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Abstract

At very high energy and wide angles, Compton scattering on the proton (p !
p) is described by perturbative QCD. The perturbative QCD calculation has
been performed several times previously, at leading twist and at leading order in
�s, with mutually inconsistent results, even when the same light-cone distribution
amplitudes have been employed. We have recalculated the helicity amplitudes for
this process, using contour deformations to evaluate the singular integrals over
the light-cone momentum fractions. We do not obtain complete agreement with
any previous result. Our results are closest to those of the most recent previous
computation, di�ering signi�cantly for just one of the three independent helicity
amplitudes, and only for backward scattering angles. We present results for the
unpolarized cross section, and for three di�erent polarization asymmetries. We
compare the perturbative QCD predictions for these observables with those of
the handbag and diquark models. In order to reduce uncertainties associated
with �s and the three-quark wave function normalization, we have normalized
the Compton cross section using the proton elastic form factor. The theoret-
ical predictions for this ratio are about an order of magnitude below existing
experimental data.
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1 Introduction

Exclusive real Compton scattering on the proton, p! p, is a promising arena for study-
ing the short-distance structure of the proton. In the limit of large energy

p
s and �xed

scattering angle � in the center-of-mass frame, the real Compton amplitude should factorize
as the convolution of a perturbative hard scattering matrix element with a nonperturbative
light-cone distribution amplitude [1]. The distribution amplitude is for the three valence
quarks in the proton; it describes how their longitudinal momentum is partitioned when
their transverse separation is very small. Contributions of Fock space states with more par-
tons in the proton's light-cone wave function should be suppressed by additional powers of
s. However, the energy at which this asymptotic prediction of perturbative QCD (PQCD)
becomes valid is not known a priori. Soft mechanisms such as the soft overlap (or handbag)
model [2, 3, 4] and the diquark model [5, 6] could be comparable to, or even dominant over,
the PQCD mechanism at the presently accessible center-of-mass energies of 2{4 GeV.

The PQCD prediction for p ! p contains a number of uncertainties. First, only the
Born level has been computed; next-to-leading-order corrections are likely to be large. Re-
lated to this, the Born level prediction is proportional to a high power of the running strong
coupling constant, [�s(�)]

4, and its renormalization-scale (�) dependence leads to a large
normalization uncertainty on the cross section. Second, the form of the proton distribu-
tion amplitude is not well understood. Several groups have produced model distribution
amplitudes based primarily on QCD sum rule analyses [7, 8, 9, 10, 11]. These distribution
amplitudes can lead to quite di�erent predictions for the Compton helicity amplitudes. All
the proposed distribution amplitudes tend to peak in a region where two of the three quarks
carry relatively small fractions x of the proton longitudinal momentum. This has led to
skepticism about the applicability of PQCD at accessible energies [12, 13, 2, 3], because rel-
atively soft sub-processes (relative to

p
s) can reorient quarks with small x from the initial

proton direction to the �nal proton direction.
Despite all these caveats, it is still useful to know the PQCD predictions for p! p, if

nothing else as an asymptotic limit. There have already been four separate calculations at
Born level [14, 15, 16, 17]. However, no two results agree with each other, even when the same
proton distribution amplitudes are assumed. Given this discrepancy in the literature, and the
need for consistent predictions from the PQCD mechanism, we undertook an independent
recalculation of this process. Our results in fact di�er from all previous work, although we
�nd reasonable agreement with ref. [16] for a subset of the helicity amplitudes, and excellent
agreement with ref. [17] for forward scattering angles.

Our results are timely in view of the experimental situation. For over twenty years,
the highest energy wide-angle Compton data available have been from an experiment at
Cornell [18] which investigated the energy range 4:6 GeV2 < s < 12:1 GeV2. These data
appear to obey an approximate d�=dt / s�6 scaling law, as predicted by PQCD, although
more precise data would be useful to con�rm or refute this behavior. An experiment now
underway at Je�erson Lab [19] should soon improve the errors on the unpolarized cross
section and its �- and s-dependence, in the same kinematic range as the Cornell experiment.
This experiment also plans to measure a polarization asymmetry, the transfer of longitudinal
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polarization from the incoming photon to the outgoing proton, for at least one angle. We
shall discuss this asymmetry further in section 3. An upgrade of the Je�erson Lab electron
beam to 12 GeV [20] would allow for the very important extension of this experiment to
higher energies. The proposed ELFE facility [21] with a 25 GeV electron beam would also
be a natural place to perform higher energy Compton measurements.

The remainder of this paper is organized as follows. In section 2 we outline the calcula-
tion. In section 3 we present results for the unpolarized cross section and for some di�erent
polarization asymmetries. Section 4 contains our conclusions.

2 Calculation

Since the general PQCD calculational framework for the Compton process has been described
previously, e.g. in ref. [16], we will be brief here. The leading-twist PQCD factorization of the
helicity amplitude M��0

hh0 for incoming (outgoing) photon helicity � (�0) and proton helicity
h (h0) is given by

M��0

hh0 =
X
d;i

Z 1

0
dx1 dx2 dx3 dy1 dy2 dy3 �

�
1�

3X
j=1

xj
�
�
�
1�

3X
k=1

yk
�

(1)

��i(~x)T
(d)
i (~x; h; �; ~y; h0; �0)��i (~y) ;

where the vectors ~x � (x1; x2; x3) and ~y � (y1; y2; y3) represent the quark longitudinal mo-
mentum fractions; i labels the independent three-valence-quark Fock states of the proton,
with distribution amplitudes �i(~x); and d represents the sum over the diagrams that con-
tribute to the hard-scattering amplitude Ti.

The distribution amplitude represents the three-valence-quark component of the proton's
light-cone wave function, after the latter is integrated over transverse momenta up to a
factorization scale �. (Moments of the distribution amplitude can also be de�ned via the
matrix elements of appropriate local three-quark operators.) The distribution amplitude
evolves logarithmically with �, but (as was also done in refs. [14, 15, 16, 17]) we shall neglect
this evolution here. The full distribution amplitude for a positive-helicity proton is, in the
notation of ref. [16],

jp"i = fN

8
p
6

Z 1

0
dx1 dx2 dx3 �

�
1�

3X
j=1

xj
� 3X

i=1

�i(~x) ji; ~xi ; (2)

where

j1; ~xi = ju"(x1)u#(x2)d"(x3)i ;
j2; ~xi = ju"(x1)d#(x2)u"(x3)i ; (3)

j3; ~xi = jd"(x1)u#(x2)u"(x3)i :

The normalization constant fN can be determined from QCD sum rules or lattice QCD. We
choose fN = 5:2 � 10�3 GeV2 (as in refs. [16, 17]). Fermi-Dirac statistics, isospin and spin
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symmetry result in only one independent distribution amplitude, �1; the other two are given
by

�2(x1; x2; x3) = ��1(x1; x2; x3)� �1(x3; x2; x1) ; (4)

�3(x1; x2; x3) = �1(x3; x2; x1) :

In addition to neglecting evolution of the distribution amplitude, we shall also take �s to be
�xed. The Born-level cross section then scales as �4

s � f 4N .
The hard scattering amplitude is computed for three collinear incoming and outgoing

quarks. The color and electric charge dependence can be factored o� of each diagram as

T
(d)
i (~x; h; �; ~y; h0; �0) = C(d) g4Z

(d)
i

~T (d)(~x; ~y; h; �; h0; �0) ; (5)

where C(d) is the color factor, g is the strong coupling constant, and Z
(d)
i is the appropriate

product of quark electric charges, while ~T (d) is color and avor independent.
The helicities of the quarks in the hard scattering amplitude are conserved by the gauge

interactions; therefore the proton helicity is conserved, and M��0

hh0 = 0 for h 6= h0. Parity
and time-reversal invariance further reduce the number of independent helicity amplitudes
to three, which we take to be

M""
"" ; M"#

"" ; and M##
"" : (6)

In principle, 378 diagrams contribute to the hard scattering amplitude. However, 42 of
them contain three-gluon vertices and have a vanishing color factor. Many others vanish for
individual helicity con�gurations.

We adopted the technique in ref. [16] of using the parity symmetry (denoted E therein)
between certain classes of diagrams to reduce the number that had to be computed, while re-
serving the time-reversal symmetry as a check. All diagrams were computed by two indepen-
dent computer programs, both based on the formalism outlined in ref. [22]. These expressions
were found to be identical to those used in the two most recent computations [16, 17].zThus
we agree completely with refs. [16, 17] on the hard scattering amplitude Ti.

The next step is to perform the four-dimensional integration in eq. (2) over the indepen-
dent quark momentum fractions. For the various model distribution amplitudes [7, 8, 9, 10]
we used the coe�cients of �1 listed in Table I of ref. [16]. Many diagrams include denom-
inators that vanish inside the (~x; ~y) integration region, due to the presence of an internal
quark and/or gluon that can go on shell. This is not a true long-distance singularity, and
all the integrals are �nite, diagram by diagram, but it is a technical obstacle to obtaining a
reliable value for the integral. In the notation of ref. [16], the Feynman i" prescription leads
to singular denominators of the form

1

(x; y) + i"
= P

1

(x; y)
� i��((x; y)) ; (7)

zWe compared our results for each diagram to the formulae given in Tables III and IV of ref. [16]. These
tables contain three errors (found by M. Vanderhaeghen [23] as well as us) in addition to one in diagram
A71 that was published in an erratum. However, all these errors are typographical and do not a�ect the
numerical results in that paper [24]. The errors are: In the denominator of ~T (A44)(x; "; #; y; "; #), (�x3; x1)
should be (�x3; y1); ~T (C75)(x; "; #; y; "; #) should be multiplied by 1=c; and the diagram related to C77 by
T � E should be F11, not F33.
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where P stands for principal part and (x; y) � x(1 � ys2) � yc2, with s = sin(�=2) and
c = cos(�=2). Diagrams can be classi�ed by the number of singular factors found in the
denominator; for the Compton process this number can be 0, 1, 2 or 3. The presence of
on-shell partons in the Born-level hard scattering amplitude (for particular values of (~x; ~y))
leads to large phases in the PQCD amplitude [15, 14, 16]. This is in contrast to the handbag
model, which predicts an imaginary part that is small and beyond the accuracy of the model.

At least four di�erent numerical methods have previously been applied to handle the
singular integrations. Ref. [14] performed a Taylor expansion of the numerators of the
integrand symmetrically about each singularity. Ref. [15] kept the " in eq. (7) explicit,
and evaluated the integrals for a sequence of " values tending to zero, looking for stable
results. Ref. [16] handled the imaginary parts of the singular integrals by solving the �-
function constraint explicitly, and carried out the real, principal-part integrals by folding
the region of integration over at the singularity, so that the integrand is manifestly �nite.
Finally, ref. [17] deformed the (~x; ~y) integration contour into the complex plane, an elegant
technique that requires relatively little bookkeeping for its implementation.

We adopted a variation of the contour deformation technique [17]. We �rst let

x1 = �1; x2 = (1� �1)(1� �2); x3 = (1� �1)�2; (8)

y1 = �1; y2 = (1� �1)(1� �2); y3 = (1� �1)�2;

so that the four independent variables (�1; �2; �1; �2) were integrated on the interval [0,1].
We then deformed the single variable �1 into the complex plane, so that it ran either over
the piecewise linear contour 0! i�! 1 + i�! 1, or over a semi-circular contour extending
from 0 to 1. Note that this simultaneously deforms both y1 and y3, towards opposite sides
of the real axis, while x1 and x3 remain real. Inspection of the denominator factors in
Tables III and IV of ref. [16] shows that this deformation is su�cient to correctly bypass
the singularities in every Compton diagram. For example, the denominator of diagram A16
includes the factors [(x1; y1) + i"][(�x3; y1) + i"][(y3; x3) + i"], where �xi � 1� xi, �yi � 1� yi.
Using the identity (x; y) = (�y; �x), the singular factors can be rewritten as [(1 � y1; �x1) +
i"][(1� y1; x3) + i"][(y3; x3) + i"], which shows that y1 and y3 should indeed be deformed in
opposite directions. If the diagram happens to contain denominators of the form (xi; y1) or
(y3; xi), instead of (y1; xi) or (xi; y3), as does diagram A16, then the imaginary part should
be multiplied by an overall minus sign (or equivalently, the contour should be deformed in
the opposite direction with respect to the real axis).

After making these contour deformations, the real and imaginary parts of the complex
integrals were performed separately using the Monte Carlo integration routine VEGAS [25].
Two independent versions of the contour integration were implemented numerically, with
two di�erent choices of contour (piecewise linear vs. semi-circular), and we also varied the
deformation parameter �, obtaining stable results.

We carried out further checks on our integration routines. For diagrams with only one
singular factor in the denominator, one can integrate the imaginary part analytically, using
the delta function from the pole to reduce the integral to a sum of hypergeometric functions.
Using this procedure we checked the imaginary part of all diagrams with one singularity.
One can also check the diagrams with no singularities in the same manner. A second check
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employed the identity

1

(x; y)(x; z)
=

1� ys2

c2(y � z)(x; y)
� 1� zs2

c2(y � z)(x; z)
: (9)

Using eq. (9) one can reduce all three-singularity diagrams to two singularities. (These
expressions can be reduced no further, though, because the four remaining singular variables
are all di�erent.) One can also reduce all diagrams that initially had two singularities to
one-singularity diagrams, allowing their imaginary parts to be computed analytically. Our
integration techniques were robust against all of these tests.

Finally, Table V of ref. [16] gives detailed results for diagram A51, which has two denom-
inator singularities. We agree completely with these results, for both the real and imaginary
parts. We note that ref. [16] also attempted to evaluate this diagram by implementing the
explicit "! 0 method of ref. [15], but they obtained very di�erent results for the imaginary
part, compared with the results of their folding method. Ref. [16] claims that the explicit
"! 0 method is not numerically stable. Since we agree with their results for diagram A51,
we do not have cause to disagree with this claim.

3 Results

3.1 Comparison with previous work

We computed the Compton helicity amplitudes for a variety of distribution amplitudes,
which we refer to as CZ [7], GS [8], KS [9], COZ [10] and ASY (the distribution amplitude
for asymptotically large energy scales, �1(x1; x2; x3) = 120x1x2x3). The CZ, KS and COZ
distribution amplitudes, which satisfy the constraints imposed by QCD sum rules [7, 9], are
qualitatively similar. They feature a peak in �1 for x1 � 1, x2;3 � 0; that is, the u quark
with the same helicity as the proton carries most of the momentum. The GS distribution
amplitude has a peak in �1 for x1;3 � 1=2, x2 � 0; thus it splits the momentum more
equitably between the two quarks carrying the proton's helicity.

Before discussing our full results, we present a comparison of results in the literature.
Here we choose the COZ distribution amplitude, since it was employed in four of the �ve
existing calculations. (Only the earliest calculation [14], which was later superseded [15], did
not use the COZ distribution amplitude.) The overall cross-section normalizations in the
literature are sometimes di�cult to determine, due for example to unspeci�ed choices for
�s. Therefore we choose to compare results for the following (normalization-independent)
initial-state helicity correlation [17],

ALL �
d�++
dt

� d��
+

dt
d�++
dt

+
d��

+

dt

; (10)

where d��h=dt is the di�erential cross section for a helicity h proton scattering o� a helicity
� photon.
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Figure 1: Four di�erent calculations of the polarization asymmetry ALL de�ned in eq. (10), for

the COZ distribution amplitude. The dotted line is from ref. [15], the dashed line from ref. [16],

the dot-dash line from ref. [17], and the solid line from this work.
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Figure 1 shows that none of the four calculations of ALL agrees completely with any other.
The only two results that are very close are ours and that of ref. [17]. These two curves are
in excellent agreement for � < 110�; however, we do not reproduce the prominent dip of
ref. [17] in the backward region. This statement is true for the four distribution amplitudes
we have compared: KS, COZ, CZ and ASY [17, 23]. Figure 14 of the second reference in [17]
shows that the dip in ALL derives from d�

dt
("p" ! p) / jM""

""j2 + jM"#
""j2, and not from

d�
dt
(#p" ! p) / jM"#

""j2 + jM##
""j2. Indeed, we agree with their #p" ! p cross section for

all angles to better than 10%, up to an overall normalization factor which can be accounted
for by di�erent choices for �s. We agree with the "p" ! p cross section only for � < 110�,
however. This suggests that the discrepancy with ref. [17] is predominantly from the single
helicity amplitude M""

"".
The curve from ref. [15] has the same general shape as ours, but is o�set from it. The

phases of the dominant helicity amplitudes given in ref. [15] actually agree quite well with our
results in �gs. 5{7 below; the magnitudes are o�set by relatively angle-independent factors.

Ref. [16] �nds a very large asymmetry. We have made a detailed comparison of our COZ
results with those of ref. [16], for the real and imaginary parts of the three independent
helicity amplitudes. Each amplitude has been further split into four pieces [24], according to
the number of singular propagators in the diagram (as determined from Tables III and IV
of ref. [16]). The zero propagator terms (which were integrated analytically by both groups)
agree to high precision (6 digits). The one propagator terms agree to within VEGAS errors,
except for the imaginary part of one helicity amplitude (M"#

"") which is within 10%. For

the two propagator terms, we are in agreement on the real part of M""
"" and M"#

"", but have

a large discrepancy in the imaginary part. Strangely enough, for M##
"" we agree on the

imaginary part but disagree on the real part! For the three propagator terms, both the
real and imaginary parts disagree for all three helicity amplitudes. The bulk of our overall
numerical disagreement comes from the two propagator terms contributing to the imaginary
part ofM""

"". The two propagator terms are often 100 times larger than ours, and they drive

ref. [16]'s values for ImM""
"" to be roughly a factor of 10 larger than ours.

3.2 Helicity amplitudes and unpolarized cross section

In �gs. 2{4 we display our results for the polarized di�erential cross sections,

s6
d���

0

hh0

dt
=

s4

16�
jM��0

hh0 j2 : (11)

for the three independent helicity con�gurations. Each �gure plots the results for the �ve
di�erent distribution amplitudes. These plots were made for ��1

em = 137:036, �s = 0:3 and
fN = 5:2 � 10�3 GeV2, so they can be compared directly with ref. [16]. The phases of
the helicity amplitudes are plotted in �gs. 5{7; the GS distribution amplitude has a much
di�erent behavior and is therefore plotted separately, in �g. 8. The phases are generally
large; indeedM"#

"" is almost pure imaginary (except for the GS distribution amplitude). For
reference, we also provide in Table 1 our numerical results for the real and imaginary part
of M""

"", for the COZ distribution amplitude, including errors from the VEGAS integration.
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Figure 2: The cross section for "p" ! "p" for �ve di�erent distribution amplitudes, CZ, COZ, KS,

GS and ASY. The results for the asymptotic distribution amplitude (ASY) have been multiplied

by 100.
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Figure 3: The cross section for "p" ! #p".

Figure 4: The cross section for #p" ! #p".
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Figure 5: Phase of the helicity amplitude for "p" ! "p" for the distribution amplitudes CZ,

COZ, KS and ASY.
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Figure 6: Phase of the helicity amplitude for "p" ! #p".

Figure 7: Phase of the helicity amplitude for #p" ! #p".
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Figure 8: Phase of the three independent helicity amplitudes for the GS distribution amplitude.

The arrows correspond to the photon helicities �, �0 in the amplitudesM��0

"" .
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Figure 9: The unpolarized scaled cross section (12) for all �ve distribution amplitudes, for �s = 0:3

and fN = 5:2� 10�3 GeV2, compared with experiment [18].
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� (deg) 103 s2Re(M""
"") 103 s2 Im(M""

"")

20 �74920 � 240 29200 � 230
30 �15720 � 110 5133 � 46
40 �5255 � 15 1301 � 14
50 �2371.2 � 8.0 348.6 � 5.8
60 �1273.6 � 4.3 42.2 � 3.5
70 �768.8 � 2.3 �72.1 � 2.3
80 �511.2 � 3.1 �115.4 � 1.4
90 �369.8 � 1.2 �139.0 � 1.0
100 �278.3 � 1.0 �152.03 � 0.91
110 �222.4 � 1.2 �165.53 � 0.90
120 �179.54 � 0.70 �183.15 � 0.95
130 �144.2 � 1.0 �211.6 � 1.0
140 �107.80 � 0.91 �257.1 � 1.3
150 �52.9 � 2.7 �324.9 � 2.6
160 75.9 � 3.1 �415.5 � 5.0

Table 1: The real and imaginary parts of the helicity amplitudeM
""
"" for the COZ distribution am-

plitude (multiplied by s2 in units of GeV4). The errors are from the VEGAS numerical integration.

The values used for fN , �em, and �s are the same as in the rest of the paper. The normalization

is the same as in Table V of ref. [16] (which we found quite useful).

Figure 9 shows our predictions for the unpolarized di�erential Compton cross section,
given by

s6
d�

dt
=

1

4

X
�;�0;h;h0

s6
d���

0

hh0

dt
; (12)

along with the experimental data from ref. [18]. For the values used �s = 0:3, fN =
5:2 � 10�3 GeV2, the predictions lie at least an order of magnitude below the data. Since
the PQCD cross section scales like �4

s, accommodating a factor of 10 by changing �s would
require �s � 0:5. While this is not out of the question, and while some variation in fN
could be considered as well, this may be pushing the validity of perturbation theory. On
the other hand, the shape of the curves (i.e., ignoring the overall normalization) matches the
data quite well for the KS, COZ and CZ distribution amplitudes.

3.3 Normalization by F
p
1 (Q

2)

As mentioned in the introduction, the �4
s(�) scaling of the proton Compton cross section at

Born level introduces a large normalization uncertainty into the PQCD prediction. Uncer-
tainty in fN also contributes. Both of these uncertainties can be removed at Born level by
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considering the dimensionless ratio [26]

s6
d�p
dt

[Q4 F
p
1 (Q

2)]2
; (13)

where F p
1 (Q

2) is the elastic Dirac form factor for the proton at space-like momentum transfer
Q. One might also imagine normalizing the Compton cross section by the time-like proton
form factor. At leading order in �s, the PQCD predictions in the space-like and time-like
regions are identical [1]; however, experimentally the time-like form factor is larger by a
factor of about two [27, 28]. Higher order PQCD corrections can in principle account for
this factor, as Sudakov e�ects are di�erent in the two regions [29]. The Compton scattering
kinematics are much closer to those of the space-like proton form factor than the time-like
one, at least as far as the proton is concerned. Therefore Sudakov and related higher-order
e�ects are best cancelled by normalizing with the space-like form factor.

At leading twist, F p
1 (Q

2) is predicted to be the same as the magnetic form factor Gp
M(Q2).

Experimentally, these are close but not identical [28]. To normalize the experimental Comp-
ton points, we use the experimental form factor values,

Q4F
p
1 (Q

2) � Q4G
p
M(Q2) � 1:0 GeV4; Q2 � 7 { 15 GeV2; (14)

which are representative of the region where both scaled form factors atten out, and are
also similar to the highest experimental values of s available in Compton scattering.x To
normalize the theoretical Compton curves, we recalculated the proton form factor at leading
order in PQCD, obtaining

Q4F
p
1 (Q

2) =
(4� �s fN)

2

216
IF ; (15)

where

IF =

8>>>>><
>>>>>:

2:500� 105; (CZ),
2:505� 105; (GS),
3:653� 105; (KS),
2:897� 105; (COZ),
0; (ASY).

(16)

These results, using the wave function (2) which is equivalent to that in ref. [10], are precisely
a factor of two smaller than several previous calculations using the same wave functions [30].
We do not understand the origin of this discrepancy. We do agree with the normalization
of the hard scattering amplitude and the form factor in ref. [31] (which uses, however, a
di�erent representation of the proton wave function than eq. (2)).

Figure 10 shows the Compton cross section, normalized according to eq. (13), for both
PQCD and the experimental data. We omit the ASY distribution amplitude, since the lead-
ing order ASY form factor vanishes. Compared with the conventionally normalized curves

xIf one equates the four-momentum transfer to the proton in the two processes | Q2 in the form factor
and �t in Compton scattering | then the corresponding Compton s = 2Q2=(1 � cos �) should actually
be considerably bigger than Q2. At 90�, for example, s = 2Q2. Unfortunately, there are no experimental
Compton data with s this large (all have �t < 5:3 GeV2), so there is not a good overlap with the region (14)
where the elastic form factor is beginning to scale properly.
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Figure 10: The scaled unpolarized Compton cross section, normalized by the scaled elastic pro-

ton form factor, as in eq. (13), for four distribution amplitudes, compared with the experimental

data [18, 28].
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Figure 11: The initial state helicity correlation ALL in perturbative QCD for all �ve distribution

amplitudes. Also plotted is the handbag model prediction for E = 4 GeV (GRV) [4], and a diquark

model prediction [5].

in �g. 9, the spread between the predictions of the three qualitatively similar distribution
amplitudes, KS, COZ and CZ, has become much smaller. The theoretical curves also lie a
factor of 2 to 5 closer to the data. However, they still fall about an order of magnitude below
the data at the widest scattering angles. Thus it seems unlikely that the elastic proton form
factor and the Compton scattering amplitude are both described by PQCD at presently
accessible energies, unless there are large higher-order and process-dependent corrections.

3.4 Asymmetries

Various polarization asymmetries can be constructed from the helicity amplitudes. These
observables may provide additional diagnostic power for uncovering the Compton scattering
mechanism, beyond what the unpolarized cross section provides.

Figure 11 presents the perturbative QCD results for the initial state helicity correlation
ALL de�ned in eq. (10). Also shown is the handbag model prediction [4] for E = 4 GeV,
where the form factors RV;A were evaluated using the parton distribution functions of
GRV [32]. In leading-twist PQCD, the proton helicity is conserved. The handbag model
does not inherently require proton helicity conservation, but it has been assumed in ref. [4].
Thus the PQCD and handbag curves for ALL in �g. 11 can be equated to the longitudinal
photon-to-proton polarization transfer asymmetry, which is slated to be measured for at
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Figure 12: The photon spin transfer coe�cient DLL in perturbative QCD for all �ve distribution

amplitudes. Also plotted is the diquark model prediction for E = 4 GeV (standard DA) [6]. The

handbag model predicts DLL = 1.

least one scattering angle in an upcoming experiment [19]. The diquark model analyzed in
ref. [5, 6] has nonvanishing proton helicity-ip amplitudes at �nite s, making ALL and the
polarization transfer into distinct asymmetries. We plot the diquark prediction for ALL from
ref. [5]. Figure 11 shows that PQCD gives quite di�erent qualitative behavior from both
the handbag and diquark models for ALL, and they should be distinguishable with the help
of experimental data at just a couple of backward scattering angles. A caveat is that the
GS curve is somewhat oscillatory, so one might wonder whether a distribution amplitude
`between' GS and the fCZ,COZ,KSg class of amplitudes could produce behavior similar to
the handbag model.

One can also de�ne [6] a photon spin transfer coe�cient

DLL �
d�++

dt
� d�+�

dt
d�++

dt
+ d�+�

dt

; (17)

where now d���
0

=dt is the di�erential cross section for initial and �nal state photon helicities
� and �0, and unpolarized incoming and outgoing protons. Figure 12 gives the PQCD
predictions for this asymmetry, as well as that of the diquark model for E = 4 GeV and
a `standard' distribution amplitude [6]. The handbag model predicts DLL = 1, basically
because the helicity-ip quark Compton amplitude "q ! #q vanishes at Born level for
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Figure 13: The photon asymmetry � in perturbative QCD for all �ve distribution amplitudes.

Also plotted is the diquark model prediction for E = 4 GeV (standard DA) [6]. The handbag

model predicts � = 0.

massless quarks.
The �nal asymmetry we plot is the photon asymmetry [6]

� �
d�?
dt

� d�k
dt

d�?
dt

+
d�k
dt

; (18)

where d�?=dt and d�k=dt are the di�erential cross sections for linearly polarized photons,
with the polarization plane perpendicular or parallel (respectively) to the scattering plane.
Generation of this asymmetry requires a nonzero photon helicity-ip amplitude; hence the
asymmetry vanishes in the handbag model. Figure 13 plots the PQCD and diquark pre-
dictions. The diquark prediction is shown for E = 4 GeV and a `standard' distribution
amplitude; for another distribution amplitude � can become positive in the backward region
instead of negative [6]. This asymmetry has actually been measured [33], however only for
E = 3:45 GeV and cos � > 0:8. A high-energy wide-angle measurement would be very
useful for distinguishing between handbag and PQCD mechanisms.
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4 Conclusions

Motivated by conicting results in the literature, we have recalculated the �xed-order, Born
level predictions of perturbative QCD for proton Compton scattering, for �ve di�erent dis-
tribution amplitudes. While our results do not agree with those of any previous group, they
do agree very well with those of ref. [17] for � < 110�, and the di�erences for � > 110� seem
to be isolated to a single helicity amplitude, M""

"".
From the helicity amplitudes we computed three separate polarization asymmetries. Ex-

perimental measurements of these asymmetries could be used in conjunction with the un-
polarized di�erential cross section in order to help shed light on the mechanism involved in
the Compton scattering process.

We also have attempted to reduce the uncertainty in the overall normalization of the
Compton cross section by normalizing it by the square of the elastic proton form factor.
This exercise reduces the spread in the theoretical predictions, but it leaves them an order
of magnitude below the data. Unfortunately, this result makes it di�cult to simultaneously
explain the current data on the elastic proton form factor and on Compton scattering in terms
of perturbative QCD, without appealing to large uncalculated higher-order and process-
dependent corrections.
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