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Abstract

We study the exactly degenerate case for three lefthanded Majorana

neutrinos building a general parametrization for the leptonic mixing ma-

trix characterized by two angles and one CP violating phase and identify

a weak-basis invariant relevant, in this case, for CP violation. After lift-

ing the degeneracy, this parametrization accommodates the present data

on atmospheric and solar neutrinos, as well as neutrinoless double beta

decay. Some of the leptonic mixing ans�atze suggested in the literature

correspond to special cases of this parametrization.
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1 Introduction

In the Standard Model (SM) neutrinos are massless and there is no mixing in the

leptonic sector. Currently there are indications for neutrino oscillations in solar

[1], atmospheric [2] and accelerator [3] experiments with the strongest evidence

coming from the Super-Kamiokande atmospheric neutrino data [2]. The LSND

experiment is the only one that has not been con�rmed independently. Neutrino

oscillations are a clear sign of physics beyond the SM requiring the existence of

massive neutrinos. The interpretation of the solar and atmospheric anomalies

can be done in the framework of three lefthanded neutrinos, without additional

sterile neutrinos. In our work [4], we have considered the case of three highly

degenerate Majorana neutrinos and we analised in detail leptonic mixing and

CP violation in the limit of exactly degenerate masses identifying, in this limit,

a weak-basis invariant which controls the strength of CP violation. We showed

that a two angle parametrization suggested by the exact degeneracy limit can

�t all the present atmospheric and solar neutrino data in agreement with the

experimental bound imposed by neutrinoless double beta decay. Our two angle

parametrization has the interesting property of reproducing, for speci�c choices

of the angles, several of the mixing schemes proposed in the literature such as

bimaximal mixing [5], democratic mixing [6] as well as the scheme suggested by

Georgi and Glashow [7].

2 The limit of exact degeneracy

The experimental constraints on squared neutrino mass di�erences coming from

solar and atmospheric experiments together with the assumption that neutrino

masses might be of the order of 1eV lead to highly degenerate masses [8].

The terms of the Lagrangean relevant for our discussion are

Lmass = � (�L�)
T C�1 m�� �L� + h:c: (1)

and

LW =
g

2

�
e; �; �

�
L

� U

0
@ �1

�2
�3

1
A

L

W� + h:c: (2)

Lmass is a generic Majorana mass term for the three lefthanded neutrinos where

m = (m��) is a 3 � 3 complex symmetric mass matrix, and �L� denote weak

eigenstates. In principle the matrix m could be an e�ective Majorana mass

matrix within a framework with three left-handed and three right-handed neu-

trinos. We shall work in the weak-basis (WB) where the charged lepton mass

matrix is diagonal, real and positive. The neutrino mass matrix can be diago-

nalized by the transformation

UT �m � U = diag(m�1 ; m�2 ; m�3) (3)
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so that the weak eigenstates �L� , are related to the mass eigenstates, �Li , by

�L� = U�i �Li and the �elds in the charged current given by Eq.(2) are already

physical �elds.

In general the neutrino diagonalization matrix U considered above can be

parametrized by three angles and three phases that are CP violating. It is well

known that in the case of Dirac neutrinos only three angles and one phase are

required to parametrize U and that in the limit of exact degeneracy U can be

rotated away into the unit matrix through a rede�nition of the neutrino �elds.

In this respect Majorana neutrinos are fundamentally di�erent and only if the

theory is CP invariant and the three degenerate neutrinos have the same CP

parity, can the matrix U be rotated away.

In the limit of exact degeneracy with � the common neutrino mass we shall

denote the mixing matrix by U� and de�ne a dimensionless mass matrix by Z�
given by Z� = m=�. From Eq(3) we obtain

Z� = U?
� � U

y
� (4)

so that Z� is a unitary symmetric matrix and can be written without loss of

generality as

Z� = K� �

0
@ c� s�c� s�s�

s�c� w1 w2

s�s� w2 w3

1
A �K� (5)

where c and s stand for cosine and sine respectively, the wi may be complex

entries and K is a diagonal unitary matrix . After a WB transformation under

which Z� ! K � Z� �K, Z� transforms into

Z� =

0
@ 1 0 0

0 c� s�
0 s� �c�

1
A �

0
@ c� s� 0

s� z22 z23
0 z23 z33

1
A �

0
@ 1 0 0

0 c� s�
0 s� �c�

1
A (6)

Unitarity of Z�, requires that either s� or z23 vanish. The case s� = 0 leads to

CP invariance. Assuming s� 6= 0 the most general form for Z� is given by:

Z� =

0
@ 1 0 0

0 c� s�
0 s� �c�

1
A �

0
@ c� s� 0

s� �c� 0

0 0 ei�

1
A �

0
@ 1 0 0

0 c� s�
0 s� �c�

1
A (7)

In the cases � = 0; � there is, once again, CP conservation. It can be readily

veri�ed that this parametrization does not include the trivial case where CP is a

good symmetry and all neutrinos have the same CP parity [9], corresponding to

the eigenvalues (1; 1; 1). In fact in the case of CP consevation Z� is diagonalized

by an orthogonal transformation leaving invariant both Tr(Z�) and det(Z�) and

there is no choice of parameters in Eq.(7) leading to a trace and determinant

corresponding to this particular case. On the other hand the set of eigenvalues

(1;�1; 1) and (1;�1;�1) corresponding to one neutrino with opposite CP parity

to the other two can be obtained for � = 0 and � = �, respectively. The

diagonalization of the matrix Z� through the transformation of Eq.(3), together
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with the requirement of positive diagonal elements requires a U� matrix given

by

U� =

0
@ 1 0 0

0 c� s�
0 s� �c�

1
A �
0
@ cos( �

2
) sin( �

2
) 0

sin( �
2
) � cos( �

2
) 0

0 0 e�i�=2

1
A �
0
@ 1 0 0

0 i 0

0 0 1

1
A (8)

U� is not an orthogonal matrix even in the CP conserving limit, i.e., for � = 0,

�, as a result it cannot be rotated away through a rede�nition of the neutrino

�elds.

From this discussion we see that in the case of three degenerate Majorana

neutrinos the parametrization of U requires two angles and one phase and there

may be CP violation [10].It can be shown that a necessary and su�cient condi-

tion for CP invariance, in the degenerate limit, is:

G � Tr [ (m � h �m?) ; h?]
3
= 0 (9)

where h = m` �m
y
`
, and m` denotes the charged lepton mass matrix. G is a WB

invariant and can be written as

G = 6i �m Im[(Z�)11(Z�)22(Z�)
?
12
(Z�)

?
21
]

= 3i
2
�m cos(�) sin2(�) sin2(2�) sin(�)

(10)

where �m = �6 (m2

� �m2

� )2(m2

� �m2

e )
2(m2

� �m2

e )
2 is a multiplicative factor

which contains the di�erent masses of the charged leptons and the common

neutrino mass �. In Refs.[10] [11] various examples of CP-odd WB-invariants

were constructed, but all of those invariants automatically vanish in the limit of

exact degeneracy whilst the invariant of Eq.(9) only vanishes if CP is conserved.

It was shown in Ref. [4] that the imposition of maximal CP violation leads to

a structure of the Majorana neutrino mass of the type that one obtains in the

framework of universal strength for Yukawa couplings [12].

3 Lifting the degeneracy. Phenomenological im-

plications

In the limit of exact degeneracy, the leptonic mixing matrix U� is param- etrized

by two angles �, � and one phase � and is de�ned only up to an arbitrary orthog-

onal transformation U� ! U� �O. The physically interesting case corresponds to
quasidegenerate neutrinos. Let us assume that the degeneracy is lifted through

a small perturbation:

Z = Z� + " Q (11)

where " is a small parameter and Q is a symmetric complex matrix of order one.

It was shown in Ref. [4] that in the presence of a small perturbation around

the degeneracy limit, the mixing matrix becomes, to leading order, U� � O,
where O is no longer arbitrary, being the orthogonal matrix which diagonalizes

the symmetric real matrix A, de�ned by A = Re(UT
� �Q � U�). As a result, for
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quasidegenerate neutrinos, to leading order, only one CP violating phase appears

in the leptonic mixing, namely the phase � present in U� and the question of

whether the two angle parametrization given by Eq.(8) can accommodate the

present experimental data on atmospheric and solar neutrinos, as well as the

constraints on double beta decay immediately arises. Of course this corresponds

to the case where the matrix UT
� �Q � U� is already a real and diagonal matrix

lifting the degeneracy as required experimentally.

The constraints arising from neutrinoless double beta decay put an upper

bound on < m >, an average neutrino mass, given in standard notation by

< m > =
X

i
U2

ei m�i = m?
ee (12)

where the Uei denote the elements of the �rst row of the mixing matrix U , and

mee is the (1; 1) element of the mass matrix m. At present, the strongest bound

is j < m > j = jmeej < 0:2 eV [13]. In the limit of exact degeneracy, we have

mee = � cos(�), where we have used the parametrization of Eq.(8). If we �x

� = 1 eV , then neutrino masses are equal to a precision su�cient to neglect

their di�erences, and the experimental bound on mee immediately translates

into a single bound on the parameter �, namely j cos(�)j < 0:2.

In our framework, without sterile neutrinos, the atmospheric neutrino data

supports the existence of oscillations of atmospheric neutrinos to tau neutrinos

with a large mixing angle satisfying the bound sin2(2�atm) > 0:82, and the

neutrino mass square di�erence in the range 5 � 10�4 eV 2 < �m2

atm
< 6 �

10�3 eV 2. This interpretation is further supported by recent data from the

CHOOZ reactor netrino experiment [14] leading to the upper bound j Ue3 j�
(0:22� 0:14).

In the context of three left-handed neutrinos, the probability for a neutrino

�� to oscillate to other neutrinos is

1� P (�� ! ��) = 4
X

i<j
U�iU

?
�iU

?
�jU�j sin2

"
�m2

ji

4

L

E

#
(13)

where �m2

ji = jm2

j �m2

i j, E is the neutrino energy and L denotes the distance

travelled by the neutrino between the source and the detector. Since in the range

L=E that is relevant for atmospheric neutrinos the term in sin2[(�m2

21
=4)(L=E)]

can be disregarded, we may identify sin2(2�atm) with 4(U21U
?
21
U?
23
U23+ U22U

?
22
U?
23
U23).

In the framework of our two-angle parametrization of Eq.(8), the above com-

bination of matrix elements has a simple form and one obtains sin2(2�atm) =

sin2(2�), i.e., �atm can be identi�ed with the angle � and thus the atmospheric

neutrino data leads to the constraint sin2(2�) > 0:82.

The discrepancy between the observed and the calculated [15] solar neutrino


uxes also requires neutrino oscillations, although at this stage various schemes

are still possible, namely within the framework of the MSW mechanism [16]

there is a small angle solution sin2(2�sol) � 7�10�3 with �m2

sol
� 6�10�6 eV 2,

and a large angle solution sin2(2�sol) � 0:65 � 0:97 with �m2

sol
� (2 � 20) �

10�5 eV 2. Another solution could be vacuum oscillations with sin2(2�sol) � 0:9
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and �m2

sol
� 10�10 eV 2. Since in our two-angle parametrization one has U13 =

0 we obtain sin2(2�sol) = 4U11U
?
11
U?
12
U12 leading to sin2(2�sol) = sin2(�), i.e.,

in our parametrization 2�sol = �.

We see that each of the experiments considered above independently con-

strains a single parameter. Also, it is clear from Eq.(12), that with small solar

neutrino mixing the bound from double beta decay would not be satis�ed for

quasidegenerate neutrinos with masses of the order of 1 eV .

Finally we show that some of the neutrino mixing schemes proposed in the lit-

erature correspond to speci�c cases of the two-angle parametrization suggested

by Eq.(8).

(a) Bimaximal Mixing [5]: In this scheme the lines of the neutrino mixing

matrix have the following structure:

L1 =
�

1p
2
; �1p

2
; 0
�
; L2 =

�
1

2
; 1
2
; 1p

2

�
; L3 =

�
�1
2
; �1

2
; 1p

2

�
(14)

This pattern of neutrino mixing is obtained within the two-angle parame- triza-

tion for the following values of �, � and �:

� = 0 ; cos(�=2) = � sin(�=2) = � cos(�) = sin(�) =
1
p
2

(15)

(b) Democratic Mixing [6]: In this case the neutrino mixing matrix has, to

a very good approximation, the following form:

L1 =
�

1p
2
; �1p

2
; 0
�
; L2 =

�
1p
6
; 1p

6
; �2p

6

�
; L3 =

�
1p
3
; 1p

3
; 1p

3

�
(16)

Within the two-angle parametrization, one obtains the democratic mixing for

the following values of the parameters:

� = 0 ; cos(�=2) = � sin(�=2) =
1
p
2
; cos(�) =

1
p
2
sin(�) =

�1
p
3

(17)

In the above analysis, we have not paid attention to the factors \i" appearing

in our two-angle parametrization of Eq.(8). As we have previously emphasized,

these factors of \i" have to do with the fact that in the construction of the

two-angle parametrization, we have implicitly assumed that in the limit of CP

invariance (i.e. sin(�) ! 0), one of the Majorana neutrinos has relative CP

parity opposite to the other two. The factors of \i" do not play any rôle in the

analysis of atmospheric and solar neutrino data, but are crucial in the analysis

of double beta decay.

(c) Georgi-Glashow mass matrix [7]: Using an analysis of the present neu-

trino data Georgi and Glashow have suggested the following approximate form

for the Majorana neutrino mass matrix

(m)1i = �
�
0; 1p

2
; 1p

2

�
; (m)2i = �

�
1p
2
; 1
2
; �1

2

�
;

(m)3i = �
�

1p
2
; �1

2
; 1
2

� (18)
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From Eq.(7) it follows that this neutrino mass matrix is obtained, within the

two-angle parametrization for the following values of its parameters,

� = 0; sin(�) = 1; cos(�) = sin(�) = 1p
2

(19)

Acknowledgments

M. N. R is grateful to the Organizers of the the 9th Lomonosov Conference

on Elementary Particle Physics for the warm hospitality. M. N. R. received

�nancial support from FCT - Funda�c~ao de Ciência e Tecnologia through GTAE

- Grupo Te�orico de Altas Energias and CFIF - Centro de F��sica das Interac�c~oes

Fundamentais, to participate at the Conference.

References

[1] Y. Suzuki, Talk given at the XIX Intern. Symp. on Lepton and Photon In-

teractions at High Energies, Stanford University, USA, August 9-14, 1999.

[2] A. Mann, Talk given at the XIX Intern. Symp. on Lepton and Photon In-

teractions at High Energies, Stanford University, USA, August 9-14, 1999.

[3] LSND Collaboration, C. Athanassopoulos et. al., Phys. Rev. Lett. 8, 1774

(1998); Phys. Rev. C58, 2489 (1998).

[4] G. C. Branco, M. N. Rebelo and J. I. Silva-Marcos, Phys. Rev. Lett. 82,

683 (1999).

[5] F. Vissani, hep-ph/9708483; B. Barger, S. Pakvasa, T. Weiler and K. Whis-

nant, Phys. Lett. B437, 107 (1998); A. Baltz, A. S. Goldhaber and M.

Goldhaber, Phys. Rev. Lett. 81, 5730 (1998); M. Jezabek and A. Sumino,

Phys. Lett. B440, 327 (1998)

[6] H. Fritzsch and Z. Z. Xing, Phys. Lett. B372, 265 (1996); M. Fukugita,

M. Tanimoto and T. Yanagida, Phys. Rev. D 57, 4429 (1998); Y. Koide,

Phys. Rev. D 39, 1391 (1989).

[7] H. Georgi and S. L. Glashow, hep-ph/9808293.

[8] D.O. Caldwell and R.N. Mohapatra, Phys. Rev. D 48, 3259 (1993); A.S.

Joshipura, Z. Phys. C 64, 31 (1994); S.T. Petcov and A.Yu. Smirnov, Phys.

Lett. B322, 109 (1994); P. Bamert and C. P. Burgess Phys. Lett. B329,

289 (1994).

[9] L. Wolfenstein, Phys. Lett. B107, 77 (1981).

[10] G.C. Branco, L. Lavoura and M.N. Rebelo, Phys. Lett. B180, 264 (1986).

[11] F. del Aguila, J. A. Aguilar-Saavedra, and M. Zralek, Comput. Phys. Com-

mun. 100, 231 (1997).

6



[12] G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, Phys. Lett. B428, 136

(1998).

[13] L. Baudis et al., Phys. Rev. Lett. 83, 41 (1999).

[14] CHOOZ Collaboration, M. Apollonio et al., Phys. Lett. B446, 415 (1999).

[15] J. N. Bahcall and M.H. Pinsonneault, Rev. Mod. Phys. 64, 885 (1992); J.

N. Bahcall, S. Basu and M.H. Pinsonneault, Phys. Lett. B433, 1 (1998).

[16] L. Wolfenstein, Phys. Rev. D 17,2369 (1978); ibid D 20,2634 (1979); S.P.

Mikheyev, A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985); ibid Nuovo

Cim. C 9, 17 (1986).

7


