neutrino Yukawa

couplings of order unity. Subsequently, Chang et al.[19] demonstrated that placing fermion

�elds in the bulk allowed the zero-mode fermions, which are identi�ed with the SM matter

�elds, to have somewhat reduced couplings to KK gauge �elds. This allows for a weaker

constraint on the value of �� from precision electroweak data. Gherghetta and Pomarol[20]

have noted the importance of the value of the bulk fermion mass in determining the zero-

mode fermion couplings to both bulk gauge and wall Higgs �elds and found interesting

implications for the fermion mass hierarchy and supersymmetry breaking.

In this paper we expand upon these studies and examine the phenomenological impli-

cations of placing the SM gauge and matter �elds in the bulk. (In all cases to be discussed

below, the backreaction on the metric due to the new bulk �elds will be neglected.) We �nd

that this possibility introduces an additional parameter, given by the 5-dimensional fermion

mass, which governs the phenomenology. In the next section we peel the SM �eld content

o� the TeV-brane, or wall, and derive the KK spectrum and couplings of gravitons, bulk

gauge �elds, and bulk fermions. The 5-d fermion mass dependence of the couplings of the

KK states to the zero-mode fermions is explicitly demonstrated. In section 3, we explore the

phenomenology associated with allowing the SM �elds to propagate in the additional dimen-
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sion. We delineate the broad phenomenological features as a function of the bulk fermion

mass and �nd that there are four distinct classes of collider signatures. We investigate these

signatures and also compute the KK gauge contributions to electroweak radiative correc-

tions. We �nd that the stringent precision electroweak bounds on �� discussed above are

signi�cantly relaxed for a sizable range of the fermion bulk mass parameter. In section 4, we

expand on our previous work[5] and examine the phenomenology in detail for the scenario

where the SM �elds all reside on the TeV-brane. Section 5 consists of our conclusions. Ap-

pendix A contains an independent argument for con�ning the Higgs �elds to the TeV-brane.

Lastly, simpli�ed expressions for a number of couplings as a function of the fermion bulk

mass are given in Appendix B for the case when the SM �eld content propagates in the bulk.

2 Peeling the Standard Model o� the Wall

In order to examine the phenomenological implications of placing the �eld content of the

SM in the bulk of the RS model, we need to know the properties of various bulk �elds. In

this section, we review the KK reduction and interactions of massless gravitons and bulk

gauge �elds, as well as bulk fermions with arbitrary 5-d masses, and establish the notation

that will be used in the sections that follow. Throughout our discussion, we will assume

that the Higgs �eld and hence, spontaneous electroweak symmetry breaking, resides only

on the TeV-brane. This choice has been advocated for a variety of di�erent reasons by

various authors[18, 19, 20, 21], and we will present an independent argument in Appendix

A for keeping the Higgs �eld on the TeV-brane. We start our review with the massless

bulk sector, namely the graviton and the gauge �elds. In what follows, the Greek indices

extend over the usual 4-d spacetime, whereas the upper case Roman indices represent all 5

dimensions. The lower case Roman indices correspond to 5-d Minkowski space.
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2.1 Gravitons and Bulk Gauge Fields

We parameterize the 5-d graviton tensor uctuations h�� (�; � = 0; 1; 2; 3) by

Ĝ�� = e�2� (��� + �5 h��) ; (3)

where �5 = 2M
�3=2
5 and the metric tensor is de�ned as ��� = diag(1;�1;�1;�1). The 5-d

graviton �eld h��(x; �) can be written in terms of a KK expansion of the form

h��(x; �) =
1X
n=0

h
(n)
�� (x)

�
(n)
G (�)p
rc

; (4)

where h
(n)
�� (x) represent the KK modes of the graviton (which we denote as G(n) in what

follows) with masses mG
n in 4-d Minkowski space and �

(n)
G (�) are the corresponding wave-

functions that depend only on the coordinate � of the extra dimension.

Employing the gauge choice ���@�h
(n)
� = 0 and ���h

(n)
�� = 0, and demanding the

orthonormality condition

Z �

��
d� e�2��

(m)

G �
(n)
G = �mn; (5)

we obtain [2, 5]

�
(n)
G (�) =

e2�

NG
n

h
J2(z

G
n ) + �Gn Y2(z

G
n )
i
; (6)

where Jq and Yq denote Bessel functions of order q throughout this paper, NG
n give the

wavefunction normalization, �Gn are constant coe�cients, and

zGn (�) = mG
n

e�(�)

k
: (7)
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The solutions �
(n)
G (�) are chosen to be Z2-even in order to obtain a massless zero-mode

graviton. The requirement of continuity of their �rst derivative at the orbifold �xed points

� = 0 and � = �� yields

�Gn �
�
xGn

�2
e�2krc� (8)

and

J1(x
G
n ) = 0; (9)

where xGn � zGn (� = �), and we have assumed that mG
n =k � 1 as well as ekrc� � 1. With

these assumptions, we �nd mG
n = xGn k e

�krc� and

NG
n '

ekrc�p
krc

J2(x
G
n ) ; n > 0: (10)

The corresponding zero-mode is given by �
(0)

G =
p
krc. We �nd �Gn � 1 for the KK modes of

phenomenological importance, i.e., the lowest lying states, and thus the Y2 term in Eq. (6)

can be safely ignored compared to J2 in our following analysis. Note that the masses of the

graviton KK excitations are not equally spaced, unlike the case for a factorizable geometry,

with their separation here being dependent on the roots of J1. The �rst few values of xGn are

3.83, 7.02, 10.17, and 13.32.

Next, we consider the case of a massless 5-d gauge �eld AM(x; �). Our notation is

similar to that employed for the case of the graviton �eld. With the gauge choice A4(x; �) =

0, and assuming that the KK expansion of A�(x; �) is given by

A�(x; �) =
1X
n=0

A(n)
� (x)

�
(n)
A (�)p
rc

; (11)

the solutions for �
(n)
A (�) are [16]

�
(n)
A =

e�

NA
n

h
J1(z

A
n ) + �An Y1(z

A
n )
i
; (12)
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subject to the orthonormality condition

Z �

��
d��

(m)

A �
(n)
A = �mn: (13)

The functions �(n)
A in Eq. (12) are also chosen to be Z2-even. The continuity of d�(n)

A =d� at

� = 0 yields

�An = �J1(m
A
n=k) + (mA

n=k)J
0

1(m
A
n =k)

Y1(mA
n=k) + (mA

n=k)Y
0
1(m

A
n=k)

; (14)

and at � = �� we obtain

J1(x
A
n ) + xAnJ

0

1(x
A
n ) + �An

h
Y1(x

A
n ) + xAnY

0

1(x
A
n )
i
= 0; (15)

wheremA
n is the mass of the nth KKmode of the gauge �eld withmA

n = xAn ke
�krc�. Again, we

see that the masses of the gauge KK excitations are not equally spaced. The normalization

NA
n is given by [19]

NA
n =

 
ekrc�

xAn
p
krc

!sn
zAn

2 [J1(zAn ) + �An Y1(z
A
n )]

2
ozAn (�=�)
zAn (�=0)

: (16)

The zero-mode gauge �eld is then �
(0)

A = 1=
p
2�. The �rst few numerical values of xAn are

2.45, 5.57, 8.70, and 11.84.

2.2 Bulk Fermion Fields

We now discuss the KK solutions for bulk fermions [17, 18, 19, 20] of arbitrary Dirac 5-d

mass; the possibility of Majorana mass terms for neutral fermion �elds will not be considered

here. The action Sf for a free fermion of mass m in the 5-d RS model is [17]

Sf =
Z
d4x

Z
d�
p
G

�
V M
n

�
i

2
	 n @M	+ h:c:

�
� sgn(�)m		

�
; (17)
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where h:c: denotes the Hermitian conjugate term, and we have
p
G = [det(GMN)]1=2 = e�4�,

n = 0; 1; : : : ; 4, V M
� = e��M� , V 4

4 = �1, and n = (�; i5). As demonstrated previously[17,

19, 20], the contribution to the action from the spin connection vanishes when the hermitian

conjugate term is included. The form of the mass term is dictated by the requirement of

Z2-symmetry [17] since 		 is necessarily odd under Z2 as can be seen from examining the

�rst term in the action. We adopt the notation of Ref. [17] for the KK expansion of the 	

�eld and write

	L;R(x; �) =
1X
n=0

 
(n)
L;R(x)

e2�(�)p
rc

f̂
(n)
L;R(�); (18)

where L and R refer to the chirality of the �elds and f̂
(n)
L;R represent 2 distinct complete

orthonormal functions. The orthonormality relations are then given by

Z �

��
d� e�f̂

(m)�

L f̂
(n)
L =

Z �

��
d� e�f̂

(m)�

R f̂
(n)
R = �mn: (19)

Due to the requirement of Z2-symmetry of the action, f̂
(n)
L and f̂

(n)
R must have opposite

Z2-parity; here we choose f̂
(n)
L to be Z2-even and f̂

(n)
R to be Z2-odd. The SM matter �elds

then correspond to the zero-modes f̂
(0)

L . All of the SM fermion �elds are thus treated as left-

handed as is commonly done in the literature. The KK reduction of the action Sf through

the expansion (18) for 	L;R(x; �) yields the solutions

f̂
(n)
L;R(�) =

e�=2

N
L;R
n

h
J 1

2
��(z

L;R
n ) + �L;Rn Y 1

2
��(z

L;R
n )

i
(20)

for n 6= 0. The zero-mode f̂
(0)

L , corresponding to a massless 4-d SM fermion, is given by

f̂
(0)

L =
e��

NL
0

: (21)
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Here � is de�ned by m � �k and is expected to be of order unity. For simplicity and

phenomenological reasons we take all fermions to have the same value of � throughout this

paper.

With our choices for the Z2-parity of the wavefunctions, the coe�cients �
L;R
n and the

masses mL;R
n of the KK modes are obtained by requiring

 
d

d�
�mrc

!
f̂
(n)
L = 0 (22)

and

f̂
(n)
R = 0 (23)

at � = 0;��, for the left- and right-handed solutions, respectively. In the case of the

left-handed wavefunctions, we obtain

�Ln = �
J
�(�+ 1

2
)(m

L
n=k)

Y
�(�+ 1

2
)(m

L
n=k)

(24)

from evaluating the above conditions at � = 0, and

J
�(�+ 1

2
)(x

L
n) + �Ln Y�(�+ 1

2
)(x

L
n) = 0 (25)

at � = �. Similarly, for the right-handed solutions, we have

�Rn = �
J�+ 1

2

(mR
n =k)

Y�+ 1

2

(mR
n =k)

(26)

and

J�+ 1

2

(xRn ) + �Rn Y�+ 1

2

(xRn ) = 0 : (27)
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Note that the left- and right-handed excitation masses, mL;R
n , are degenerate for each value

of n above the zero-mode. The orthonormality of f̂
(n)
L;R yields

NL
0 =

vuut2 [ekrc�(1+2�) � 1]

krc(1 + 2�)
(28)

and

NL;R
n =

 
ekrc�

x
L;R
n

p
krc

!vuut�zL;Rn
2
h
J 1

2
��(z

L;R
n ) + �

L;R
n Y 1

2
��(z

L;R
n )

i2�zL;Rn (�=�)

z
L;R
n (�=0)

: (29)

We note here that only the left-handed fermion �elds are relevant to the phenomeno-

logical study in this paper, since their zero-modes correspond to the SM fermions.
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Figure 1: Relative mass spectra in units of ke�krc� of the KK excitations of the fermion
�elds as a function of their bulk mass parameter �, as well as for the graviton and the gauge
boson �elds as described in the text.

Given the above set of equations we can determine the relative values for the masses of
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the KK states for the graviton, gauge, and fermion tower members by numerically solving for

the appropriate Bessel function roots. Recall that degenerate right- and left-handed fermion

KK towers both exist for the fermion states that lie above the left-handed zero-modes. These

mass spectra are displayed in Fig. 1 in units of ke�krc�. The fermion KK excitation masses

have an approximately linear dependence on � given by mf
n ' anj� + 1=2j+ bn, with an; bn

being essentially constant for each tower member. For the values � < �1=2, we �nd that the

fermion masses are simply reected about the point � = �1=2, with mf
n(�) = mf

n(�[� + 1]),

implying that the lightest fermion KK states occur when � = �1=2. Note that at � =

�1=2 (+1=2) fermions and gauge bosons (gravitons) are predicted to be degenerate in mass.

In addition, the fermion excited KK states are generally expected to be more massive than

the corresponding gauge boson states.

2.3 Couplings of the KK Modes

Having reviewed the KK reduction of various SM bulk �elds in the RS model, we now turn

our attention to the couplings of the KK modes in the 4-d e�ective theory. We focus on the

vertices that are of relevance to the phenomenology discussed in this work. In what follows,

we give the integrals that yield the couplings of fermions to gravitons and gauge �elds and

evaluate their dependence on the fermion bulk mass in the case where the SM matter �elds

propagate in the bulk. In addition, we provide the coupling of gauge �elds to gravitons

and discuss the interactions between zero-mode fermion and gauge KK states with a Higgs

�eld con�ned to the TeV-brane. In Appendix B, we present simpli�ed expressions for these

integrals as well as for a number of additional 3-point functions.

Schematically, the coupling of the mth and nth KK modes of the �eld F to the qth
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KK level graviton is given by

SG =
X
m;n;q

8<
:
2
4Z d�p

k

et� �
(m)

F �
(n)
F �

(q)
Gp

rc

3
5 �4
2

Z
d4x ��� ���h

(q)
��(x)T

(m;n)
��

9=
; ; (30)

where t depends on the type of �eld F , �
(n)
F represents the nth KK solution of the �eld

F , �
(q)
G is the qth KK graviton wavefunction, h

(q)
��(x) corresponds to the qth KK graviton

mode, �4=2 =M
�1

P l , and T
(m;n)
�� denotes the 4-d energy momentum tensor for the �elds. The

information regarding the spacetime curvature and the shape of the wavefunctions in the

5th dimension is encoded in a coe�cient C given by the integral in brackets above,

CFFG
mnq =

Z
d�p
k

et� �
(m)

F �
(n)
F �

(q)
Gp

rc
: (31)

To compute the coupling of F to a KK graviton in the RS model, one must multiply the

corresponding Feynman rules derived in at spacetime with extra dimensions [4], which are

written in terms of T (m;n)
�� , by CFFG

mnq . We now present these coe�cients for the cases of fermion

and gauge �eld interactions with the KK graviton states. Note that with the conventions

discussed above for the wavefunctions of various bulk �elds, the coupling strength of the

zero-mode graviton is �xed to be M
�1

P l in the 4-d e�ective theory.

For the case where the SM �elds propagate in the bulk, the coe�cient Cf �fG
mnq of the

coupling of the mth and the nth fermion KK states to the qth graviton mode can be obtained

from the term

S1 = i

Z
d5x

p
G V M

n 	 n @M	 (32)

in the action, and is given by

Cf �fG
mnq =

Z �

��

d�p
k

e�f̂
(m)

L f̂
(n)
L �

(q)
Gp

rc
: (33)
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The corresponding coe�cient CAAG
mnq for the coupling strength of the mth and the nth KK

excitations of a gauge �eld to the qth graviton mode, can be deduced from the interaction

S2 =
�1
4

Z
d5x

p
GGMAGNBFABFMN ; (34)

yielding

CAAG
mnq =

Z �

��

d�p
k

�
(m)

A �
(n)
A �

(q)
Gp

rc
: (35)

Next, we consider the interaction between a fermion �eld 	 and a gauge �eld AM .

The coe�cient of this coupling is obtained from the interaction

S3 =
Z
d5x

p
G V M

n g5	 
nAM	; (36)

where g5 is the 5-d gauge coupling constant. Since the zero-mode wavefunction for the �eld

A�(x; �) is given by �
(0)

A = 1=
p
2�, the interaction of zero-mode fermion and gauge �elds is

given by

S3 =
g5p
2�rc

Z
d4x ���  

(0)
�  

(0)A(0)
� + : : : ; (37)

where we have used the orthonormality of the fermion wavefunctions given by Eq. (19). We

thus see that g4 = g5=
p
2�rc, where g4 is the usual 4-d SM gauge coupling. In general, the

coe�cient Cf �fA
mnq of the coupling of the mth and the nth fermion states to the qth gauge �eld

mode, in units of g4, is given by

Cf �fA
mnq =

p
2�
Z �

��
d� e�f̂

(m)

L f̂
(n)
L �

(q)
A : (38)

With these general expressions it is straight-forward to compute the couplings of any number

of gauge, fermion, and graviton �elds. In Appendix B we provide a set of useful couplings

expressed in simpli�ed form.
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Figure 2: The coupling strength of the zero-mode fermions to the �rst �ve KK gauge boson
states in units of the corresponding SM coupling strength as a function of �. From top to
bottom on the right-hand side of the �gure the curves are for the �rst, third, �fth, fourth
and second gauge KK excitations.

For the practical applications considered in this paper we need to determine the

detailed dependence on � of the couplings of the zero-mode fermions to the members of the

gauge and graviton KK towers, as well as the couplings of the zero-mode gauge �elds to the

graviton tower. Simpli�ed versions of these speci�c couplings can be found in Appendix B

in Eqs. (51-53). Figure 2 displays the couplings of the zero-mode fermions to the gauge KK

tower members in units of the corresponding SM coupling strength. This result reproduces

that of Ref. [20] with their parameter c being identi�ed as ��. Note that as � becomes

large, which means that the fermion wavefunctions are localized closer to the SM brane, the

magnitude of the gauge couplings grow signi�cantly. For � � 1 we recover the result for the

case where the SM fermions are con�ned to the TeV-brane, i.e., that jg(n)=gSM j !
p
2�krc.
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Figure 3: The coupling strength of the zero-mode fermions to the �rst �ve KK graviton
states in units of ��1� as a function of �. From top to bottom on the right-hand side of the
�gure the curves are for the �rst, third, �fth, fourth and second graviton KK levels.

On the other hand, for of � <� �0:5, the couplings become quite small and are approximately

independent of �. We then expect to obtain strong direct and indirect bounds on the gauge

KK states for � >� �0:3, while for smaller values of � there will be a serious degradation in

the ability of experiment to probe large KK mass scales. Note that the gauge tower couplings

essentially vanish in the region near � = �0:5.

The corresponding �-dependent couplings of the graviton KK tower states to the

zero-mode fermions are displayed in Fig. 3. Here, we have taken the coe�cient given by Eq.

(52) in the Appendix and included the factor of �4=2 in Eq. (30) to obtain the full coupling

strength which is in units of ��1� . Again, as � � 1 the magnitude of the coupling strength

for each tower member approaches unity in units of ��1� which is the well-known result for

wall fermions. However, for values of � below � ' �0:5, the gravitational couplings of the
zero-mode fermions become exponentially small for all massive graviton tower members, i.e.,
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the fermions essentially decouple from the KK graviton states. This will make it impossible

in this region to search, either directly or indirectly, for the graviton KK excitations via their

interactions with fermions.

The couplings of zero-mode gauge �elds to the graviton KK tower are, of course,

independent of � as can be seen from Eq. (53) in the Appendix. For the �rst �ve KK

graviton tower members we �nd these couplings to be 1.34, 0.268, 0.273, 0.114, and 0.127

in units of 10�2��1� . Note that the strength of these couplings are all small, implying that

searches for gravitons via these interactions will also be rather di�cult.

The couplings of the zero-mode fermion and gauge bulk �elds to the Higgs when the

Higgs is constrained to lie on the TeV-brane are also important since these are responsible for

spontaneous symmetry breaking. These are also discussed in Appendix B. We �nd that in

terms of a dimensionless Yukawa coupling in 5-d, ~�5, the corresponding 4-d Yukawa coupling

for zero-mode fermions is given by

�4 =
~�5
2

�
1 + 2�

1� �1+2�

�
; (39)

with � � e�krc�. This reproduces the result of Ref. [20]. Note that the function in the

square bracket is continuous and equal to unity when � = �1=2. If one assumes that ~�5 is

of order unity, then we see that �4 is also of order unity provided � >� �0:5. For smaller

values of � the magnitude of the 4-d Yukawa coupling falls rapidly, e.g., if � = �0:75 then

�4 �
p
� � 10�8. Even if one allowed for �ne tuning, this implies that it would be di�cult

to generate the observed SM fermion mass spectrum for values of � <� �0:8 to �0:9. We

thus restrict ourselves to the region � >� �0:8 in our phenomenological discussions below.

Similar arguments also show that the vacuum expectation value of the Higgs on the TeV-

brane naturally leads to the conventional masses for the W and Z gauge bosons which we

identify as the zero-mode members of their respective towers.
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3 Phenomenology of Bulk Fields

In comparison to the analyses of the RS model where the SM �eld content is con�ned to

the TeV-brane, the phenomenology for the case where both SM gauge �elds and fermions

are allowed to propagate in the bulk is more complex due to the a priori unknown value of

the bulk fermion mass parameter �. In what follows, for simplicity, and to avoid problems

with proton decay and avor changing neutral current e�ects[20], we will assume that all SM

fermions have the same value of �. Here we employ a two-pronged attack on the model by

examining its implications on both precision electroweak measurements and direct collider

searches. We will see that the two techniques provide complementary information and con-

straints, as is usually the case, with the conclusion being that the range of � over which the

RS model with SM �elds in the bulk provides a solution to the hierarchy problem without

being overly �ne-tuned, i.e., values of �� <� 10 TeV, is a rather small fraction of what is

allowed by naturalness arguments.

3.1 Precision Electroweak Observables

As is well-known, precision electroweak data can be used to place complementary constraints

on new physics scenarios to those obtainable from direct collider searches[22]. The analysis

we employ below is a natural extension to that developed earlier by Rizzo and Wells[15] in

the case of the 5-dimensional SM with a factorizable geometry with gauge bosons alone being

in the bulk. In that work, a global analysis was performed of the KK gauge tower tree-level

contributions to a large set of electroweak observables: MW , Z-boson partial widths and

asymmetries, sin2 �w, atomic parity violation expressed via the weak charge Qw[23], and the

Paschos-Wolfenstein[24] asymmetry R� as measured by the NuTeV/CCFR collaboration[25].

In this scenario, the gauge KK states above the zero-mode are evenly spaced and all couple
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with the same strength, and the authors[15] concluded that the mass of the lightest KK

excitation of the SM gauge �elds must be in excess of 3.3 TeV. This result is similar in

magnitude to the corresponding limits obtainable from contact interaction analyses[26]. This

procedure has also been employed[16] in the case where the gauge bosons are the only SM

�elds to propagate in the non-factorizable RS bulk. In this case, the couplings of the KK

tower members to the wall fermions are also independent of the particular KK state above

the zero-mode, but the ratio of the fermionic couplings of the nth excitation to those of the

zero-mode is large with gn=g0 =
p
2�krc ' 8:4 and the masses of the tower members are no

longer equally spaced, being given by roots of the appropriate Bessel functions as discussed

above. There it was[16] found that the �rst SM gauge KK excitation must be more massive

than ' 23 TeV.

Here, the situation is more complex since once the fermions are allowed to reside in

the bulk, each member of the gauge KK tower couples to the zero-mode fermions with a

di�erent strength, which is dependent on the parameter � as discussed above. Following

the analyses of Ref. [15, 16], we work in the limit where the KK tower exchanges can be

characterized as a set of contact interactions by integrating out the tower �elds. The tower

exchanges then lead to new dimension-six operators whose coe�cients are proportional to

V (�) =
1X
n=1

g2n(�)

g20

M2
W

m2
n

; (40)

where gn(�) is the � dependent coupling of the nth tower member with mass mn, and g0

is identi�ed as the corresponding SM coupling. The gn(�) for the gauge KK �elds were

computed in the previous section and are given in Appendix B. A global �t to the most

recent electroweak data as presented at Moriond 2000[27] for the observables listed above,

results in somewhat stronger bounds on the quantity V than those obtained earlier[15, 16],

mainly due to the new value of Qw [23] employed in the �t. The resulting lower bound
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on the mass of the �rst gauge KK state as a function of � is shown in Fig. 4. Using the

mass relationships given in the previous section between the gauge, graviton, and fermion

KK excitations, we can translate this bound into constraints on the masses of the other

�rst tower members as well; this is also displayed in the �gure. Note that as � becomes

large and positive we reproduce the constraint computed in Ref. [16] for the case where the

fermions are on the wall i.e., mgauge
1

>� 25 TeV, which translates into the bound �� >� 100

TeV. However, for smaller values of �, values of �� of order a few TeV or less are clearly

consistent with the data. The general � dependent behavior of these constraints can be

easily understood from the values of gn(�)=g0 shown in Fig. 2. Recall that for � <� �0:5, the

gauge tower couplings are small and approximately � independent, while for � >� �0:5, the

tower couplings grow rapidly with increasing values of �. Hence, the precision electroweak

bounds on the �rst tower states are rather weak and � independent with mgauge
1

>� 620 GeV

for � <� �0:5, and disappear completely for � = �0:5, but grow rapidly with increasing

values of � reaching the multi-TeV region.

While almost all of the observables used in the electroweak �t described above are

�-dependent since fermion couplings are directly involved, one is not, namely the mass of

the W . Hence, one might be tempted to obtain a �-independent bound by using just this

quantity alone. Unfortunately, a useful limit cannot be obtained using this single observable

without a priori knowledge of the Higgs boson mass. As was shown in the analysis of Rizzo

and Wells[15] for Higgs �elds on the wall, the existence of KK tower states for both the W

and Z gauge �elds will lead to a predicted increase in MW for a �xed value of the Higgs

mass when MZ is used as input. However, this increase in MW due to KK excitations can

always be o�set by a compensating increase in the Higgs mass which in turn lowers MW

due to loop e�ects. Thus, unless the Higgs mass is otherwise determined, one can always
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Figure 4: The bounds on the masses of the lightest graviton, gauge boson and fermion KK
state as a function of � as obtained from the analysis of radiative corrections discussed in
the text and the use of the mass relationships shown in Fig. 1. From top to bottom on
the right-hand side the curves correspond to the mass of the lightest fermion, graviton and
gauge KK states.
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have a trade o� between the gauge KK tree level and Higgs boson loop contributions. Once

the Higgs mass is known, however, a �-independent bound can be obtained. This point has

recently been emphasized by Kane and Wells[28]. We note that in performing the global �t

described above, the only assumption about the Higgs mass was that mH � 100 GeV.

3.2 Collider Studies

It is clear from the results shown in Figures 2, 3, and 4 that four distinct regions, correspond-

ing to speci�c ranges of �, emerge, yielding four di�erent classes of phenomenology. This is

described in Fig. 5. Region I corresponds to the range �0:9 to �0:8 <� � <� �0:6, where

the lower boundary is set by not allowing the fermion Yukawa couplings to be �ne-tuned, as

discussed in the previous section. Here, the SM fermions have decoupled from the graviton

KK tower and are only very weakly coupled to the gauge KK states. (Recall that the SM

gauge �elds only interact weakly with to the graviton KK states, with the coupling strength

being � 0:01��1� , independently of the value of �.) The precision electroweak bounds give

constraints on gauge and graviton KK masses that are less than 1 TeV. In region II with

�0:6 < � < �0:5, the fermionic couplings of the gauge KK tower grow weaker, yielding an

almost non-existent bound from precision electroweak data. The corresponding graviton KK

tower - fermion interaction strength increases two orders of magnitude within this range, but

remains small. Note that constraints from the precision electroweak parameter V disappear

completely at � = �0:5, as the fermions and gauge KK states completely decouple at that

point. In region III, de�ned by �0:5 < � < �0:3, the fermionic couplings of both the gauge

and graviton towers grow rapidly and the limits from V on the masses of the �rst excitations

lie in the few TeV range. Lastly, in Region IV, corresponding to �0:3 < �, the bound from

V is so strong that direct production of the KK excitations of either the gauge bosons or

gravitons is kinematically forbidden at any planned collider. Their only inuence in this
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region will be through contact interaction e�ects.

No Fermion-Graviton Couplings

Fermion-
Graviton
Couplings
Turn On

All KK Production
Modes and Decays
Accessible

Contact Interaction Region

Light KK States Allowed

No Limit from V

I II III IV

8538A1
4–2000

–1.0 –0.8 –0.6 –0.4 –0.2 0

ν

Figure 5: The descriptive phenomenology for each region of � as discussed in the text.

Before discussing the details of the collider phenomenology associated with the gravi-

ton and gauge KK states in these various regions, we note that we will assume for simplicity

that the gauge KK states are su�ciently massive so that mixing e�ects can be neglected.

In general, the masses of the excitations of each gauge KK tower are given by the diagonal-

ization of a mixing matrix, whose o�-diagonal elements are proportional to the mass of the

zero-mode KK state. Hence, the excitations for the photon and gluon towers are automat-

ically diagonalized and the masses of the KK states of the W and Z towers are shifted by

MW;Z. This is a small e�ect for heavy KK states and hence we assume that the members

in the Z, W , photon and gluon towers are highly degenerate, level by level. This implies

that the Z and  tower members strongly interfere with one another appearing as a single

resonance, Z(n)=(n), and are hence not separable at colliders. This scenario is also realized
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in the historically more conventional KK gauge analyses[14, 15] with at spacetime.

It is instructive to �rst examine the dependence of the graviton branching fractions

on the fermion bulk mass parameter. Figure 6 shows these branching fractions for the �rst

graviton excitation with a mass of 1 TeV. In regions I and II, we see that the primary decay

mode, by approximately two orders of magnitude, is that of a pair of Higgs bosons! The

decay rates into more conventional channels, such as dijets, are uncharacteristically tiny

and hence the usual signatures for graviton production will be altered. In regions III and

IV, the fermions are no longer decoupled allowing for large branching fractions into fermion

pairs, and thus the typical graviton production signals at colliders become available. We

now examine the phenomenology of each region in turn.

Figure 6: Branching fractions for two-body decays of the �rst KK graviton excitation with a
mass of 1 TeV as a function of �. The �nal states are, from top to bottom on the right-hand
side of the �gure, pairs of light quarks, tops, leptons, higgs, gluons, W 's, Z's and photons.
The Higgs mass is assumed to be 120 GeV.
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We �rst consider region I. Since the fermion couplings here are far too weak to allow

for graviton production at colliders, it is natural to ask whether such states could be produced

via gluon-gluon fusion at the LHC since the gg luminosity is so large at those energies. This

idea runs into two immediate problems. First, in region I we know from the V analysis

and the mass relations in Fig. 1 that the �rst graviton KK mass is in excess of 900 GeV.

This expectation drastically reduces the production rate for such a heavy state down to the

level of at most tens of events for a luminosity of 100 fb�1. The second problem is one of

signal. As shown in Fig. 6 the primary decay mode in region I is into a pair of Higgs bosons.

For more customary channels, such as dijets, we end up paying an additional factor of 100

leaving us with no signal. We thus conclude that graviton KK states in region I are not

observable at the LHC or any other planned collider.

Before continuing we note that when calculating cross sections and production rates

for the �rst KK graviton and gauge bosons we have assumed that they can decay only

into SM, i.e., zero-mode states. We have found this to be a reasonable approximation for

all the cases of interest to us though other �nal states may occur. One example of this

possibility is the decay of a �rst KK graviton excitation into one zero-mode gauge or fermion

state together with a �rst excited mode of a gauge or fermion state. For fermions this is

kinematically allowed only over a small range of � but can correspondingly always occur for

the asymmetric gauge �nal state. Such partial widths have been calculated and usually lead

to rather small e�ects due to the reduction of the graviton coupling strength at the vertex

and do not result in changes to the peak cross sections by more than ' 10 � 20%. Thus

their neglect provides an adequate approximation for the result presented here.

Next, we turn to the gauge KK states; they are expected to be lighter than the

gravitons and the lowest lying states have coupling strengths to fermions approximately
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Figure 7: Production cross section in Region I for the �rst neutral KK gauge boson excitation
with m1 = 700 GeV in (top) Drell-Yan collisions at the Tevatron and in (bottom) e+e� !
�+�� at a Linear Collider. In the latter case, the second KK gauge excitation is also
displayed.
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20% as large as do the corresponding SM gauge bosons. However, couplings of this strength

are su�ciently large as to permit signi�cant cross sections at colliders as is shown in Figs.

7a and b for the Tevatron and at a Linear Collider, respectively. In both cases these �gures

show the production of a 700 GeV Z(1)=(1) state which has an unusually distorted excitation

curve due to the strong interference between the (1) and Z(1) states and the SM  and Z

background exchanges. This composite excitation is quite narrow for its mass due to the

small gauge couplings and is quite unlike other possible s-channel resonances such as a

graviton, Z 0 or sneutrino. The observation of the gauge KK states will thus be the only

signal for the RS model in this region. Figure 8 compares the search reach for these KK

gauge bosons by both the Tevatron and LHC in the Drell-Yan channel for region I (as well

as II and III) in comparison to the bound obtained from the V analysis. Here we see that

there is substantial room for discovering such gauge KK states with these machines in this

region.

In region II with the shrinking of the gauge couplings there is a general degradation of

the search reaches for the KK gauge bosons at both the Tevatron and LHC as shown in Fig.

8. Simultaneously the fermion couplings to the graviton are beginning to turn on and, as

can be seen from Fig. 9, the LHC has some chance of producing �1 TeV gravitons for large

values of c = k=MP l � 0:1. Once � exceeds �1=2 and we are in region III we see that the

LHC can discover KK gauge bosons for all values of � less than about �0:3. The window for

graviton discovery, due to their larger masses is somewhat slimmer and is limited to larger

values of c. When � > �0:42 gravitons can no longer be observed at the LHC due to their

large masses. It is clear that in region III the KK excitations of both the graviton and gauge

bosons can be simultaneously produced as is depicted in Fig. 10 for an e+e� linear collider.
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Figure 8: Direct and indirect bounds on the mass of the �rst KK gauge boson in regions
I-III. The upper (lower)most curve on the right side is from Drell-Yan searches at the LHC
(Run II Tevatron) with a luminosity of 100 (2) fb�1. The sharply rising curve on the right
arises from the indirect radiative corrections bound.
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Figure 9: Direct and indirect bounds on the mass of the �rst KK graviton. The upper
(lower) set of three curves correspond to Drell-Yan searches at the LHC and Tevatron for
the same luminosities as in the previous �gure. Within each set of curves, from top to
bottom, k=MP l = 1; 0:1 and 0.01, respectively. The remaining curve arises from the radiative
corrections bound on the gauge boson mass and the employs the mass relationships shown
in Fig. 1.
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Figure 10: Production of graviton and neutral gauge KK excitations at a linear collider via
the process e+e� ! �+�� when the fermion bulk mass parameter is larger than -0.5 and
�rst graviton KK excitation is 500 GeV for various values of k=MP l.

In region IV the precision electroweak constraints show that the �rst excitation of both

the gauge and graviton KK towers is above the kinematic threshold for direct production at

the LHC. However, their contribution to fermion pair production may still be felt via virtual

exchange, similarly to contact-like interactions. These e�ects are dominated by the gauge

KK tower exchange as the gauge KK states are lighter, level by level, and much more strongly

coupled than the corresponding KK gravitons. In addition, the gauge KK tower contributes

to fermion pair production via a dimension-six operator, whereas the graviton contribution

is dimension-eight. The e�ects of the KK graviton exchange can thus be essentially neglected

in comparison to the KK gauge contributions. We modify the results of Refs. [15, 29, 30]

to include the e�ects of KK tower exchange and present the resulting 95% C.L. search

reach in Fig. 11 for various lepton and hadron colliders with center-of-mass energies and

integrated luminosities as indicated. All fermion �nal states were employed in the lepton
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collider analyses, while only Drell-Yan data was included in the hadron case. We see that

the LHC with 100 fb�1 will give comparable bounds to those obtained from our precision

electroweak analysis, while the NLC has a substantial search reach. These bounds, as well

as those shown in Fig. 4, demonstrate that this is a problem region for the RS model as

they naturally lead to values of �� signi�cantly in excess of 10 TeV.

4 Phenomenology of Wall Fields

From the discussion in the previous section it is clear that if the SM �elds propagate in the

RS bulk then there is only a small range of � for which the RS model can be directly tested

through the production of graviton resonances. Either such states are constrained to be too

massive to be produced, as can be inferred from the analysis of precision electroweak data,

or they decouple from the zero-mode fermions and cannot be produced at all. In addition,

the value of �� is allowed to be <� 10 TeV only in regions I-III, corresponding to the range

�0:9 to �0:8 <� � <� �0:3. For larger values of the fermion bulk mass parameter, which is

most of this parameter's natural range, the lower bounds on �� begin to approach 100 TeV.

One may argue that this is disfavored since it is so far away from the weak scale and may

create additional hierarchies. Thus unless one can construct a model wherein the value of �

naturally lies in the above narrow range it appears that placing the SM in the RS bulk is

somewhat undesirable. For this reason, and to complete our earlier brief analysis[5], we now

explore the phenomenology for the case where the SM �eld content is entirely con�ned to

the TeV-brane.

We remind the reader that in the case where only gravity propagates in the bulk, the

graviton KK tower couplings to all wall �elds, and for all tower members n � 1, are simply

suppressed by ��; the zero-mode coupling remains Planck scale suppressed. In the language

31



Figure 11: Search reach in region IV for the indirect e�ects of KK gauge and graviton
exchange through contact-like interactions at (a) lepton colliders and (b) hadron colliders.
The curves correspond from top to bottom (a) the NLC with 500 fb�1 and

p
s = 1500, 1000,

and 500 TeV, and LEP II at
p
s = 195 GeV with 1 fb�1; (b) the LHC with 100 and 10 fb�1,

and the Tevatron at Run II with 30 and 2 fb�1, and the Tevatron at Run I.
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developed in section 2, this corresponds to values of the coe�cients, Cf �fG = CAAG =

1=e�krc�.

4.1 Bounds from the Oblique Parameters S, T , and U

In addition to both direct and indirect searches for new physics at colliders, precision mea-

surements can also provide useful constraints on new interactions[22]. We saw above that a

detailed analysis of radiative correction e�ects parameterized by the quantity V gave pow-

erful bounds on the mass of the �rst graviton excitation when the SM gauge �elds (and

fermions) were in the bulk. However, in the case where the SM completely resides on the

3-brane, it is clear that the masses of the bulk graviton �elds are no longer correlated to V

at tree-level, so that this analysis is no longer useful in obtaining constraints.

A di�erent approach to probing deviations in electroweak data due to new physics is

through shifts in the values of the oblique parameters S, T , and U [31]. In the case of graviton

KK towers, it is clear that loops involving such particles will contribute to the transverse

parts of the SM gauge boson self-energies, which will then reveal themselves in deviations

in S, T , and U . Recently Han, Marfatia, and Zhang[32] have considered the graviton tower

contribution to these parameters within the context of the ADD scenario arising from both

seagull and rainbow diagrams. This analysis can be modi�ed in a relatively straightforward

fashion to the case of localized gravity by recalling (i) that the coupling strength of the

graviton tower is inversely proportional to �� and not MP l, and (ii) the masses of the RS

KK states are widely separated so that the sum over them must be performed explicitly

and cannot be performed via integration. Since gravity becomes strong for momenta greater

than the scale ��, we must introduce an explicit cut-o�,Mc = ��� with � � O(1), to render

the integrals and sums �nite. For practical purposes we perform all of the integrations
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analytically leaving only the KK tower sum to be performed numerically by making use

of the relations �� = m
grav
1 MP l=kx

G
1 and mgrav

n = m
grav
1 xGn =x

G
1 . For example, the seagull

diagram yields the simple result

�(p2) =
�2p2

48�2
X
n

y�2n

"
1

3
+ 4yn + 10y2n + 10y3n ln

yn

1 + yn

#
; (41)

where yn � (mgrav
n =Mc)

2. Unlike the ADD case, the resulting values for the shifts in the

oblique parameters are found to be only proportional to �2 instead of �4; we set � = 1 in

our numerical results below.

Figures 12(a-c) display the shifts in the oblique parameters as a function of k=MP l

for various values of mgrav
1 . Using the latest values of S and T from a global �t to the

electroweak data[33] given by

S = �0:04� 0:10 ;

T = �0:06� 0:11 ; (42)

we obtain the 95% CL constraints in the k=MP l � m
grav
1 plane shown in Fig. 13. Most of

the excluded region arises from too large of a negative contribution to either S or T from

graviton loops, while the small nose-like region along the vertical axis is eliminated by values

of S which are positive and too large. Note that, as usual, the parameter U does not provide

a meaningful bound since it is quite small in magnitude in comparison to S and T . As we

can see from the �gure, these constraints complement those from direct collider searches,

e.g., those at the Run II Tevatron. In fact, by combining the two sets of constraints we would

�nd that a major part of the displayed parameter space would be excluded if nothing was

found by the Tevatron during Run II. (Of course, the true size of the model parameter space

is larger than what is shown in this �gure.) This region would be further reduced in area

by about a factor of two if we also required both that �� < 10 TeV and that the magnitude
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of the bulk curvature be less than the 5-d Planck scale as discussed in our earlier work[16],

which demands that k=MP l be less than � 0:1. As will be discussed below, combining all of

these requirements one can in fact show that the allowed region actually closes at graviton

masses in the range near 4 TeV. This shows the strong interplay between data from precision

measurements, direct collider searches, and our theoretical prejudices.

4.2 Collider Phenomenology

We now examine the direct production of the graviton KK states at high energy colliders

in the scenario where the SM �elds are constrained to the TeV-brane. We expand on our

previous work[5] by investigating the possibility of reasonably light graviton excitations, e.g.,

m
grav
1

<� 200 GeV. These may have previously escaped detection at the Tevatron by having

an extremely narrow width. In addition it is possible that their contributions to the oblique

parameters discussed above may be cancelled by the e�ects of other sources of new physics

and hence this window should also be probed by direct collider searches. We then turn to the

more likely scenario where the mass of the �rst graviton excitation is at least a few hundred

GeV, and explore its resonance production at future colliders in detail.

To fully explore this phenomenology, we �rst determine the branching fractions for

the decay of the �rst graviton KK state into two-body channels. These are displayed in Fig.

14 as a function of the graviton mass. We see from the �gure that dijet �nal states, i.e., light

quark and gluon pairs, dominate the graviton decays. The leptonic channel, which yields

the cleanest signature, has a branching fraction of order a few percent for all values of mgrav
1 .

Note that the branching fractions are independent of the parameter k=MP l, as expected.
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Figure 12: Shifts in the oblique parameters S, T , and U as functions of k=MP l when
the SM resides on the TeV-brane. From bottom to top the curves correspond to mgrav

1 =
200; 300; 400; 500; 750, and 1000 GeV.
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Figure 13: Excluded regions in the k=MP l �mgrav
1 plane for gravitons coupling to SM �elds

on the wall. The purple and light blue curves arise from oblique corrections constraints (T
and S, as labeled) and excluded regions are below and to the left of these curves. The dark
blue bumpy dashed and red straight dashed curves are bounds from Run II (2 fb�1) Tevatron
from dijet and Drell-Yan searches, respectively and will exclude regions above them and to
the left.
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Figure 14: Mass dependencies of the two-body branching fractions for the �rst graviton KK
state in the case where the SM �elds are on the wall. From top to bottom on the right side
of the �gure the curves are for dijets, W 's, Z's, tops, dileptons and Higgs pairs assuming a
Higgs mass of 120 GeV.
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4.2.1 Production of Light Gravitons

In our earlier consideration of graviton tower phenomenology we concentrated on the case

where the �rst tower member was more massive than about ' 200 GeV. The reasons for

this were two-fold: �rst, such masses are outside the range directly accessible to LEPII and,

second, the Tevatron collider bounds for new resonances in either the Drell-Yan or dijet

channel are essentially absent below ' 200 GeV.

There are two ways to probe this mass range below 200 GeV. The �rst possibility is to

search for a narrow s�channel resonance in the LEPII data above the Z-pole in, for example,

e+e� ! �+��. Such an analysis has indeed been performed by the OPAL Collaboration[34]

in their search for R-parity violating ~�� production. The result of their null search is a

constraint on the R�parity violating Yukawa coupling, �, as a function of the ~�� mass.

Clearly, this search can be modi�ed to probe for narrow gravitons and a straightforward

translation is possible; we �nd that

cbound = �bound
h
B
grav
` x21

i�1=2
; (43)

where c = k=MP l, x1 is the smallest non-zero root of the Bessel function J1 and B
grav
` is

the leptonic branching fraction of the �rst graviton KK state. The result of this analysis

can be seen in Fig. 15 where we observe that the bound on c as a function of the �rst KK

graviton mass is unfortunately rather weak. We expect, however, that these bounds should

improve signi�cantly by the end of the LEPII run. Note that this direct search supplements

the constraints obtained from the oblique parameter analysis discussed above.

A second possibility is to search for light gravitons by associated production with a

photon, e.g., e+e� !  +G(1). In the ADD model[1], a number of authors have considered

using this process to constrain the higher dimensional Planck scale as a function of the
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Figure 15: 95% CL upper bound on c as a function of the �rst KK graviton mass from the
~� bound discussed in the text. The allowed region lies below the curve.

number of extra dimensions through a somewhat similar search process[4]. In the ADD case,

however, a tower sum of KK gravitons up to kinematic limit is also required so that the

�nal state no longer appears to be resulting from an underlying two-body process. Unlike

the ADD case, in the RS model this process is a true two-body reaction leading to a mono-

energetic photon with a di�erential cross section given by[4]

d�

dz
=

�c2x21
16(1� x)

"
(1 + z2)(1 + x4) + (1� 3z2 + 4z4)

1 + x2

1� z2
+ 6x2z2

#
; (44)

where x = m2
1=s, z = cos � and m1 is the mass of the lightest KK graviton. The production

signature for this process is the mono-energetic photon and the decay products of the on-shell

massive graviton, e.g., a pair of dijets, `+`� or another  pair that reconstruct to the mass of

the graviton. Given the expression above one might imagine that the di�erential distribution

of photons is highly peaked in both the forwards and backwards directions independent of
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the value of m1 above the Z mass. Fig. 16a explicitly shows the resulting normalized

angular distribution of the photon for
p
s = 200 GeV and several distinct values of m1

with the anticipated strong forward-backward peaking. Unfortunately, the continuum SM

background from single-photon radiation has a very similar angular distribution but is not

mono-energetic. In either case the signal to continuum background ratio can be somewhat

enhanced by imposing a hard cut on the photon production angle relative to the incident

electron beam. Fig. 16b shows the total integrated cross section for the process of interest as

a function of m1 both with and without the photon angular cut, assuming that c = 0:01 and

p
s = 200 GeV. Here we see that reasonable signal rates are possible even after employing a

strong photon angular cut. For example, if m1 = 170 GeV with j� j > 15o, then E = 27:75

GeV and � = 0:3 pb at
p
s=200 GeV and thus a 200 pb�1 sample would yield 60 events

which should be observable above the continuum background.

4.2.2 Resonance Production at Future Colliders

It is more likely that the �rst graviton KK state will be several hundreds of GeV or more in

mass and we now explore the phenomenology of this scenario in more detail than given in our

previous work[5]. The basic signature for the RS model with the SM �elds being con�ned

to the TeV-brane is the direct resonance production of the graviton KK excitations. If

it is kinematically feasible to produce more than one KK tower member, the fact that the

excitation spacing is proportional to the root of the J1 Bessel function provides a smoking gun

signal for the non-factorizable geometry of this model. In addition, the two model parameters

which govern the 4-d phenomenology, i.e., k and ��, can be completely determined[5] by

the measurement of the mass and width of the �rst excitation.

We �rst examine the cleanest signal for graviton resonance production, namely an
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Figure 16: Angular distribution (top) and total cross section (bottom) for the process e+e� !
 +G(1) assuming

p
s=200 GeV and k=MP l = 0:01. In the top panel, from top to bottom

the curves are for a graviton mass of 130, 150, 170 and 190 GeV, respectively. The lower
curve in the bottom panel is the result after employing a cut of 15o between the photon and
initial electron direction.
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excess in Drell-Yan events from q�q; gg! G(n) ! `+`�. The Drell-Yan line-shape is presented

in Fig. 17 as a function of the invariant mass of the lepton pair for mgrav
1 = 700; 1500 GeV

at the Tevatron and LHC, respectively, for various values of k=MP l. The production of

subsequent tower members are also shown for the LHC, note the increasing widths of the

higher resonances. Also note that the value of the peak cross section for the �rst resonance is

independent of the value of k=MP l. We see that for larger values of k=MP l, e.g., k=MP l >� 0:5,

the bump structure of the resonances is lost due to the large value of its width (recall that the

width is proportional to [k=MP l]
2) and the interference from the higher excitations. In this

case, graviton production appears as a shoulder on the SM predicted Drell-Yan spectrum,

and is similar to the e�ect of contact interactions. Nonetheless, we �nd that the resulting

search reach for the �rst graviton excitation from a full calculation is essentially equivalent

to our earlier results[5] where we employed the narrow width approximation. These results

are given as a function of k=MP l in our previous work and are not reproduced here with the

exception that the results for run II at the Tevatron with 2 fb�1 of integrated luminosity are

displayed in Fig. 13.

Since the fundamental signature of a non-factorizable geometry is the non-uniform

spacing of the graviton KK states, it is important to examine the probability of observing

the second excitation if the �rst resonance is discovered. In order to quantify this we show

in Fig. 18 the cross section times leptonic branching fraction for the Drell-Yan production

of the �rst two graviton KK states as a function of the �rst excitation mass for the sample

value k=MP l = 0:1. We see that the second excitation has a sizable cross section at both

accelerators. We estimate that the n = 2 graviton KK state will be discovered at the Tevatron

(LHC) with 2 fb�1 (100 fb�1) of integrated luminosity if the mass of the �rst excitation is

less than 725 GeV (3.8 TeV). This is clearly a signi�cant discovery reach.
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Figure 17: Drell-Yan production of a (a) 700 GeV KK graviton at the Tevatron with k=MP l =
1; 0:7; 0:5; 0:3; 0:2, and 0.1, respectively, from top to bottom; (b) 1500 GeV KK graviton
and its subsequent tower states at the LHC. From top to bottom, the curves are for k=MP l =
1; 0:5; 0:1; 0:05, and 0.01, respectively.
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Figure 18: Cross sections for Drell-Yan production at the (a) Tevatron and (b) LHC of the
�rst two graviton KK states coupling to the SM on the wall as a function of m1. The upper
(lower) curve in each case is for the �rst (second) KK state. Here, we have set k=MP l = 0:1.
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Next, we examine the ability of a hadron collider to determine the spin of a new

resonance once one is discovered. It is well-known that the angular distribution of a particle's

decay products convey information about its spin quantum number. This is depicted in Fig.

19 for the decay of particles of various spins into fermion pairs. We see that a spin-0

resonance has a at angular distribution, of course, spin-1 corresponds to a parabolic shape,

and spin-2 yields a quartic distribution. The ability of a collider to distinguish between these

distributions depends on the amount of available statistics. For purposes of demonstration,

we have generated the angular distribution, including statistical errors, of a typical data

sample of 1000 events; this is displayed in Fig. 19. We see that with this level of statistics,

the spin-2 nature of a KK graviton is easily determined. From Fig. 18, we see that the

accumulation of 1000 events or more corresponds to a value of mgrav
1

<� 4200 TeV with

k=MP l = 0:1 at the LHC with 100 fb�1 of integrated luminosity. Further study, similar to

what has been performed in the case of a new Z boson resonance[35], is required in order to

determine the range of parameter space for which the spin-2 nature of the graviton can be

resolved.

Lastly, we present the graviton KK spectrum with varied values of the parameters in

two sample processes. The invariant mass spectrum of the lepton pair is shown in Fig 20

for Drell-Yan production of the graviton KK spectrum at the LHC, comparing mgrav
1 = 1

TeV with k=MP l = 0:1 with m
grav
1 = 1:5 TeV with k=MP l = 0:2. Figure 21 displays the

KK line-shape in  ! b�b, comparing mgrav
1 = 600 GeV with k=MP l = 0:1, mgrav

1 = 250

GeV with k=MP l = 0:03, and the SM prediction. These �gures demonstrate how the KK

spectrum changes in terms of size of the peak cross sections and widths of the resonances as

the model parameters are varied. These processes were chosen simply for demonstration and

for ease of identifying the �nal state. We emphasize that graviton KK resonance production

will occur at all planned colliders, and that the gravitons will decay into all possible 2-body
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Figure 19: Normalized angular distribution (z = cos �) for the decay of a spin-2 graviton
into fermion pairs (the `w'-shaped curve) in comparison to similar decays by either spin-0
(dashed) or spin-1 (dotted) particles. The data with errors show the result from a typical
sample of 1000 events.
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�nal states with the relative branching fractions as given in Fig. 14. Observation of the

relative rates of all these processes would serve as an additional veri�cation of the model.

Figure 20: Multiple KK graviton resonances produced at the LHC with mgrav
1 = 1 TeV and

k=MP l = 0:1 and for mgrav
1 = 1:5 TeV with k=MP l = 0:2.

5 Conclusions

In this paper we have explored the detailed phenomenology of the Randall-Sundrum model

of localized gravity for the cases where the SM �eld content propagates in the bulk or lies

on the TeV-brane. We have derived the wavefunctions and interactions of the KK tower for

each �eld that is allowed to exist in the bulk. We presented an argument demonstrating

that if spontaneous symmetry breaking takes place in the bulk, either the couplings of the

gauge bosons do not take their SM values, or the SM mass relationship between the W and

Z becomes corrupted, depending on whether the matter �elds exist in the bulk or not. We
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Figure 21:  ! b�b showing graviton resonances assuming mgrav
1 = 250 GeV and k=MP l =

0:03 or with mgrav
1 = 600 GeV and k=MP l = 0:1. The at curve corresponds to the expected

SM background.

thus conclude that the Higgs �eld must be con�ned to the TeV-brane.

In the scenario where the SM gauge and matter �elds propagate in the extra dimen-

sion, our results can be summarized as:

� The phenomenology in this case is now governed by three parameters, k, ��, and the

bulk mass parameter, �.

� We found that the couplings of the resulting KK states are highly dependent on the

value of the bulk mass parameter. We then identi�ed four regions with distinct phe-

nomenologies, corresponding to di�erent ranges of �.

� We examined the phenomenological signatures of this model in all four regions. We

compared the constraints placed on the model from precision electroweak data with

those obtainable from direct collider searches. We found that the KK states couple too
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weakly in order to yield observable signatures for � < �0:5. The precision electroweak

constraints resulted in strong bounds for larger values of � and indicate that the gauge

and graviton KK states will not be kinematically accessible at the LHC for � >� �0:3.

In this case, the presence of the KK towers will be probed via contact interaction

searches.

� We also presented theoretical arguments for limiting the range of �. We reasoned that

� >� �0:8 to �0:9 in order to ensure that the fermion Yukawa couplings are not overly

�ne-tuned. In addition, we saw that � cannot grow too large or else the precision

electroweak bounds translate into a value of �� which is far above the weak scale,

rendering the RS model irrelevant to the hierarchy problem.

� Combining these theoretical and experimental constraints yields a narrow range of �,

�0:9 to �0:8 � � � �0:3, for which the RS model is viable and can be probed directly

in colliders.

This argues for a model that either selects � to be in this narrow viable range or

prefers that the SM �eld content be constrained to lie on the TeV-brane.

We thus also investigated the phenomenology of the RS model in this second case,

expanding on our previous work. In this case, gravity is the only �eld which propagates in the

extra dimension and expands into a KK tower upon compacti�cation. The phenomenology

is now governed by only two parameters, with the fermion bulk mass obviously being absent.

We examined the possibility of lighter gravitons, which may be produced at LEP II as a direct

resonance or in an emission process. We computed the e�ects of the graviton KK states on

the precision electroweak oblique parameters and found constraints on the parameter space

which are complementary to those obtainable from direct collider searches. In addition, we

delineated the signatures for the graviton KK spectrum at future colliders.
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The combined results of our analysis in the scenario where the SM �elds lie on the

TeV-brane are presented in the parameter plane k=MP l �mgrav
1 in Fig. 22. The constraints

from present data are summarized by the bounds from Drell-Yan and di-jet production at the

Tevatron from Run I and from the global �t to the oblique parameters S and T , as labeled

in the �gure. In each case, the excluded area lies to the left of the curves. The theoretical

constraints are given by curvature bound jR5j = 20k2 < M2
5 , which yields k=MP l < 0:1,

and by the prejudice that �� <� 10 TeV to ensure that the model resolves the hierarchy.

We see that this synthesis of experimental and theoretical constraints results in a small,

closed allowed region in the model parameter space. Comparing this allowed region with our

previous results[5] for the search reach for graviton production via the Drell-Yan mechanism

at the LHC, we see that the LHC will be able to cover this entire region of parameter space

with 100 fb�1 of integrated luminosity. Hence, in the scenario where the SM �elds lie on the

TeV-brane, the LHC will be able to de�nitively discover or exclude the RS model of localized

gravity, if it is relevant to the hierarchy.
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Appendix A

In this Appendix we will supply a robust argument against spontaneous symmetry

breaking (SSB) by Higgs bosons in the RS Bulk. We assume that SSB takes place either
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Figure 22: Summary of experimental and theoretical constraints on the RS model, for the
case where the SM lies on the TeV-brane, in the k=MP l and m

grav
1 plane. The allowed region

lies in the center as indicated.

in the bulk or on the wall so that if SSB in the bulk is untenable we are forced to consider

the Higgs to lie only on the SM brane. Since there are no massless gauge KK modes when

there are bulk gauge masses, we would now be forced to identify the SM W and Z bosons

as the lowest massive KK modes of their respective towers. On the other hand the photon

and gluons, having no corresponding bulk mass terms, can be identi�ed with the ordinary

massless modes.

To proceed we �rst consider the SM-like part of the action involving only the gauge

and Higgs �elds taking y = rc�:

SSM =
Z
d4xdy

p
G

"
�
X
a

1

4
F a
MNF

MN
a + jDA�j2 � V (�) + :::

#
; (45)

and follow all of the usual steps of SSB associated with the SM. The only di�erence with the

usual result will be the labelling on the 5-d couplings and the Higgs vacuum expectation value
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(vev), i.e., g; g0; e ! g5; g
0

5; e5 and v ! v5 etc. In the usual basis this generates bulk mass

terms associated with the Z andW �elds,MZ;W but none for the photon and gluon �elds due

to the remaining unbroken gauge invariance. We expect that both of these generated masses

are naturally of order k and that they are also related, assuming spontaneous symmetry

breaking via Higgs doublets in the bulk, by the usual SM-like relationshipM2
W

=M2
Z
cos2 �5

with, as usual, g05=g5 = tan �5, �5 being the angle diagonalizing the Z �  mixing matrix.

The 5-d coupling of the photon is then identi�ed as e5 = g5 sin �5. Now although this all

seems trivial and straightforward problems begin to appear when we try to match these 5-d

couplings and the generated masses to those in the usual 4-d SM.

Let us �rst consider the case where the SM fermions are in the bulk. Then, since the

photon has no bulk mass term, it is easy to calculate the relationship between e5 = g5 sin �5 =

g5s5 and e = g sin � = gs by considering the coupling between fermionic zero-modes, which

we identify as the SM �elds, with the photon tower zero-mode, i.e., the ordinary photon

which has a constant wave function in the extra dimension. We obtain the familiar relation

e =
e5p
2�rc

or
g5s5p
2�rc

= gs : (46)

As discussed above, the Z and W of the SM are now identi�ed with the lightest massive

modes of their respective towers with wave functions of the form

�W;Z =
e�

NW;Z

h
J�W;Z + �W;ZY�W;Z

i
; (47)

where NW;Z is a normalization factor, �W;Z are constants, and

�W;Z =
h
1 +MW;Z

2=k2
i1=2

; (48)

respectively. Denoting the complete fermion zero-mode wave functions symbolically by f�
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the relationship between the 5-d W coupling and that for the SM is given by

g5p
2

Z
dy
p
Gf 2��W �

g5p
2
IW =

gp
2
; (49)

where IW represents the y integration over the various wave functions. Note that we have

assumed that all fermion avors have the same value of �. If this were not the case univer-

sality violation would be rampant. In the Z case, due to the structure of the coupling, we

arrive at two necessary conditions for the correct matching

(i)
g5

c5

Z
dy
p
Gf 2��Z �

g5

c5
IZ =

g

c
; (50)

(ii)
g5

c5
s25

Z
dy
p
Gf 2��Z �

g5

c5
s25IZ =

g

c
s2 ;

where IZ represents the corresponding y integration over the Z and fermion wave functions.

Dividing Eq. (50ii) by (50i), we arrive at s5 = s. Substituting Eq. (49) into Eq. (46) and

using this s5 = s result we arrive at the requirement that IW = 1=
p
2�rc, independent of

� or MW =k! This is of course in general impossible so we must conclude that if fermions

are in the bulk the SSB breaking by bulk Higgs �elds does not allow us to simultaneously

recover the correct SM couplings for the photon, W or Z.

Now if the fermions are on the wall it is easy to see that s5 = s and g = g5=
p
2�rc are

automatically consistent with all of the required coupling relations since we must evaluate

the W and Z wave functions on the SM brane via delta functions. However now a di�erent

problem arises with the W and Z masses since we now require x1W = x1Z cos � where the

x1's are the lowest roots of the appropriate combination of boundary condition equations

that yield the tower mass eigenvalues. Furthermore we require that this condition must

hold without any �ne-tuning of the ratioMZ=k. To show that this condition does not hold

naturally, let us take as an exampleMZ/k = 1(2) from which we can calculate x21W=x
2
1Z =
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cos2 �; we �nd that cos2 � = 0:9359(0:8781) assuming thatMW =MZ cos � with cos � = 0:77

as input. Knowing the input values of bothM2
Z
=k2 and cos �, which takes a common value

in the bulk and on the wall, we can �x the ratioM2
W
=k2. This then allows us to evaluate

the quantities �W;Z, as given by Eq.(48), which are the indices of the Bessel functions for the

Z and W tower member wave functions in Eq.(47). Applying the usual Z2-even boundary

conditions on these wave functions as discussed above we can determine the mass eigenvalues

for the lightest members of each of these towers that we are now identifying with the W

and Z. The ratio of these eigenvalues should return the input value of cos � to us since

x1W=x1Z = cos �. If we do not obtain the input value or we �nd that that the result depends

on the input value of MZ=k we can conclude that this approach is internally inconsistent.

Since our input and output values are signi�cantly di�erent, we can conclude that this

possibility fails as well. Thus if fermions are on the wall we may recover the correct SM

couplings but the SM mass relationship between the W and Z becomes corrupted. This

implies that the Higgs cannot generate SSB in the bulk when the fermions are on the SM

brane. Combining both arguments, we thus conclude from this discussion that SSB must

take place on the SM brane and that therefore the Higgs �elds are to be found there as well.

Appendix B

In this Appendix we present concise expressions for the most common couplings

discussed in the main text in the scenario where the fermion �elds reside in the bulk. The

nth graviton and gauge boson KK couplings to a pair of zero-mode SM �elds are given in

terms of simple integrals by:
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f (0) �f (0)A(n):

C
f �fA
00n =

g(n)

gSM
=
q
2�krc

�
1 + 2�

1� �2�+1

� Z 1

�
dz z2�+1J1(x

A
n z) + �AnY1(x

A
n z)

jJ1(xAn ) + �AnY1(x
A
n )j

; (51)

f (0) �f (0)G(n):

C
f �fG
00n =

1

�

�
1 + 2�

1� �2�+1

� Z 1

�
dz z2�+2 J2(x

G
n z)

jJ2(xGn )j
; (52)

A(0)A(0)G(n):

CAAG
00n =

1

�

2(1� J0(x
G
n ))

�krc(xGn )
2jJ2(xGn )j

; (53)

where �An is de�ned in Eq. (14), � � e�krc�, and the xA;Gn denote the appropriate Bessel

roots that appear in the gauge and graviton KK wavefunctions as given in Section 2. Note

that the coupling of two zero-mode gauge bosons to the nth KK graviton can be computed

analytically. In a similar manner we �nd the following expressions for couplings involving

only a single zero-mode SM �eld:

f (`) �f (0)A(n):

C
f �fA
`0n =

q
2�krc

�����2(1 + 2�)

1� �2�+1

�����
1=2 Z 1

�
dz z�+3=2 Jf(x

L
` z)

jJf(xL` )j
J1(x

A
n z) + �nY1(x

A
n z)

jJ1(xAn ) + �nY1(xAn )j
; (54)

f (`) �f (0)G(n):

C
f �fG
`0n =

1

�

�����2(1 + 2�)

1� �2�+1

�����
1=2 Z 1

�
dz z�+5=2 Jf(x

L
` z)

Jf(xL` )

J2(x
G
n z)

jJ2(xGn )j
; (55)

A(`)A(0)G(n):

CAAG
`0n =

2

�
p
2�krc

Z 1

�
dz z2

J1(x
A
` z) + �A` Y1(x

A
` z)

jJ1(xA` ) + �A` Y1(x
A
` )j

J2(x
G
n z)

jJ2(xGn )j
; (56)
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where f = � � 1=2 (�� + 1=2) for � > (<)� 1=2, and xL` correspond to the Bessel roots for

the Left-handed fermion KK tower.

A 4-point coupling, between `th fermion - 0th fermion - 0th gauge - nth graviton, is

also present and is given by:

f (`) �f (0)A(0)G(n):

C
f �fAG
`00n =

1

�

�����2(1 + 2�)

1� �2�+1

�����
1=2 Z 1

�
dz z�+5=2 Jf (x

L
` z)

jJf(xL` )j
J2(x

G
n z)

jJ2(xGn )j
; (57)

which is exactly the same as Cf �fG
`0n .

Let us now turn to the wall Higgs couplings to zero-mode bulk �elds starting from

the action

SffH =
~�5
k

Z
d4xdy

p
G�	(x; y)	(x; y)H0(x)�(y � rc�) ; (58)

where a factor of k has been introduced to render ~�5 dimensionless. When the Higgs gets a

vev of order the Planck scale, v5, we must shift the �eld as H0 ! v5 +H 00. If we substitute

the fermion mode expansions and extract out the zero-mode pieces and let H 00 ! ��1H 0 to

account for the required rescaling of the Higgs �eld kinetic term, we can identify the 4-d

coupling as �4 = ~�5!=2 (with �v5 = v4) using the familiar ratio

! =
(1 + 2�)

1� �1+2�
; (59)

which multiplies v4 and which has important implications as discussed in the text. Note

that v4 is now naturally of order the TeV scale. One also �nds that the o�-diagonal mode

Yukawa couplings are induced from the same action. For example, the coupling of the nth

and mth non-zero tower members to the Higgs is found to be ~�5(�1)m+n while the coupling
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of a zero-mode and an nth mode fermion to the Higgs is given by ~�5(�1)n
q
!=2. Thus the

fermion tower members are seen to mix with themselves with a strength that is characterized

by the induced zero-mode mode mass, i.e., the mass of the corresponding SM fermion. For

all SM fermions, except perhaps for the top quark, these e�ects are quite small since we

expect that the unmixed tower fermion masses begin in the range of hundreds of GeV if not

larger. A similar analysis of the W and Z tower shows that the wall Higgs �eld induces

the correct photon, W and Z SM masses. Here we need to identify the 4-d and 5-d gauge

couplings through the usual relation g4 = g5=
p
2�rc and as before make use of the rescaling

v4 = �v5. Again one �nds that mixing between the gauge �elds within these individual towers

with a strength characterized by the induced mass of the zero-mode as occurs in non-warped

space[14, 15].
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