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Abstract

The rare decays B ! K(�)`+`�, B ! K(�)��� and Bs ! �+�� are analyzed in a generic sce-

nario where New Physics e�ects enter predominantly via Z penguin contributions. We show

that this possibility is well motivated on theoretical grounds, as the �sbZ vertex is particu-

larly susceptible to non-standard dynamics. In addition, such a framework is also interesting

phenomenologically since the �sbZ coupling is rather poorly constrained by present data. The

characteristic features of this scenario for the relevant decay rates and distributions are inves-

tigated. We emphasize that both sign and magnitude of the forward-backward asymmetry of

the decay leptons in �B ! �K�`+`�, A( �B)
FB

, carry sensitive information on New Physics. The

observable A( �B)
FB

+ A(B)
FB

is proposed as a useful probe of non-standard CP violation in �sbZ

couplings.
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1 Introduction

Despite the fact that the Cabibbo-Kobayashi-Maskawa (CKM) mechanism provides a consis-

tent description of presently available data on quark-
avour mixing, the 
avour structure of

the Standard Model (SM) is not very satisfactory from the theoretical point of view, especially

if compared to the elegant and economical gauge sector. On the contrary, it is natural to

consider it as a phenomenological low-energy description of a more fundamental theory, able,

for instance, to explain the observed hierarchy of the CKM matrix.

A special role in searching for experimental clues about non-standard 
avour dynamics

is provided by 
avour-changing neutral-current (FCNC) processes. Within the SM these are

generated only at the quantum level and are additionally suppressed by the smallness of the o�-

diagonal entries of the CKM matrix. On one side this makes their observation very challenging

but on the other side it ensures a large sensitivity to possible non-standard e�ects, even if these

occur at very high energy scales.

In general we can distinguish two types of FCNC processes: �F = 2 and �F = 1 tran-

sitions. The former has been successfully tested in K0 � �K0 and Bd � �Bd systems, both via

CP -conserving (�MK and �MBd
) and CP -violating observables ("K and sin 2�). On the

other hand, much less is known about the latter. Few �S = 1 FCNC transitions have been

observed in K decays, but most of them are a�ected by sizable long-distance uncertainties.

The only exception is B(K+ ! �+���) [1], which is however a�ected by a large experimental

error. The situation is slightly better in the B sector, where the inclusive b! s
 rate provides

a theoretically clean �B = 1 FCNC observable [2]. Nonetheless, it is clear that a substantial

improvement is necessary in order to perform more stringent tests of the SM.

In the present paper we focus on a speci�c class of non-standard �B = 1 FCNC transitions:

those mediated by the Z-boson exchange. As we shall discuss, these are particularly interesting

for two main reasons: i) there are no stringent experimental bounds on these transitions yet;

ii) it is quite natural to conceive extensions of the SM where the Z-mediated FCNC amplitudes

are substantially modi�ed, even taking into account the present constraints on �B = 2 and

b! s
 processes.

The simplest way to search for non-standard �B = 1 FCNC e�ects mediated by the Z-

boson exchange is to look for parton-level transitions of the type b ! s(d) + `+`�(���). None

of such processes has been observed yet, but the situation will certainly improve in a short

term, with the advent of new high statistics experiments at e+e� and hadron B-factories. In

principle the theoretically cleanest observables are provided by inclusive decays, which should

play an important role in the longer run. On the other hand, the exclusive variants will be more

readily accessible in experiment. Despite the sizable theoretical uncertainties in the exclusive

hadronic form factors, these processes could therefore give interesting �rst clues on deviations

from what is expected in the Standard Model. This is particularly true if those happen to be

large or if they show striking patterns. Since in the present study we are mainly interested

in such a possibility, we shall restrict our phenomenological discussion to the exclusive three-

body processes B ! (K;K�)+ (�+��; ���). Having branching ratios in the 10�6� 10�5 range,

and a relatively clear signature, these decays represent one of the primary goals of the new

experiments. As we will show, forward-backward and CP asymmetries of these modes provide

a powerful tool not only to search for New Physics, but also to clearly identify the interesting

scenario where the dominant source of non-standard dynamics can be encoded in e�ective
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FCNC couplings of the Z boson.

The paper is organized as follows. In Section 2 the general features characterizing the

FCNC couplings of the Z boson beyond the SM are discussed; we further introduce a general

parameterization of these e�ects, both for b! s and b! d transitions, in terms of the complex

couplings ZL;R

qb
(q = s; d) and evaluate their model-independent constraints. In Section 3 we

present various estimates for these couplings in speci�c extensions of the Standard Model.

Notations and general formulae for the phenomenological analysis are introduced in Section

4. In Section 5 and Section 6 we discuss how the non-standard FCNC couplings of the Z

would manifest themselves and how they could possibly be isolated in B ! (K;K�) + ��� and

B ! (K;K�) + �+�� decays, respectively. Implications for Bs ! �+�� are brie
y described

in Section 7. A summary of the results can be found in Section 8.

2 General features of FCNC couplings of the Z boson

In a generic extension of the Standard Model where new particles appear only above some high

scaleMX > MZ , we can always integrate out the new degrees of freedom and generate a series of

local FCNC operators already at the electroweak scale. Those relevant for b! s(d)+`+`�(���)

transitions can be divided into three wide classes:

� Four-fermion operators. The local four-fermion operators obtained by integrating out

the new particles necessarily have dimension greater or equal to six. These could be

generated either at the tree level (e.g. by leptoquark exchange) or at one loop (e.g. by

SUSY box diagrams) but in both cases, due to dimensional arguments, their Wilson

coe�cients are expected to be suppressed at least by two inverse powers of the New

Physics scale MX .

� Magnetic operators. The integration of the heavy degrees of freedom can also lead to

operators with dimension lower that six, creating an e�ective FCNC coupling between

quarks and SM gauge �elds. In the case of the photon �eld, the unbroken electromagnetic

gauge invariance implies that the lowest dimensional coupling is provided by the so-called

\magnetic" operators � �b���sF�� . Having dimension �ve, their Wilson coe�cients are

expected to be suppressed at least by one inverse power of MX .

� FCNC Z couplings. Due to the spontaneous breaking of SU(2)L�U(1)Y we are allowed,

in the case of the Z boson, to build an e�ective FCNC coupling of dimension four:
�bL(R)


�sL(R)Z�. The coe�cient of this operator must be proportional to some symmetry-

breaking term but, for dimensional reasons, it does not need to contain any explicit 1=MX

suppression.

Given the above discussion, the e�ective FCNC couplings of the Z boson appear particularly

interesting and worth to be studied independently of the other e�ects: in a generic model with

additional sources of SU(2)L � U(1)Y breaking, these are the only �F = 1 FCNC couplings

that do not necessarily decouple by dimensional arguments in the limit MX=MZ � 1. It

should be noticed that the requirement of naturalness in the size of the SU(2)L � U(1)Y
breaking terms suggests that also the adimensional couplings of the non-standard Z-mediated
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FCNC amplitudes decouple in the limitMX=MZ !1. However, the above naive dimensional

argument remains a strong indication of an independent behaviour of these couplings with

respect to the other FCNC amplitudes [3, 4]. As we will illustrate in Section 3, this independent

behaviour is indeed realized within various extensions of the SM.

Interestingly, FCNC couplings of the Z represent also the least constrained class among

those listed above: magnetic operators are bounded by b ! s
 and, within most models,

dimension-six operators are strongly correlated to those entering B � �B mixing. The scenario

where the dominant non-standard contribution to b! s(d)+ `+`�(���) transitions is mediated

by a Z�bs(d) coupling is therefore particularly appealing also from a purely phenomenological

point of view.

2.1 E�ective Lagrangian and model-independent constraints

The e�ective FCNC couplings of the Z, relevant for the b! s transition, can be described by

means of the following e�ective Lagrangian

LZ
FC

=
GFp
2

e

�2
M2

Z

cos�W

sin�W

Z�
�
ZL

sb
�bL
�sL + ZR

sb
�bR
�sR

�
+ h:c: ; (1)

where ZL;R

sb
are complex couplings and the overall normalization has been chosen in analogy

to the s! d case discussed in [3, 5]. For later convenience we also de�ne Z
L;R

bs
= (Z

L;R

sb
)�. The

SM contribution to ZL;R

sb
, evaluated in the 't Hooft-Feynman gauge, can be written as2

ZR

sb
jSM = 0 ; ZL

sb
jSM = V �

tb
VtsC0(xt) ; (2)

where Vij denote the CKM matrix elements, xt = m2
t
=m2

W
and the function C0(x) can be found

in [6].

At present the cleanest model-independent constraints on jZL;R

sb
j can be obtained from the

experimental upper bounds on B(B ! Xs`
+`�). Normalizing the inclusive rate for B !

Xs`
+`� to the well known �(B ! Xce

+�e) and assuming that all contributions to the former

but those generated by LZ
FC

are negligible, we can write

�(B ! Xs`
+`�)

�(B ! Xce+�e)
=

�2

�2 sin4�W

���ZL

sb

���2 + ���ZR

sb

���2
jVcbj2 f(mc=mb)

��
a`
L

�2
+
�
a`
R

�2�
; (3)

where f(z) = (1 � 8z2 + 8z6 � z8 � 24z4 ln z) is the phase space factor due to the non-

vanishing charm mass and, for consistency, we have neglected the small QCD correction factor

in �(B ! Xce
+�e). Here a

`

L(R) denotes the left(right)-handed coupling of the lepton to the Z,

namely a`
L
= sin2�W � 1=2 and a`

R
= sin2�W for ` = e or �, whereas a�

L
= 1=2 and a�

R
= 0

for the neutrino case. Using B(B ! Xce
+�e) = 0:105, sin2�W = 0:23, ��1 = 129, jVcbj = 0:04

and f(mc=mb) = 0:54, we �nd

B(B ! Xs`
+`�) = 1:76� 10�3

����ZL

sb

���2 + ���ZR

sb

���2� ; (4)

B(B ! Xs���) = 1:05� 10�2
����ZL

sb

���2 + ���ZR

sb

���2� ; (5)

2 As it is well known, the SM contribution to FCNC Z penguins is not gauge invariant. We recall, however,

that the leading contribution to both b ! s(d)`+`� and b ! s(d)��� amplitudes in the limit xt ! 1 is gauge

independent and is indeed generated by the Z penguin (C0(xt)! xt=8 for xt !1).
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where in the neutrino mode we have summed over the three lepton families. Experimental

upper bounds exist both for B(B ! Xs`
+`�) and B(B ! Xs���), leading to����ZL

sb

���2 + ���ZR

sb

���2�1=2 <
� 0:15 ; from B(B ! Xs`

+`�) < 4:2� 10�5 [7] ; (6)

����ZL

sb

���2 + ���ZR

sb

���2�1=2 <
� 0:27 ; from B(B ! Xs���) < 7:7� 10�4 [8] : (7)

The strongest bound is presently imposed by B(B ! Xs`
+`�), since the larger sensitivity of

B(B ! Xs���) is compensated by its more di�cult experimental determination.3 The limits

in (6{7) have been derived assuming that all the non-Z-mediated contributions are negligible,

which is a reasonable approximation in view of the present experimental sensitivities. On the

other hand, if the experimental bounds were much closer to the SM expectations, we stress

that the neutrino mode would de�nitely be preferable from the theoretical point of view due

to the absence of electromagnetic and long-distance contributions [10, 11].

Employing the Wolfenstein expansion of the CKM matrix in powers of � = 0:22 [12]

and recalling that C0(xt) � O(1), the SM contribution to ZL

sb
turns out to be of O(�2) �

0:04 (see Eq. (2)), therefore much below the bound (6). As we will show later, more severe

constraints on jZL;R

sb
j can be obtained by the experimental bound on the exclusive branching

ratio B(B ! K��+��). These are however subject to stronger theoretical uncertainties, related

to the assumptions on the form factors, and require a detailed discussion that we postpone to

Section 6.2.

Additional model-independent information on these couplings could in principle be obtained

by the direct constraints on B(Z ! b�s) and by Bs � �Bs mixing, but in both cases these are

not very signi�cant. Concerning the �rst case, we �nd

B(Z ! b�s) =
G2
F
M5

Z
� cos2 �W

4�4�Z sin
2 �W

����ZL

sb

���2 + ���ZR

sb

���2� = 2:3� 10�5
����ZL

sb

���2 + ���ZR

sb

���2� ; (8)

which is quite far from the present experimental sensitivity at LEP of O(10�3) [13], even for

jZL;R

sb
j � O(1). Using the bound (6) in Eq. (8) leads to

B(Z ! b�s) <
� 5� 10�7 ; (9)

to be compared with the SM expectation B(Z ! b�s)jSM ' 1:4� 10�8 [14].

Concerning Bs � �Bs mixing, assuming for simplicity Z
R

sb
= 0 and employing the notations

of [6], we �nd

M(Bs � �Bs)
Z =

�G2
F
M2

W

3�3 sin2 �W
BBsf

2
Bs
MBs�B

�
ZL

sb

�2
(10)

=
4�M(Bs � �Bs)

SM

� sin2 �WS0(xt)

 
ZL

sb

V �

tb
Vts

!2
: (11)

At the moment we cannot extract any interesting information from (11) due to the lack of

a signi�cant upper bound on jM(Bs � �Bs)j. If in the future we were able to exclude that

jM(Bs � �Bs)
Zj is larger than jM(Bs � �Bs)

SM j, then we would obtain���ZL

sb

��� < 7:6 jV �

tb
Vtsj � 0:3 : (12)

3 A result similar to the one in (6) has recently been presented also in Ref. [9].
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Performing the exchange s ! d in Eq. (1-2) we can de�ne, analogously to Z
L;R

sb
, the

couplings ZL;R

db
relevant for the b! d transition. The upper bound (6) would be valid also for

these couplings if we could assume B(B ! Xd�
+��) � B(B ! Xs�

+��), but in the b ! d

case more stringent constraints can be derived from Bd � �Bd mixing. The SM contribution to

M(Bd� �Bd) can account for the observed value of �MBd
, nevertheless, due to the theoretical

uncertainty on BBd
f 2
Bd
, non-standard contributions of comparable size cannot be excluded at

present. Imposing for instance jM(Bd � �Bd)
Z j < jM(Bd � �Bd)

SM j and replacing s ! d in

Eq. (11) we obtain ���ZL

db

��� < 7:6 jV �

tb
Vtdj � 0:06 ; (13)

which is still substantially larger than the SM contribution: ZL

db
jSM = O(�3) � 0:01.

3 Model-dependent expectations for Z
L;R
qb

In the previous section we have seen that sizable non-standard contributions to the FCNC

couplings of the Z are allowed, at least from a purely phenomenological point of view, both for

b ! s and b ! d transitions. In the following we shall analyze the expectations for the ZL;R

qb

couplings in a few speci�c theoretical frameworks. Moreover, we will show various consistent

models where it is a good approximation to encode all the non-standard FCNC e�ects in the

couplings of LZ
FC

.

3.1 Fourth generation

A simple extension of the SM, particularly useful as a toy model for more complicated scenarios,

is obtained by adding a sequential fourth generation of quarks and leptons. This is allowed

by Tevatron and LEP data provided all the new fermions, neutrinos included, are su�ciently

heavy (mt0
>
� 200 GeV) and the splitting among the weak isospin doublets is very small

(jmt0 �mb0 j=mt0
<
� 0:1) (see e.g. [15] and references therein).

This model exhibits a typical non-decoupling e�ect in the Zqb coupling. Indeed, denoting

by Vt0q the mixing angles of the new up-type quark with the light generations, the dominant

non-standard contribution to the Z
L;R

qb
coupling is given by

ZR

qb
j4th = 0 ; ZL

qb
j4th = V �

t0b
Vt0qC0(xt0) '

xt0

8
V �

t0b
Vt0q ; (14)

where xt0 = m2
t0
=m2

W
. In the limit

V �

t0b
Vt0q ! 0 ; m2

t0
!1 ; V �

t0b
Vt0qm

2
t0
! const:; (15)

this is the only non-standard e�ect surviving in b ! s(d) + `+`�(���) transitions. Choosing

su�ciently small mixing angles one can therefore easily evade the experimental constraint on

V �

t0b
Vt0q and, by raising the value of mt0 , still obtain sizable e�ects in ZL

qb
.

In the case of b ! s transitions the dominant constraint on the combination V �

t0b
Vt0s is

imposed by b! s
. Indeed the bounds fromK� �K mixing and K decays can always be evaded

assuming Vt0d = 0, whereas the constraint from Bs� �Bs mixing is very loose. Barring accidental

cancellations in the b ! s
 amplitude, namely assuming that the dominant contribution to
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the latter is the SM one, leads to jV �

t0b
Vt0sj <� �3, almost independently of the value of m0

t
. Even

employing this stringent constraint,4 however, one could still have jZL

sb
j4thj � jZL

sb
jSMj provided

mt0
>
� 400 GeV.

3.2 Generic SUSY models

Due to the large number of new particles carrying 
avor quantum numbers, sizable modi�ca-

tions of FCNC amplitudes are naturally expected within low-energy supersymmetric extensions

of the SM with generic 
avour couplings [17, 18]. Assuming R parity conservation and minimal

particle content, FCNC amplitudes involving external quark �elds turn out to be generated

only at the quantum level, like in the SM. However, in addition to the standard penguin and

box diagrams, also their corresponding superpartners, generated by gaugino/higgsino-squark

loops, play an important role. These contributions to inclusive and exclusive b! s`+`� tran-

sitions have been widely discussed in the literature (see e.g. [19, 20, 21, 22, 23] for a recent

discussion and a complete list of references), employing di�erent assumptions for the soft-

breaking terms. In the following we will emphasize the role of the Z penguins in the context

of the mass-insertion approximation [18].

Similarly to the Z�sd case, extensively discussed in [3, 24], the potentially dominant non-SM

e�ect in the e�ective Z�bq vertex is generated by chargino-up-squark diagrams [19, 21]. Indeed

sizable SU(2)L breaking e�ects can be expected only in the up sector due to the large Yukawa

coupling of the third generation. Moreover, since terms involving external right-handed quarks

are suppressed by the corresponding down-type Yukawa couplings, also within this framework

ZR

qb
turns out to be negligible.

Employing the notations of [3], the full chargino-up-squark contribution to ZL

sb
can be

written as

ZL

sb
jSUSY =

1

8
As

jl
�Ab

ik
Fjilk ; (16)

where

As

jl
= ĤlsL

V̂
y

1j � gtVtsĤltR
V̂
y

2j ; (17)

�Ab

ik
= Ĥ

y

bLk
V̂i1 � gtV

�

tb
Ĥ

y

tRk
V̂i2 ; (18)

Fjilk = V̂j1V̂
y

1i �lk k(xik; xjk)� 2Ûi1Û
y

1j �lk
p
xikxjkj(xik; xjk)

��ij ĤkqL
Ĥ

y

qLl
k(xik; xlk) : (19)

Here gt = mt=(
p
2mW sin�) is the top Yukawa coupling; V is the CKM matrix; V̂ and Û are

the unitary matrices that diagonalize the chargino mass matrix ( Û�M�V̂
y = diag(M�1

;M�2
) )

and Ĥ is the one that diagonalizes the up-squark mass matrix (written in the basis where the

di
L
� ~uj

L
��n coupling is family diagonal and the diL� ~uj

R
��n one is ruled by the CKM matrix).

The explicit expressions of k(x; y) and j(x; y) can be found in [3, 24] and, as usual, xij denote

ratios of squared masses.

The product of As

jl
and �Ab

ik
in (16) generates four independent terms, proportional to

g2
t
V �

tb
Vts, gtVts, gtV

�

tb
and 1, respectively. As a �rst approximation we can neglect those pro-

portional to Vts, which are clearly suppressed with respect to the SM contribution. A further

4 Substantially larger values of jV �
t0b
Vt0sj are possible assuming that the contribution of the fourth generation

changes the sign of the b! s
 amplitude. See Ref. [16] for a recent discussion of this point.
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simpli�cation can be obtained employing the so-called mass-insertion approximation, i.e. ex-

panding the up-squark mass matrix around its diagonal. In this way it can been shown that

the potentially dominant contribution is the one generated to the �rst order by the ~tR � ~us
L

mixing [19], namely

ZL

sb
jRLSUSY = �1

8
gtV

�

tb

(M2
U
)tRsL

M2
~uL

V̂
y

1j

h
V̂j1V̂

y

1ik(xiuL ; xjuL; xtRuL)

��ijk(xiuL ; xtRuL; 1)� 2Ûi1Û
y

1j

p
xiuLxjuLj(xiuL; xjuL; xtRuL)

i
V̂i2 : (20)

Notice that, contrary to the ZL

ds
case, here the CKM factor V �

tb
does not imply any additional

suppression and therefore the double left-right mixing discussed in [3] represents only a sub-

leading correction. In ZL

sb
jRLSUSY the necessary SU(2)L breaking (�IW = 1) is equally shared

by the left-right mixing of the squarks and by the chargino-higgsino mixing (shown by the

mismatch of V̂ indices), carrying both �IW = 1=2.

For a numerical evaluation, varying the SUSY parameters entering (20) in the allowed

ranges, we �nd ���ZL

sb
jRLSUSY

��� <� 0:1

�����(M
2
U
)tRsL

M2
~uL

����� = 0:1
���(�U

RL
)32
��� ; (21)

in agreement with the results of [19]. The factor (�U
RL
)32, which represents the analog of Vts in

the SM case, is not very constrained at present [19, 24] and can be of O(1), with an arbitrary

CP -violating phase [21].

Eq. (16-21) can simply be extended to the b ! d case with the replacement s ! d.

Similarly to (�U
RL
)32, also (�

U

RL
)31 is essentially unconstrained at present.

As it can be checked by the detailed analysis of [19], in the interesting limit where the

left-right mixing of the squarks is the only non-standard source of 
avour mixing, the Z-

penguin terms discussed above are largely dominant with respect to supersymmetric box and


-penguin contributions to b ! s`+`�. On the other hand, we note that in processes of

the type b ! sq�q these true penguin terms could easily compete in size with the so-called

trojan-penguin amplitudes discussed in [9].

3.3 Strong electroweak symmetry breaking

The natural alternative to low-energy supersymmetry is the scenario where the Higgs �eld

is not elementary and the electroweak symmetry breaking is generated by some new strong

dynamics appearing at a scale � � 1 TeV. Without a detailed knowledge of the new dynamics,

and of the new degrees of freedom associated with it, a convenient way to describe this scenario

is obtained by considering the most general e�ective Lagrangian written in terms of fermions

and gauge �elds of the SM, as well as the Nambu-Goldstone bosons associated with the spon-

taneous breaking of SU(2)L�U(1)Y ! U(1)em [25]. In this way, imposing the custodial SU(2)

symmetry on the Nambu-Goldstone boson sector, the lowest order terms in the Lagrangian

are completely determined, corresponding to the SM case in the limit of in�nite Higgs mass.

On the other hand, the e�ect of the new dynamics is encoded in the Wilson coe�cients of

higher-order operators, suppressed by appropriate inverse powers of �.

A conservative assumption, usually employed to reduce the number of free parameters, is

that the higher-order operators do not involve directly the fermionic sector. In other words, it
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is assumed that the new dynamics involves only the interactions of electroweak gauge �elds and

Nambu-Goldstone bosons [25]. Under this assumption most of the coe�cients of the allowed

dimension-four operators (appearing at the next-to-leading order) are strongly constrained by

electroweak precision data. However, as pointed out in [26, 27, 28], some of them naturally

escape these bounds and could show up in sizable modi�cations of FCNC amplitudes. Inter-

estingly, this happens despite the intrinsic 
avor-conserving nature of these terms. It occurs

at the loop level, either via modi�cations of the trilinear gauge-boson couplings [28] or via

corrections to the Nambu-Goldstone boson propagators [26, 27].

Also within this context the FCNC couplings of the Z play a special role. As an example,

we consider here the e�ect of the anomalous WWZ coupling. Following the work of Ref. [28],

this can be written as

ZL

qb
jWWZ = �3g

2V �

tb
Vtq

3xt

8
log

 
M2

W

�2

!
+ : : :

� O(1)� V �

tb
Vtq

g2m2
t

�2
log

 
M2

W

�2

!
: (22)

where g is the usual SU(2)L coupling and the dots denote additional �nite terms (i.e. not

logarithmically enhanced). The adimensional coupling �3 is one of the unknown coe�cients

appearing in the next-to-leading order Lagrangian of Ref. [25]. This is essentially unconstrained

by other processes (unless further assumptions are employed) and is expect to be of O(M2
W
=�2)

by dimensional arguments. The relative shift of ZL

qb
with respect to the SM case can thus be

up to 50%. Interestingly, the same relative shift would be present in ZL

ds
, leading to interesting

correlations between rareB andK decays [28]. It is worthwhile to point out that this is the only

non-standard FCNC e�ect due to anomalous gauge-boson couplings which is logarithmically

divergent, which can be taken as an indication of a particular sensitivity of ZL

ds
to the new

dynamics [28]. We �nally note that also within this context ZR

qb
remains una�ected: this is

clearly due to the chiral nature of the SM gauge group and indeed it remains valid also if we

consider the e�ects due to modi�ed Nambu-Goldstone boson propagators [27].

If the conservative assumption that higher-order operators do not involve directly the

fermionic sector is relaxed, the freedom in generating new FCNC e�ects is clearly enhanced.

The �rst natural step is to include only higher-order operators which involve the quarks of the

third generation, as for instance done in [29]. However, the most general scenario is obtained by

considering all generations. In this latter option one could generate FCNC transitions already

at the tree-level [30] and, by restricting the attention to the lowest-dimensional operators, one

would recover the general case described by Eq. (1). The predictivity of this scenario is obvi-

ously very limited, but still, only on dimensional arguments, one can conclude that the FCNC

couplings of the Z could play a very special role. The natural suppression of FCNC would

then suggest ZL;R

qb
� O(m2

t
=�2)� V �

tb
Vtq, leaving open the possibility of O(1) corrections with

respect to the SM case.

3.4 Tree-level Z-mediated FCNC couplings

FCNC couplings of the Z can be generated already at the tree level in various exotic scenarios.

Two popular examples discussed in the literature are the models with addition of non-sequential

generations of quarks (see e.g. [31] and references therein) and those with an extra U(1)
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symmetry (see e.g. [32] and references therein). In the former case, adding a di�erent number

of up- and down-type quarks, the pseudo CKM matrix needed to diagonalize the charged

currents is no more unitary and this leads to tree-level FCNC couplings. On the other hand,

in the case of an extra U(1) symmetry the FCNC couplings of the Z are induced by Z � Z 0

mixing, provided the SM quarks have family non-universal charges under the new U(1) group.

Interestingly these two possibilities (i.e. the extra U(1) and the non-sequential quarks) are

often linked in many consistent extensions of the SM [33]. Here we will not discuss any of such

model in detail. We simply note, however, that for our purposes these could be well described

by the e�ective Lagrangian in (1), provided the contribution of the Z 0 exchange is negligible

or the couplings of the Z 0 to light charged leptons and neutrinos are proportional to the SM

ones.

4 Generalities of exclusive b! s`+`�(���) decays

4.1 E�ective Hamiltonian

The starting point for the analysis of b ! s`+`�(���) transitions is the determination of the

low-energy e�ective Hamiltonian, obtained by integrating out the heavy degrees of freedom of

the theory, renormalized at a scale � = O(mb). In our framework this can be written as

Heff = �
GFp
2
V �

ts
Vtb

 
10X
i=1

[CiQi + C 0

i
Q0

i
] + C�

L
Q�

L
+ C�

R
Q�

R

!
+ h:c: ; (23)

where Qi denotes the Standard Model basis of operators relevant to b ! s`+`� [6] and O0

i

their helicity 
ipped counter parts. In particular, we recall that Qi � (�sb)(�cc), for i = 1 : : : 6,

Q8 � mb�s(� �G)b, whereas the only operators with a tree-level non-vanishing matrix element

in b! s`+`� are given by

Q7 =
e

4�2
�sL���mbbRF

�� ; Q0

7 =
e

4�2
�sR���mbbLF

�� ;

Q9 =
e2

4�2
�sL


�bL �̀
�` ; Q0

9 =
e2

4�2
�sR


�bR �̀
�` ;

Q10 =
e2

4�2
�sL


�bL �̀
�
5` ; Q0

10 =
e2

4�2
�sR


�bR �̀
�
5` : (24)

The last two operators in Heff are de�ned as

Q�

L;R
=

e2

4�2
�sL;R
�bL;R��


�(1� 
5)� (25)

and constitute the complete basis relevant to b! s���.

Due to the absence of 
avour-changing right-handed currents, within the Standard Model

one has

C 0

1�10jSM = C�

R
jSM = 0 : (26)

whereas the remaining non-vanishing coe�cients are known at the next-to-leading order [6, 34,

35]. The coe�cients of Q10 and Q�

L
are scale independent and are completely dominated by
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short-distance dynamics associated with top quark exchange. Their values are therefore well

approximated by the leading order results, given by ( �mt(mt) = 166GeV)5

C�

L
jSM =

4B0(xt)� C0(xt)

sin2�W

= �6:6 ; C10jSM =
B0(xt)� C0(xt)

sin2�W

= �4:2 ; (27)

where the contribution proportional to C0(xt) is the one induced by ZL

sb
jSM in Eq. (2) once

the Z �eld has been integrated out (the full expression for B0(x) can be found in [6]). The

di�erence among the two numerical values in (27) can be taken as an indication of the size

of the non-Z-induced contributions to these coe�cients within the SM. On the other hand, in

the generic non-standard scenario described by LZ
FC

we can write

C�

L
� C�

L
jSM = C10 � C10jSM = � ZL

bs
� ZL

bs
jSM

V �
tsVtb sin

2�W

; C�

R
= C 0

10 = �
ZR

bs

V �
tsVtb sin

2�W

: (28)

In principle the coe�cients C9 and C 0

9 are also sensitive to ZL

bs
and ZR

bs
. In this case,

however, the contribution of LZ
FC

is suppressed by the smallness of the vector coupling of the

Z to charged leptons (jae
V
=ae

A
j = j4 sin2�W � 1j ' 0:08) and as a �rst approximation can be

neglected. Given the above considerations, we will assume in the following that all the Wilson

coe�cients but those in (28) coincide with their SM expressions.

4.2 Kinematics and form factors

In the following sections we shall discuss integrated observables and distributions in the in-

variant mass of the dilepton system, q2, for the three-body decays B ! H`�̀, with H = K,

K� and ` = �; �. The kinematical range of q2 is given by 4m2
`
' 0 � q2 � (mB � mH)

2.

In the neutrino case q2 is not directly measurable but is related to the kaon energy in the

B meson rest frame, varying in the interval mH � EH � (m2
B
+m2

H
)=(2mB) by the relation

q2 = m2
B
+m2

H
�2mBEH . For convenience we de�ne also the dimensionless variables s = q2=m2

B

and rH = m2
H
=m2

B
, and the function

�H(s) = 1 + r2
H
+ s2 � 2s� 2rH � 2rHs : (29)

In the case H = K the hadronic matrix elements needed for our analysis can be written as

h �K(p
K
)j�s
�bj �B(p)i = f+(q

2)(p+ p
K
)� + f�(q

2)q� ; (30)

q�h �K(p
K
)j�s���bj �B(p)i = i

fT (q
2)

mB +mK

h
q2(p+ p

K
)� � (m2

B
�m2

K
)q�
i
; (31)

where q� = p� � p�
K
. Up to small isospin breaking e�ects, which we shall neglect, the same

set of form factors describes both charged (B� ! K�) and neutral ( �B0 ! �K0) transitions.

5Here and in the following we employ the running (MS) mass for the top quark, �mt(mt). For b ! s`+`�

the distinction between the pole mass and the running mass enters, strictly speaking, only beyond the next-to-

leading order we are working in [36]. However, the short-distance MS-mass is the more appropriate de�nition

for FCNC processes involving virtual top quarks, and the higher order corrections are generally better behaved.

This is true in particular for the transitions b ! s��� and Bs ! �+��, where the use of the running mass in

the known next-to-leading order expressions is entirely well de�ned and leads indeed to a small size of the NLO

QCD corrections.
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Similarly, in the case H = K� we can write (�0123 = +1)

h �K�(p
K
; ")j�s
�
5bj �B(p)i = 2mK�A0(q

2)
"� � q
q2

q� + (mB +mK�)A1(q
2)

"
"�
�
� "� � q

q2
q�

#

�A2(q
2)

"� � q
mB +mK�

"
(p+ p

K
)� �

m2
B
�m2

K�

q2
q�

#
; (32)

h �K�(p
K
; ")j�s
�bj �B(p)i = i

2V (q2)

mB +mK�

�����"
��p�p�

K
; (33)

q�h �K�(p
K
; ")j�s���(1 + 
5)bj �B(p)i = � 2T1(q

2)�����"
��p�p�

K

�iT2(q2)
h
"�
�
(m2

B
�m2

K�)� ("� � q)(p+ p
K
)�
i
� iT3(q

2)("� � q)
"
q� �

q2(p+ p
K
)�

m2
B
�m2

K�

#
(34)

Here we have used the phase conventions of [37]. In particular, all form factors are real and

positive. We remark that the large-energy limit discussed in [37] is especially useful to �x the

relative sign of the various form factors in a model independent way.

The form factors fT , T1, T2 and T3 depend on the renormalization scale, which here and in the

following is understood to be � = mb. There is no need to further specify the renormalization

scheme for the tensor operator �s���(1+
5)b, since the issue of a non-trivial scheme dependence

enters only beyond the next-to-leading logarithmic approximation in b! s`+`�

For the numerical evaluations of fi(q
2), Ai(q

2), Ti(q
2) and V (q2) we refer to the recent

analysis of Ref. [20], performed in the framework of light-cone sum rules.

5 B ! (K;K�)���

From a theoretical point of view the neutrino channels are certainly much cleaner compared to

the charged lepton ones due to the absence of long-distance e�ects of electromagnetic origin.

Moreover the smaller number of operators involved (only two) simpli�es their description.

Finally the branching fractions are enhanced by the summation over the three neutrino 
avours.

All these virtues, however, are partially compensated by the di�cult experimental signature.

5.1 B ! K���

The dilepton spectrum of this mode is particularly simple and is sensitive only to the combi-

nation jC�

L
+ C�

R
j [38]:

d�(B ! K���)

ds
=

G2
F
�2m5

B

256�5
jV �

ts
Vtbj2 �3=2K

(s)f 2+(s)jC�

L
+ C�

R
j2 (35)

The di�erential branching ratio computed within the SM is plotted in Fig. 1, showing the

uncertainty due to the form factors. Note that in the neutral modes the strangeness eigenstates

of the kaons do not coincide with the mass eigenstates, which are experimentally detected.

Therefore, neglecting isospin-breaking and �S = 2 CP -violating e�ects, we can write

�(B ! K���) � �(B+ ! K+���) = 2�(B0 ! KL;S���) : (36)
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Figure 1: Dilepton invariant mass distribution for B(B ! K���) within the SM. The three

lines correspond to the central, minimal and maximal values of f+(s) from [20].

The absence of absorptive �nal-state interactions in this process also leads to �(B ! K���) =

�( �B ! �K���), preventing the observation of any direct-CP -violating e�ect.

Integrating Eq. (35) over the full range of s leads to

B(B ! K���) = (3:8+1:2
�0:6)� 10�6

�����C
�

L
+ C�

R

CLj�SM

�����
2

� 4� 10�6
�����1� (ZL

bs
� ZL

bs
jSM) + ZR

bs

0:06

�����
2

; (37)

where the error in the �rst equality is due to the uncertainty in the form factors and the second

relation has been obtained by means of Eq. (28). Given the constraint (6), without further

assumptions we �nd B(B ! K���) <
� 5 � 10�5. This bound sets the level below which an

experimental constraint on this mode starts to provide signi�cant information. On the other

hand, in most of the scenarios discussed in Section 3, where ZR

bs
= 0 and jZL

bs
j <� 0:1, we �nd

B(B ! K���) <
� 2� 10�5 : (38)

If the experimental sensitivity on B(B ! K���) reached the 10�6 level, then the uncertainty

due the form factors would prevent a precise extraction of jC�

L
+C�

R
j from (37). This problem

can be substantially reduced by relating the di�erential distribution of B ! K��� to the one

of B ! �e�e [39, 40]:

d�(B ! K���)=ds

d�(B0 ! ��e+�e)=ds
=

3�2

4�2

����V
�

ts
Vtb

Vub

����
2
 
�K(s)

��(s)

!3=2 �����f
K

+ (s)

f�+(s)

�����
2

jC�

L
+ C�

R
j2 : (39)
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Figure 2: Dilepton invariant mass distribution for B(B ! K����) within the SM. The three

lines correspond to the central, minimal and maximal values, as obtained by varying the form

factors within the ranges quoted in [20].

Indeed fK+ (s) and f�+(s) coincide up to SU(3) breaking e�ects, which are expected to be

small, especially far from the endpoint region. An additional uncertainty in (39) is induced by

the CKM ratio jV �

ts
Vtbj2=jVubj2 which, however, can independently be determined from other

processes.

5.2 B ! K����

The dilepton invariant mass spectrum of B ! K���� decays is sensitive to both combinations

jC�

L
� C�

R
j and jC�

L
+ C�

R
j [38, 41]:

d�(B ! K����)

ds
=

G2
F
�2m5

B

1024�5
jV �

ts
Vtbj2 �1=2K� (s)

(
8s�K�(s)V 2(s)

(1 +
p
rK�)2

jC�

L
+ C�

R
j2

+
1

rK�

"
(1 +

p
rK�)2 (�K�(s) + 12rK�s)A2

1(s) +
�2
K�(s)A2

2(s)

(1 +
p
rK�)2

� 2�K�(s)(1� rK� � s)A1(s)A2(s)

#
jC�

L
� C�

R
j2
)
: (40)

The branching fraction obtained within the SM is shown in Fig. 2.

Integrating Eq. (40) over the full range of s leads to

B(B ! K����) = (2:4+1:0
�0:5)� 10�6

�����C
�

L
+ C�

R

CLj�SM

�����
2

+ (1:1+0:3
�0:2)� 10�5

�����C
�

L
� C�

R

CLj�SM

�����
2

; (41)

B(B ! K����)
���
SM

= (1:3+0:4
�0:3)� 10�5 : (42)
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Similarly to the case of B(B ! K���), the bound (6) leaves open the possibility of enhancements

of B(B ! K����) up to one order of magnitude with respect to the SM case. Whereas if ZR

bs
= 0

and jZL

bs
j <� 0:1, we �nd the constraint

B(B ! K����) <
� 10�4 ; (43)

which is almost one order of magnitude below the present experimental sensitivity [42].

A reduction of the error induced by the poor knowledge of the form factors can be obtained

by normalizing the dilepton distributions of B ! K���� to the one of B ! �e�e [43, 40]. This

is particularly e�ective in the limit s ! 0, where the contribution proportional to jC�

L
+ C�

R
j

(vector current) drops out:

d�(B ! K����)=ds

d�(B0 ! ��e+�e)=ds

�����
s=0

=
3�2

4�2

����V
�

ts
Vtb

Vub

����
2
 
1� rK�

1� r�

!3
r�

rK�

jC�

L
� C�

R
j2

�
�����A

K
�

1 (0)(1 +
p
rK�)� AK

�

2 (0)(1� rK�)=(1 +
p
rK�)

A
�

1(0)(1 +
p
r�)� A

�

2(0)(1� r�)=(1 +
p
r�)

�����
2

(44)

Similarly to the ratio fK+ (s)=f�+(s) in (39), also the last term in (44) is equal to one up to

SU(3)-breaking corrections.

6 B ! (K;K�)`+`�

The possibility to detect the leptons not only provides a clear experimental signature for

B ! (K;K�)`+`� decays, it also allows to consider interesting observables in addition to

the decay distribution, like the forward-backward asymmetry. Moreover, the non-vanishing

absorptive contributions lead to potentially large direct-CP -violating e�ects.

The problem of these modes is the uncertainty in the non-perturbative contributions gen-

erated by the operators Q1�6 in Heff . Indeed these induce transitions of the type b! s(c�c)!
s`+`� that can be handled in perturbation theory only within speci�c regions of the dilepton

spectrum.

In the following we shall restrict our attention to the transitions with a �+�� pair in the

�nal state, which have the clearest experimental signature, however the whole discussion is

equally applicable to the e+e� case.

6.1 Non-perturbative c�c corrections and Ce�
9

In the kinematic region of large dilepton invariant mass, above the 	0 peak, the light quark

�elds (u; d; s; c) appearing in Heff may be integrated out explicitly since they enter loop

diagrams with a hard external scale (q2 � m2
b
) [43, 44]. The endpoint e�ective Hamiltonian

thus derived, valid at the next-to-leading order in QCD, can be obtained from the one in (23)

setting to zero the coe�cients of Q1�6 and replacing C9 with

CEP
9 (s) = C9 + h

 
mc

mb

;
m2

B

m2
b

s

!
(3C1 + C2) +O (C3�6) ; (45)
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where the function h(x; y) and the numerically small O (C3�6) terms can be found in [45] (we

recall that to the next-to-leading order accuracy, only the leading order values of C1�6 are

need in CEP
9 ). Note that the coe�cient function in (45) di�ers from the e�ective coupling

of Q9 usually introduced to describe inclusive decays [6], since it does not include the QCD

correction to the matrix element of the �sL

�bL current. Indeed the latter has to be included

in the corresponding hadronic matrix elements, assuming they are computed in full QCD and

appropriately normalized at � = O(mb).

In the region of large q2 one still expects non-perturbative corrections induced by inter-

mediate c�c states. Although in principle power suppressed (� �QCD=mb), locally these are

likely to produce sizable modi�cations to the dilepton spectrum. The relative importance of

these non-perturbative e�ects, however, can be diminished by integrating over su�ciently large

ranges of q2.

Far from the endpoint region it is not possible, in principle, to safely integrate out the

light quark �elds in Heff and one should estimate separately the matrix elements of Q1�6.

In general this is a very complicated task that has so far been treated only with the help of

some non-rigorous simplifying assumptions. For instance, assuming that the matrix elements

of Q1�6 can be factorized as

hH�+��jQij �Bi / hHj�sL
�bLj �Bi � h�+��j�c
�cj0i ; (46)

one can employ the Kr�uger-Sehgal (KS) approach [46] and estimate h�+��j�c
�cj0i by means

of �(e+e� ! c�c) data. This approach has the advantage of avoiding double-counting and to

provide a rigorous non-perturbative estimate of h�+��j�c
�cj0i. Other recipes to evaluate the

contributions of hQ1�6i can be found e.g. in [47] and [48]. In all cases, in analogy with (45),

these contributions are encoded via an e�ective coupling for the operator Q9 of the type

Ce�
9 (s) = C9 + Y (s) : (47)

Due to the real intermediate c�c states, Y (s) develops an imaginary part that plays a crucial

role in determining the size of direct-CP -violating observables. A comparison of the di�erent

approaches to compute ImCe�
9 (s) is shown in Fig. 3.

In the following we shall compare results obtained by identifying Ce�
9 (s) with CEP

9 (s) or,

alternatively, by employing the KS approach.

6.2 Branching ratios and dilepton spectra

Neglecting the lepton mass, the q2 distributions of �B ! �K�+�� and �B ! �K��+�� decays,

computed with the e�ective Hamiltonian of Section 4.1, can be written as

d�( �B ! �K�+��)

ds
=

G2
F
�2m5

B

1536�5
jVtbVtsj2�3=2K

(s)

(
f 2+(s)

�
jCe�

9 (s)j2 + jC10 + C 0

10j2
�

+
4m2

b
f 2
T
(s)

(mB +mK)2
jC7j2 +

4mbfT (s)f+(s)

mB +mK

Re
�
Ce�
9 (s)C�

7

�)
; (48)

d�( �B ! �K��+��)

ds
=

d�( �B ! �K��+��)

ds

�����
SM
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Figure 3: The imaginary part of Ce�
9 as a function of s: ImCe�

9 (s) = ImCEP
9 (s) as in (45)

(dotted); KS prescription [46] (solid); Ref. [48] (dot-dashed). For comparison we have also

included the approach of Ref. [47] (dashed), where Breit-Wigner resonances are naively added

to the partonic calculation. (This procedure is disfavoured since it has a manifest problem of

double-counting.)

+
G2
F
�2m5

B

1024�5
jVtbVtsj2�1=2K� (s)

(
4s�K�(s)V 2(s)

3(1 +
p
rK�)2

�
jC10 + C 0

10j2 � jC10jSMj2
�

+

"
�K�(s) + 12rK�s

6rK�

(1 +
p
rK�)2A2

1(s)�
�K�(s)

3rK�

(1� rK� � s)A1(s)A2(s)

+
�2
K�(s)A2

2(s)

6rK�(1 +
p
rK�)2

# �
jC10 � C 0

10j2 � jC10jSMj2
�)

: (49)

The SM expression of d�( �B ! �K��+��)=ds is given by

d�( �B ! �K��+��)

ds
=

G2
F
�2m5

B

1024�5
jV �

ts
Vtbj2 �1=2K� (s) (50)

�
(
R9

�
jCe�

9 (s)j2 + jC10j2
�
+R7

m2
b

m2
B

jC7j2 +R97
mb

mB

ReCe�
9 (s)C�

7

)
;

where

R9 =
4s�K�(s)V 2(s)

3(1 +
p
rK�)2

+
(1 +

p
rK�)2

6rK�

(�K�(s) + 12rK�s)A2
1(s) +

�2
K�(s)

6rK�

A2
2(s)

(1 +
p
rK�)2

��K�(s)(1� rK� � s)

3rK�

A1(s)A2(s) (51)
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R7 =
16�K�(s)T 2

1 (s)

3s
+
2(1� rK�)2

3rK�s2
(�K�(s) + 12rK�s)T 2

2 (s) +
2�2

K�(s)

3rK�(1� rK�)2
T 2
4 (s)

�4�K�(s)(1� rK� � s)

3rK�s
T2(s)T4(s) (52)

R97 =
16�K�(s)V (s)T1(s)

3(1 +
p
rK�)

+
2(1� rK�)(1 +

p
rK�)

3rK�s
(�K�(s) + 12rK�s)A1(s)T2(s)

+
2�2

K�(s)(1�prK�)

3rK�(1� rK�)2
A2(s)T4(s)

�2�K�(s)(1� rK� � s)

3rK�

 
1�prK�

s
A2(s)T2(s) +

1

1�prK�

A1(s)T4(s)

!
(53)

and we have de�ned

T4(s) � T3(s) +
1� rK�

s
T2(s) (54)

Here we have again neglected the lepton mass, which is an excellent approximation for

` = e, � if s� 4m2
`
=m2

B
. The full m` dependence can be found for instance in [20].

As it can be noticed, the coe�cients C10 and C 0

10, which could have a potentially large

CP -violating phase induced by ZL;R

bs
, do not interfere with Ce�

9 (s), which has a non-vanishing

CP -conserving phase. As a consequence, similarly to the SM case, also within our generic

non-standard scenario we do not expect to observe any sizable (i.e. above the 10�2 level) CP

asymmetry in the dilepton invariant mass distribution of both decay modes. In the remaining

part of this subsection we will therefore not distinguish between B and �B states.

The integration over the full range of s with Ce�
9 (s) � CEP

9 (s) (non-resonant branching

ratio) and the SM Wilson coe�cients leads to B(B ! K��+��)n:r:jSM = 1:9+0:5�0:3 � 10�6 and

B(B ! K�+��)n:r:jSM = 5:7+1:6�1:0 � 10�7 [20], where the error is mainly determined by the

uncertainty on the form factors. Interestingly B(B ! K��+��)n:r:jSM is quite close to the

experimental limit

B(B0 ! K�0�+��)n:r: < 4:0� 10�6 (55)

recently obtained by CDF [49], whereas for B(B ! K�+��)n:r: the best bound-to-SM ratio is

around 9 [49]. Thus the K� mode provides a powerful tool to constraint jC10j and jC 0

10j, or
jZL;R

bs
j, via the relation

B(B ! K��+��)n:r: = B(B ! K��+��)n:r:jSM
+
�
4:1+1:0

�0:7

�
� 10�8

�
jC10 � C 0

10j2 � jC10jSMj2
�

+
�
0:9+0:4

�0:2

�
� 10�8

�
jC10 + C 0

10j2 � jC10jSMj2
�
; (56)

obtained by integrating (49). Using the bound (55) and setting C 0

10 = 0 we recover the result

of [20] jC10j <� 10, that in turn implies

���ZL

bs

��� <� 0:10 : (57)
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Note that, since C10 is basically dominated by the Z penguin already within the SM, the

maximal allowed value for jZL

bs
j is to a good approximation independent of the sign of ZL

bs
. On

the other hand, if we allow also C 0

10 to be di�erent from zero we �nd the relation

jC10j2 + jC 0

10j2 � (1:25� 0:05)� Re (C�

10C
0

10)
<
� 100 ; (58)

where the coe�cient of Re(C�

10C
0

10) is quite stable with respect to variations of the form factors.

Varying arg(C10=C
0

10) over 2� we �nd jC10j, jC 0

10j <� 13, leading to

���ZL;R

bs

��� <� 0:13 : (59)

Due to the uncertainties in the form factors and the assumptions on the non-perturbative

non-resonant contributions, the bounds derived from Eq. (56) could appear less clean, from a

theoretical point of view, than those derived from the inclusive rates. We stress, however, that

even doubling the errors on the form factors the constraints in (57) and (59) do not increase

by more than 10%.

Though still at the border of most of the model predictions discussed in Section 3, the

bound (57) starts to provide a signi�cant information. For instance, it strengthens the model-

independent character of the bounds (38) and (43) for the neutrino modes. As already discussed

in Section 5, if the experiments reached the SM sensitivity on B ! K��+��, more precise

information on C10 and C 0

10 could be obtained by relating the from factors of this mode to

those of its SU(3) partner B ! �e�e.

6.3 Forward-backward asymmetry in B ! K��+��

As anticipated, the possibility of detecting the leptons in the �nal state allows us to study

interesting asymmetries in the decay distribution ofB ! H�+�� modes. The (lepton) forward-

backward asymmetry of �B ! �K��+�� can be de�ned as

A( �B)
FB

(s) =
1

d�( �B ! �K��+��)=ds

Z 1

�1
d cos �

d2�( �B ! �K��+��)

ds d cos �
sgn(cos �) ; (60)

where � is the angle between the momenta of �+ and �B in the dilepton center-of-mass frame.

Given the vector or axial-vector structure of the leptonic current generated by Heff , this

asymmetry can be di�erent from zero only if the �nal hadronic system has a non-vanishing

angular momentum and therefore it is identically zero in the case of B( �B)! K( �K)�+��.

The explicit expression for A( �B)
FB

(s) in terms of Wilson coe�cients and form factors can be

written as

A( �B)
FB

(s) = � G2
F
�2m5

B
jV �

ts
Vtbj2

256�5d�( �B ! �K��+��)=ds
�K�(s) jV (s)A1(s)j

�Re
(
C�

10

"
s Ce�

9 (s) + �+(s)
mbC7

mB

+ ��(s)
mbC7C

0�

10

mBC
�
10

#)
; (61)

where

��(s) =
T2(s)

A1(s)
(1�prK�)� T1(s)

V (s)
(1 +

p
rK�) (62)
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Figure 4: Forward-backward asymmetry for �B ! �K��+��, de�ned as in (60). The solid

(dotted) curves have been obtained employing the Kr�uger-Sehgal approach (using Ce�
9 (s) �

CEP
9 (s) ). The dashed lines show the e�ect of varying the renormalization scale of the Wilson

Coe�cients between mb=2 and 2mb, within the Kr�uger-Sehgal approach.

and we have used the model-independent relation between the signs of V (s) and A1(s), dis-

cussed in Section 4.2, to elucidate the overall sign of A( �B)
FB

(s).

The ratios of form factors in (62) can be determined to a good accuracy by means of

those entering B ! �e� decays, leading to a precise determination of the point s0 where

A( �B)
FB

(s0) = 0 [50]. The interest in the zero of A( �B)
FB

(s) is further reinforced by the fact that

most of the intrinsic hadronic uncertainties a�ecting T1;2, A1 and V cancel in ��(s) [20, 50], an

observation that can be justi�ed in the large-energy expansion of heavy-to-light form factors

[37]. In this limit it is also easy to realize that j��(s)=�+(s)j = rK�=(1� s) � 1, so that the

term proportional to C 0

10 in (61) is to a good approximation negligible. Since the position of

s0 does not depend on magnitude or sign of C10 (assuming C10 6= 0) we conclude that within

our New Physics scenario the zero of A( �B)
FB

(s) remains unchanged with respect to the SM case

(s0jSM = 0:10+0:02�0:01 [20]).

Contrary to s0, magnitude and sign of the forward-backward asymmetry can be very much

a�ected by possible non-standard contributions to C10. The sign, in particular, is of great

interest being related in a model-independent way to the relative signs of the Wilson coe�cients.

This relation deserves a clarifying discussion, as there is apparently some confusion on this issue

in the recent literature.

� First of all we stress that the sign is di�erent for B and �B decays. In fact, in the limit

of CP conservation one expects

A( �B)
FB

(s) = �A(B)
FB

(s) : (63)
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This can be easily understood by noting that CP conjugation requires not only the

exchange b $ �b but also the one of �+ $ ��. Since the two leptons are emitted back

to back in the dilepton center-of-mass frame, the asymmetry de�ned in terms of the

direction of the positive charged lepton (both for B and �B), changes sign under CP

conjugation.

� The sign in (61) implies that within the SM, where Re(C�

10C9) < 0, A( �B)
FB

(s) is positive

for s > s0 (see Fig. 4). This coincides with the SM behavior of the inclusive forward-

backward asymmetry of the process b! s�+�� (see e.g. [44]) and indeed it has a simple

partonic interpretation (we recall that we denote by �B the meson with a valence b quark).

At su�ciently large values of q2 the contribution of C7 can be neglected and, within the

SM, the decay is almost a pure (V � A) � (V � A) interaction (C10jSM � �C9). In

the �B rest frame the emitted s quark tends to be left-handed polarized and, when its

spin is combined with the one of the spectator, this leads to a �K� meson with helicity

�1 or 0. Since the initial �B meson has spin 0, the total helicity of the recoiling lepton

pair must also be �1 or 0, respectively. If it is zero then there is no forward-backward

asymmetry, as in the �B ! �K�+�� case. On the other hand, if the polarization of the

lepton pair is �1, then the positive lepton prefers to travel backward with respect to

the total momentum of the dilepton system, or in the direction of the K� meson. This

con�guration corresponds to a positive cos �, leading to a positive A( �B)
FB

(s).

Having �rmly established the sign of A( �B)
FB

(s) within the SM, a striking signal of New Physics

could clearly be observed if sgn(ReC10) = �sgn(ReC10jSM). In this case A( �B)
FB

(s) would be

positive for s < s0 and negative for s > s0, opposite to the SM expectation. Similarly, a clear

signal of non-standard dynamics would occur if ReC10 was purely imaginary, so that A( �B)
FB

(s)

would be very much suppressed with respect to the SM case. Note that in both of these

examples one could still have an absolute value of C10 close to its SM expectation, hiding these

New Physics e�ects in branching ratios and dilepton spectra.

6.3.1 Forward-backward CP asymmetry

More generally, a powerful tool to probe a possible CP -violating phase in C10 is provided by

the sum of the forward-backward asymmetries of �B and B decays, which is expected to vanish

in the absence of CP violation.6 For this purpose we introduce the forward-backward CP

asymmetry, de�ned as

ACP

FB
(s) =

A( �B)
FB

(s) +A(B)
FB

(s)

A( �B)
FB

(s)�A(B)
FB

(s)
: (64)

This observable is very small within the SM, where the CP -violating phases of the relevant

Wilson coe�cients are suppressed by the factor Im(VubV
�

us
=VtbV

�

ts
) � O(��2) � 0:01. The

explicit calculation of ACP

FB
(s) within the SM requires to keep the small u�u contribution in

Ce�
9 (s) (see e.g. [52]), which we have so far neglected. Employing the partonic calculation for

6 This e�ect has already been pointed out in Ref. [51] in the context of b! d`+`� transitions.
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Figure 5: The forward-backward CP asymmetry de�ned in (64), in units of ImC10=ReC10, as

a function of s. Solid and dotted lines correspond to the Kr�uger-Sehgal approach and to the

choice Ce�
9 (s) � CEP

9 (s), respectively. The vertical dashed line denotes the lower limit of the

integration range in (67).

both u�u and c�c loops we �nd

ACP

FB
(s)
���
SM

=
Im(VubV

�

us
)

Re(VcbV �
cs
)

Im

�
h

�
mc

mb

;
m
2

B

m2

b

s

�
� h

�
0;

m
2

B

m2

b

s

��
(3C1 + C2)

ReCe�
9 (s)

�
"
1 +

�+(s)

s

mbC7

mBReC
e�
9 (s)

#
�1

; (65)

which in the region above the 	0 peak leads to an integrated asymmetry below 10�3.

On the other hand, if we allow C10 to have a large CP -violating phase and neglect those

of C7 and C9, as expected within our generic non-standard framework, we �nd

ACP

FB
(s) =

ImC10

ReC10

ImCe�
9 (s)

ReCe�
9 (s)

"
1 +

�+(s)

s

mbC7

mBReC
e�
9 (s)

#
�1

; (66)

which can be substantially di�erent from zero above the c�c threshold if ImC10=ReC10 � O(1).
Note that the expression (66) is almost free from uncertainties in the form factors, since for

large s (where ImCe�
9 (s) 6= 0) the term proportional to C7 is rather small. Unfortunately this

virtue is somewhat compensated by the uncertainties in ImCe�
9 (s) discussed in Section 6.1. A

plot of ACP

FB
(s), in units of ImC10=ReC10, in the interesting region above the 	 peak is shown

in Fig. 5.

To decrease the e�ect of the non-perturbative uncertainties in ImCe�
9 (s) it is convenient to

integrate ACP

FB
(s) over a large interval of q2. To avoid the uncontrollable errors associated with
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the narrow 	 and 	0 peaks, as well as with the D� �D threshold, we consider a safe integration

region

q2min = 14:5 GeV2 � q2 < (mB �mK�)2 = q2max ; (67)

where we �nd

�ACP

FB
=
Z
smax

smin

dsACP

FB
(s) = (0:03� 0:01)� ImC10

ReC10

: (68)

The central value in (68) has been obtained within the Kr�uger-Sehgal approach, whereas the

error has been estimated by comparing this result with the one obtained by identifying Ce�
9 (s)

with CEP
9 (s). Here and in Fig. 5 we did not use any phenomenological correction factors for

the resonance contributions in applying the KS method, that is we put �V = 1 (notation of

[46]).

Unfortunately the numerical coe�cient of ImC10=ReC10 in �ACP

FB
is rather suppressed,

however it leaves open the possibility of O(10%) e�ects. These would naturally occur if the

non-standard contributions to ZL

bs
had the same magnitude as the SM term and a CP -violating

phase of O(1), a scenario that is allowed in most of the speci�c models discussed in Section 3.

7 Bs ! �+��

The constraint (58) implies also an upper bound for B(Bs ! �+��) in our generic non-standard

scenario. Introducing the Bs decay constant, fBs, the decay rate for this process can be written

as

�(Bs ! �+��) =
G2
F
�2

16�3
f 2
Bs
jV �

ts
Vtbj2mBsm

2
�

 
1�

4m2
�

m2
Bs

!1=2
jC10 � C 0

10j
2
; (69)

implying

B(Bs ! �+��) = B(Bs ! �+��)jSM �
�����C10 � C 0

10

C10jSM

�����
2

: (70)

Using the constraint (58) we then �nd a maximal enhancement of a factor 7 for B(Bs ! �+��)

with respect to the SM value.

Employing the full next-to-leading order expression for C10jSM [6, 34, 35] one has

B(Bs ! �+��)
���
SM

= 3:4� 10�9
 

fBs
0:210GeV

!2  jVtsj
0:040

!2  
�Bs
1:6ps

! 
mt(mt)

170GeV

!3:12
: (71)

Allowing for the maximal enhancement in (70) and adopting conservative upper bounds for

the ratios in (71) we �nally obtain

B(Bs ! �+��) < 3:4� 10�8 ; (72)

which is about two orders of magnitude below the current best limit from CDF [53]: B(Bs !
�+��) < 2:6� 10�6 (95% C.L.).
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8 Summary and conclusions

We have presented a study of the rare decay modes B ! K(�)���, B ! K(�)`+`� and Bs !
�+��, which are mediated by b ! s FCNC transitions. These processes have long been

recognized as very interesting probes of the 
avour sector where New Physics e�ects could

modify considerably the Standard Model expectations.

In this paper we have pursued the idea that the largest deviations from the Standard Model

could arise in the FCNC couplings of the Z boson. We have thus investigated a scenario where

new dynamics determines the �sL;R

�bL;RZ� interactions, while the contributions of a di�erent

origin (boxes, photonic penguins) are still, to a good approximation, given by their Standard

Model values. As we have shown, this scenario is both phenomenologically and theoretically

well motivated. Indeed, contrary to other FCNC amplitudes, the �sbZ couplings are not yet

very well constrained by experimental data and considerable room for substantial modi�cations

still exists. On the other hand, also on theoretical grounds these couplings play a special role

and are potentially dominant in the presence of a high scale of New Physics. It has also been

shown that such a generic scenario could naturally arise in speci�c and consistent extensions

of the SM, as for instance in the framework of Supersymmetry.

Within the Standard Model the following branching ratios are expected, listed here in

comparison with the current experimental limits:

B(B ! K���) � 4� 10�6 (< 7:7� 10�4 [42])

B(B ! K����) � 1:3� 10�5 (< 7:7� 10�4 [42])

B(B ! K�+��)n:r: � 6� 10�7 (< 5:2� 10�6 [49])

B(B ! K��+��)n:r: � 2� 10�6 (< 4� 10�6 [49])

B(Bs ! �+��) � 3� 10�9 (< 2:6� 10�6 [53])

(73)

The Standard Model estimates have at present hadronic uncertainties of typically �30%. Our
generic New Physics scenario still allows for substantial enhancements that could saturate the

experimental bounds for B ! K��+�� and increase the remaining branching fractions by

factors of 5 to 10.

An observable of particular interest is the forward-backward asymmetry A( �B)
FB

in �B !
�K��+�� decay. This quantity is complementary to rate measurements and can reveal non-

standard 
avourdynamics that might remain invisible from the decay rates alone. We have

clari�ed the sign of the asymmetry within the Standard Model. The sign (as a function of

the dilepton mass) has the same behaviour in the exclusive channel �B ! �K��+�� as in the

inclusive decay b ! s�+��. As we have shown, even for the hadronic process �B ! �K��+��

the sign of A( �B)
FB

can be �xed in a model-independent way. This property provides us with an

important Standard Model test. The \wrong" sign of the experimentally measured A( �B)
FB

would

be a striking manifestation of New Physics. Such a test is comparable, and complementary, to

determining the position of the AFB zero, whose usefulness as a clean probe of New Physics

has been stressed in the literature. An interesting observation is that within our scenario of

non-standard Z couplings the asymmetry A( �B)
FB

is likely to be a�ected, possibly including even a

change of sign, while this class of New Physics would leave the A( �B)
FB

zero essentially unchanged.

Finally, we have emphasized that the CP violating forward-backward asymmetry ACP

FB
is

an interesting probe of non-standard CP violation in the �sbZ couplings. Potential e�ects are

of order 10%, compared to an entirely negligible Standard Model asymmetry of about 10�3.
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Similar observables can also be studied with inclusive modes such as b ! s�+��, which

are theoretically cleaner and could play an important role for precision tests in the future.

Nevertheless, on a shorter term the exclusive channels are more accessible experimentally, in

particular at hadron machines. As we have seen, exciting possibilities for tests of the 
avour

sector exist also in this case in spite of, in general, larger hadronic uncertainties. The pursuit

of these opportunities in rare B decays will certainly contribute to a deeper understanding of


avour physics in the Standard Model and beyond.
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