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Abstract

Very unusual light phenomena have been observed inside superconducting niobium cav-

ities under an electrical excitation equivalent to an average acceleration of �4 MV/m.

Of particular interest is the observation of what appear to be objects executing ellipti-

cal orbits. A small particle model that yields a cylindrical harmonic oscillator potential

well inside such a cavity is developed and appears to o�er considerable promise as an an-

alytical framework in which to understand these observations; the harmonic oscillator

potential well has elliptical orbits as general solutions. However, explicit calculations

indicate that with the cavity excitation parameters associated with this data, it is

highly unlikely that a small object orbiting in such a potential well can be made of

any known material. De�ciencies of the model are discussed, and avenues for further

study, both theoretical and experimental, are indicated.

PACS: 46.90 +s; 52.80 Mg

Keywords: Field emission; Cavity lights

I. INTRODUCTION

Very unusual light emission phenomena in the interior of radio frequency (1.5 GHz) super-

conducting electron accelerator cavities have recently been reported [1]. These phenomena

were observed with a CCD camera1 viewing the interior of the cavities during the course

�Work Supported by Department of Energy Contract DE-AC03-76SF-00515.
yTel. +1-650-926-2768, FAX: +1-650-926-2521, e-mail: fryberger@slac.stanford.edu
1MonochromeMicro Camera, Model H53004, Edmund Scienti�c Optics and Optical Instrument Catalogue

N991A, 1999, p. 177.
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of an investigation of the �eld emission limitation of superconducting niobium cavities. In

these tests, the CCD camera was mounted in a vertical cryogenic test dewar looking up into

the cavities along the cavity axis. (There were no electron beams involved in these tests.)

Two such tests were made. The �rst was viewing the interior of a single cell cavity, and the

second was viewing the interior of a production CEBAF �ve-cell cavity. Similar results were

obtained in both tests. It was reported that: \Three general classes of glowing �laments

were observed: 1) regular-shaped closed, 2) irregular-shaped closed, and 3) open."

Since the pressure in these cavities is so low (10�9 torr or less), any conventional plasma

discharge would be very di�use; as such it would be unable to give light from a small, well-

de�ned volume. In many frames, re
ections of the region of luminosity can clearly be seen

in the cavity walls. These a�ord a quasi-stereo view and indicate that (in these instances)

there is no wall contact by the source of the luminosity. Consequently, a plasma discharge

appears to be ruled out.

Another possible explanation is that the observed luminosity emanates from a small particle.
These small particles would be moving about inside the cavity, and occasionally getting

trapped into closed orbits. Based upon the assumption that one is indeed observing small
objects orbiting inside the cavity, the purpose of this paper is to develop an analytical
model for such orbiting objects that can be used as a framework to try to understand the

observations and also serve as a basis for future work, both experimental and theoretical.

II. HARMONIC OSCILLATOR POTENTIAL

A. Sphere Model

It is appropriate to begin the modeling e�ort with the simplest possible shape, a small
sphere. For the sake of analysis, we shall assume that the the sphere is made of niobium,

although other materials are possible. One can suppose that this niobium would be pulled
o� of the interior wall by electromagnetic forces, and that its spherical shape could be a

result of melting by electrical currents at the time of formation.

Radial Force

We now show that a (Lorentz) restoring force leading to stable particle orbits will derive

from the electromagnetic �elds in the cavity acting upon a small conducting sphere. To do
this, we �rst write the axial accelerating �eld vector as

E = E01zcos !at; (1)

where E0 is the maximum magnitude of the rf accelerating �eld (in the center of the cavity
along the cavity or beam axis)2 at frequency fa = !a=2� and 1z is the unit vector in the

2To the extent that the particle orbits are away from the center of the cavity, the E �eld will be reduced,
but this reduction is minor{on the order of 5%, or less{for the observed orbits.
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z -direction. (Gaussian units [2] are used here, and boldface type denotes three-vectors.)

Using the cylindrical symmetry of the cavity and Maxwell's equations yields

B = �
� !a E0

2c
1� sin !at; (2)

where � is the usual (right handed) cylindrical coordinate, 1� is the unit vector in the �

direction, and c is the speed of light.

It is well known that an E �eld will induce an electric moment [3]

� = E a3 (3)

in a sphere of radius a, as depicted in Fig. 1. It is easy to show that this formula for �

derives from a charge density of

� =
3E0

4�
cos� (4)

on the surface of the sphere [3]. Note that � is independent of a. Eq. (4) leads to the charge
on the positive hemisphere,

Q =
3E0a

2

4
; (5)

which equation is included here for later reference.

Now � oscillates in phase with E for a � �a, the free-space wavelength of the accelerating
power. One can see that in the presence of the magnetic �eld B, which also oscillates

coherently with E (but 90� out of phase), there will be a Lorentz force on this oscillating
dipole:

F =
_�

c
�B: (6)

Using Eqs. (1-3) in Eq. (6) yields

F = �
E2

0
!2

a � a3 1�

2 c2
sin2!at: (7)

Noting that < sin2!at >= 1

2
; Eq. (7) de�nes a (low frequency) restoring force constant

(along the � direction),
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k =
E2

0
!2

a a
3

4c2
; (8)

for a two-dimensional cylindrical harmonic potential well centered on the z -axis.

Orbital Frequency

The (angular) frequency for a sphere oscillating (or orbiting) in this potential well is given

by

!o =

s
k

M
=

E0

2�a

s
3�

�M
; (9)

where M is the mass of the sphere and �M is the mass density of the sphere. It is interesting
to note that �M is the only parameter of the sphere that enters into the determination of !o.

Solving Eq. (9) for �M , and noting that !o = 2�fo, yields

�M =
3� E2

0

4�2a !
2
o

=
3E2

0

16��2a f
2
o

: (10)

Using observed orbital frequencies, Eq. (10) will enable one to determine the sphere densities
implied by this model.

Dielectric Sphere

In the interest of completeness, we consider a sphere made of a dielectric material charac-
terized by a dielectric constant �. In this case, Eq. (4) becomes [4]

� =
3

4�

�
�� 1

�+ 2

�
E0 cos�; (11)

and Eq. (5) becomes

Q =
3

4

�
�� 1

� + 2

�
E0 a

2: (12)

Comparing Eqs. (11 and 12) to Eqs. (4 and 5) one can see that for the moment and

charge calculations a conductor behaves like a dielectric material with an in�nite dielectric

constant, and that the force constant k of a dielectric sphere will always be less than that
for a conducting sphere; for typical dielectrics of low �, it will be considerably less.

Spherical Shell
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As a sample calculation below will show, a solid sphere is too heavy to satisfy Eq. (10)

using the fo implied by Fig. 2a of Ref. [1], reproduced below as Fig. 7. As a solution to

this di�culty, one can contemplate a spherical shell or bubble as the orbiting object. In

this con�guration the mass can be reduced while maintaining the same �; the volume of the

material in a thin spherical shell is 4�a2�a. However, another sample calculation, below,

indicates that a spherical shell yielding the observed fo would have an unrealistically thin

shell thickness �a.

Power Absorption

Since the orbiting objects do not appear to be in contact with the walls of the cavity and

ionic currents are di�use, incandescent spots can be ruled out as the source of luminosity.

Hence, it is a reasonable deduction that the luminosity associated with the orbiting object

is due to thermal heating and concomitant black (or gray) body radiation. Consequently,
the question of power absorption by the orbiting sphere is relevant.

As an initial model to approach this question, imagine that the sphere is divided along the
neutral plane and that an equivalent resistor is inserted to furnish a conducting path between
the two hemispheres, as depicted in Fig. 2. An equivalent electrical circuit for this concept

is shown in Fig. 3. The voltage of the power source derives from the accelerating gradient
in the cavity, which is coupled into the surface of the sphere viewed as the capacitor C. To
continue along this line, we use Eqs. (3 and 5) for the charge moment and the total induced

charge on a hemisphere, respectively, and estimate the peak driving voltage in the equivalent
circuit to be

V0 = E0

�

Q
=

4aE0

3
: (13)

The capacitance is given by

C =
Q

V0
=

3E0 a
2=4

4E0 a=3
=

9a

16
: (14)

Looking at the equivalent circuit, one can see that the heating power in the sphere will be

P = I2
0
R=2; (15)

where

I0 =
V0

(R2 + 1

!2
a
C2 )1=2

; (16)

and the factor two in Eq. (15) converts the peak current I0 into rms for the power calculation.
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As one would expect, the power is null when R = 0 and when R = 1. (Note intermediate

values of R will cause some variation in the appropriate formula for V0, but not enough

to impair the conclusions of this analysis.) It is easy to show that the maximum power

dissipation occurs when

R =
1

!aC
: (17)

Using Eqs. (16 and 17) in Eq. (15) yields

Pmax =
V 2

0
!aC

4
=

a3!aE
2

0

4
: (18)

If

R�
1

!a C
(19)

Then Eq. (16) becomes

I0 = !a CV0: (20)

That is, the current in the sphere is determined entirely by the capacitative coupling, inde-
pendent of the intrinsic resistivity of the material in the sphere. That Eq. (19) is valid in
the case of typical conductors will be justi�ed below.

Assuming the validity of Eq. (19), the calculation of the power absorbed by a sphere is

straightforward. Consider a �z slice of a sphere as depicted in Fig. 4. The resistance in this
slice

�R =
�G�z

� a2sin2�
; (21)

where �G is the resistivity of the material (in Gaussian units). The current 
owing through

this slice

i(�; t) = q0(�)!a sin(!at); (22)

where

q0(�) =
Z �

0

2�� a2sin�d� =
3E0 a

2

4
(1� cos2�); (23)

and Eq. (4) was used for �. The power absorption
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P =
Z a

0

 
3E0 a

2

4

!2
�G sin2� dz

�a2
=

3E2

0
!2

a a
3 �G

8�
: (24)

Using Eqs. (13, 14 and 20) to determine I0 in Eq. (15) to calculate the absorbed power in

terms of the equivalent lump sum resistance R, and comparing to Eq. (24), one �nds

R =
4�G

3�a
: (25)

With this result, and using Eq. (14), Eq. (19) becomes

�G �
4�

3!a
; (26)

independent of the radius of the sphere. Even graphite, which has a relatively large resistivity,

easily satis�es Eq. (26). To verify this assertion, one can use Jackson [5] to convert the
resistivity of graphite in mks units [6], �mks = 1:38 � 10�5 
m, to Gaussian units. Taking

this step one �nds that �G = 1:53� 10�15 s for graphite, and Eq. (26) becomes

1:53� 10�15 s� 4:44� 10�10 s; (260)

justifying the use of Eq. (19) in the calculation of the power absorbed by a sphere of
conducting material. Since the sample calculations given below indicate that neither the

sphere nor the thin spherical shell appear to be viable candidates in this model, we omit
explicit estimates of power absorption and temperature rise for these cases.

B. Needle Model

Electric Dipole Moment

A slender needle as the orbiting object would enable a given induced moment with a mass

much less than that of a solid sphere. That is, mass reduction for the purpose of achieving

satisfactory orbital parameters in this model can be accomplished by slendering as well as

by hollowing. Exact analytical calculations for such a needle can be made using a prolate

spheroid as a model for the needle. The prolate spheroidal coordinate system is (�; �; �) [7].

As a practical matter, the fact that an orbiting object might more resemble a whisker than

a prolate spheroid would imply a modest correction to the estimated aspect ratio to yield a

given orbital frequency. But for the purposes of this paper, the prolate spheroid calculation

will give results that adequately represent what can be expected in the case of a slender

(linear) geometry.

In order to determine the induced � in a prolate spheroid, we start with the voltage distri-

bution in the region above a ground plane with an embedded (semi) prolate spheroidal boss

[8], as shown in Fig. 5:
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V = �Ez(a
2 � b2)1=2��

0
@1� coth�1� � 1

�

coth�1 �0 �
1

�0

1
A ; (27)

where

�0 �
a

(a2 � b2)1=2
=

1

(1� A�2

R )1=2
(28)

de�nes the spheroidal surface of the boss; a is the height of the boss and b is its radius at

the ground plane, and AR � a=b is the aspect ratio. The negative sign is inserted into Eq.

(27) to accommodate the proper sign relationship between Ez and V . The next step is to

�nd the gradient of V :

E = �rV = �
1

h�

@V

@�
1� �

1

h�

@V

@�
1� �

1

h�

@V

@�
1�; (29)

where h�; h�; and h� are the scale factors for the coordinates (�; �; �), respectively. These
scale factors [7],

h� = (a2 � b2)1=2
 
�2 � �2

1� �2

!1=2

; (30)

h� = (a2 � b2)1=2
 
�2 � �2

�2 � 1

!1=2

; and (31)

h� = (a2 � b2)1=2[(1� �2)(�2 � 1)]1=2; (32)

are recorded for use below.

The E of interest is at the surface of the boss (� = �0), and in this location the only nonzero
component of rV is E�. Using Eqs. (27 and 31) in Eq. (29), one obtains

E� =
Ez(�

2 � 1)1=2�

(�2 � �2)1=2

"
1�

coth�1� � 1=�

coth�1�0 � 1=�0
+

1

(coth�1�0 � 1=�0)�(�2 � 1)

#
; (33)

which on the surface of the spheroid (� = �0) becomes

E�0 =
Ez�

�0(�
2
0 � �2)1=2(�20 � 1)1=2(coth�1�0 �

1

�0
)
: (34)

One can now �nd the surface charge � through the relationship [9],
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E � n = 4��; (35)

where n is the outward unit vector normal to the surface. That is,

� =
E�0

4�
=

Ez�

4��0(�
2
0 � �2)1=2(�20 � 1)1=2(coth�1�0 � 1=�0)

: (36)

The total charge on the surface of the boss, then, is

Qb =
Z

2�

0

Z
1

0

�h� h� d� d�; (37)

and the induced electric moment in the boss is

�b =
Z

2�

0

Z
1

0

z�h� h� d� d�; (38)

where

z = (a2 � b2)1=2 � �: (39)

The total moment for an orbiting spheroid, �, is twice that of the boss, and one derives

� = 2�b =
Ez a

3

3�30(coth
�1 �0 � 1=�0)

; (40)

and

Qb =
Eza

2

4�30(coth
�1�0 � 1=�0)

: (41)

One can see from Eqs. (28) and (40) that varying AR will (though �0) a�ect the induced
moment as well as the total mass. It is easy to verify that as the prolate spheroid becomes

a sphere (b! a), Eqs. (40) and (41) become Eqs. (3) and (5), respectively.

Power Absorption and Luminosity

It is now possible to estimate the power absorption by the needle and the resulting equi-

librium temperature. Proceeding as with the sphere, we see that V0 is the same as for the

sphere while

C =
3a

16�30(coth
�1�0 � 1=�0)

: (42)
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As one expects for b ! a; Eq. (42) ! Eq. (14), the analogous equation for the sphere.

Now consider a �z slice of the prolate spheroid as indicated in Fig. 6. The resistance of this

slice is

�R =
�G�z

��2
=

�G�
2

0
��

�a(1� �2) (�20 � 1)
; (43)

where the right hand side has been converted to prolate spheroidal coordinates for the

purposes of a subsequent integration. Assuming that Eq. (19) is satis�ed, the charge on the

cap of this spheroid, which each cycle will 
ow back and forth through this slice, is

q0(�) =
Eza

2(1� �2)

4�30(coth
�1�0 � 1=�0)

; (44)

which for � ! 0 yields Eq. (41), as expected.

The power absorbed by the prolate spheroid, then, is

P =
Z
(!aq0)

2 dR =
A2

R !2

a E
2

za
3�G

24� �60(coth
�1�0 � 1=�0)2

; (45)

where the range of integration is over the upper half of the prolate spheroid. [There are
cancelling factors of two in Eq. (45).] Equating this result to the power in the equivalent
circuit, Eq. (15), leads to the equivalent resistance

R =
4A2

R �G

3�a
; (46)

which for the sphere (AR = 1) yields Eq. (25). Similarly, Eq. (26) becomes

�G �
4� �3

0
(coth�1�0 � 1=�0)

A2
R!a

(47)

for the prolate spheroid. That Eq. (47) is satis�ed will be shown below.

It is now straightforward to derive the equation for the equilibrium temperature assum-

ing that power absorption from the cavity �eld is in equilibrium with radiated gray body

radiation. Gray body radiation power is given by [10]

Prad = A�r�sT
4; (48)

where A is the surface area, �r is the emissivity relative to a black body (�r = 1 denotes a

black body.), and
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�s = 5:67� 10�5
ergs

s cm2K4
(49)

is the Stefan-Boltzmann constant. For slender prolate spheroids, it is easy to show that

A �=
�2ab

2
: (50)

Assuming a uniform surface temperature, and equating Eqs. (45) and (48), the condition

for equilibrium becomes

A2

R a3 !2

a E
2

z �G

24� �60(coth
�1�0 � 1=�0)2

=
�2ab

2
�r�sT

4: (51)

Solving Eq. (51) for T yields

T =

"
A3

R a !2

a E
2

z �G

12�3 �r �s �
6
0(coth

�1�0 � 1=�0)2

#1=4
: (52)

It is evident from Eq. (52) that larger objects, and more slender objects, will attain higher
equilibrium temperatures, and that the functional dependence upon aspect ratio is much

stronger than the dependence on size.

A Dielectric Needle

One more possibility for the needle model deserves consideration: a dielectric needle. The
interior electric �eld in a prolate spheroid, of dielectric constant �, is given by [11]

Eint =
E0

�� (�� 1)�0
h
(1� �20)coth

�1�0 + �0
i : (53)

Using the boundary conditions at the surface of a dielectric prolate spheroid, one obtains an
equivalent surface polarization charge

� = (�� 1)
Eint�(�

2

0
� 1)1=2

4�(�20 � �2)1=2
; (54)

which, using Eq. (53), enables a calculation of the (equivalent polarization) charge on the

hemispheroid:

Qb =
Z

2�

0

Z
1

0

�h� h� d� d� =
(�� 1)a2(�2

0
� 1)E0

4�20
n
� + (�� 1)�0

h
(�20 � 1)coth�1�0 � �0

io : (55)
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One can demonstrate that Eq. (55) satis�es two limits of interest: 1) �!1, which recovers

the charge on a conducting prolate spheroid, Eq. (41), and �0 ! 1, which recovers the

charge on a dielectric hemisphere, Eq. (12).

III. SAMPLE CALCULATIONS

A. Orbital Frequency

Fig. 2a of Ref. (1) is reproduced here as Fig. 7, where the major axis of the orbit ellipse

is indicated. Since a full ellipse is seen, one can immediately deduce that fo � 60 Hz. (The

light level in the cavity is low, which will result in the shutter open time to be at its nominal

maximum of 1/60th s.)1 The higher luminosity abutting points A and B in Fig. 7 is due to

overlapping orbital paths and indicates that these points are the termini of the orbit segment

as viewed by the camera in 1/60th s. The location of points A and B enables an improved

estimate for fo. First note that the orbital motion is sinusoidal along both the major and
minor axes. This sinusoid (for the major axis) is plotted in Fig. 8, where points A and B
have been determined by the orbital sine function derived from the displacements from the

minor axis of points A and B in Fig. 7. (sin�A = 0.887 and sin�B = 0:873.) Thus, �A = 62�

and �B = 61�, and

fo =
62 + 360 + 61

360
� 60 �= 80 Hz: (56)

B. Sphere

This result for fo can be used in Eq. (10) to determine the �M that this model will require of

the object (if it is a sphere) orbiting in Fig. 7. To make a calulation, we can estimate E0 from
the average accelerating gradient (of 4 MV/m) by assuming that a beam electron experiences

two sine factors as it traverses the cavity, one for space variation and one for time-variation.
This assumption (numerically veri�ed by an explicit SUPERFISH calculation) leads to

E0 = 2 �Ea = 8� 106 V/m = 267
statV

cm
: (57)

Using Eqs. (56) and (57) in Eq. (10) yields

�M ' 0:00166 g/cm
3
: (58)

The low sphere density indicated by Eq. (58) signals a signi�cant di�culty; it is not evident

what (solid) material would be available to satisfy this density requirement. This estimated

�M is considerably less than that of styrofoam or the very light silica aerogels that are used
in �Cerenkov particle detectors [12]; in fact, it is not much more dense than air (which at STP

has a density of � 0.0012 g/cm3) [13]. And the correction to this result associated with the

o�-axis reduction of the E �eld2 will not make a qualitative change in the above conclusion.
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C. Spherical Shell

To construct a spherical shell out of niobium (�M = 8:55 g/cm
3
) to give the requisite e�ective

density for fo = 80 Hz would call for a density reduction by a factor 8:55=0:00166 � 5200.

This means that the shell thickness would have to be � 6 � 10�5 of the shell radius. For

example, a spherical shell of 1 mm in diameter would have a shell thickness of � 0:03 �m.

While such an object is conceivable, it is di�cult to imagine how it could be created by

an uncontrolled process inside a beam cavity, or be some kind of debris associated with

the history of the cavity. And postulating a material of lower �M than niobium would not

qualitatively change this conclusion. A spherical shell of a dielectric material is also ruled

out; it will have a much reduced induced electric moment because in a dielectric the induced

moment is a volume e�ect. Thus, we see that the density requirement of Eq. (10) is so

stringent that a sphere or spherical shell of any known material appears to be precluded as

a candidate (in this model) for the orbiting object. Even a sizable underestimate of E0 (by
a factor of two or three, say) does not enable any known candidate materials to satisfy the

(higher) density estimate.

D. Needle

To determine a suitable AR for an orbiting needle, one �rst needs to determine how (the
formula for) !o varies as a function of AR. First, we use Eqs. (3, 28 and 40) to plot the

ratio �ps=�s as a function of AR (and �xed a) in Fig. 9, which indicates that with increasing
AR, �ps drops with respect to �s but not very fast. Then, using the volume of the prolate
spheroid,

Vps =
4�

3
ab2 =

4� a3

3A2

R

; (59)

we plot as function of AR (and �xed a) the enhancement ratio RE �
�ps=�s

Vps=Vs
in Fig. 10. RE

takes into account the variation of both the moment and the volume as a function of AR.

To establish the requisite AR, recall from the above sphere analysis that RE � 5200 was
required to make a sperical shell light enough to orbit at 80 Hz. This same enhancement

factor is required for a prolate spheroid (of niobium) to satisfy the orbit frequency criterion.

The curve plotted in Fig. 10 indicates that a prolate spheroid with AR � 300 will achieve RE

= 5200 and thus be a candidate object for the observations. One can also verify that such a

needle easily satis�es the capacitative coupling limit given by Eq. (19). For AR = 300, Eq.

(47) is numerically evaluated (for niobium) to be

1:4� 10�17 s � 8� 10�14 s: (470)
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While the slender needle concept is somewhat more plausible than the spherical shell concept,

the high AR requirement still renders it rather unlikely. (For example, an orbiting needle of

1 mm length would have a diameter of � 3:3 �m.)

Equilibrium Temperature

Having used fo and Eq. (10) to establish the requisite AR for a needle-like (niobium) object

orbiting in Fig. 7, we investigate how needle size with a �xed AR a�ects the equilibrium

temperature. Curve a in Fig. 11, depicts the equilibrium temperature for a niobium needle

as a function of a, calculated using AR = 300 in Eq. (52). One sees that a = 0.013 cm yields

T � 2600 K, somewhat below the melting point of niobium (2741 K) [6]. In this result,

b � 0:43 �m. But full reality is not yet included this calculation: 1) an actual �r < 1, and

2) this much heating will increase �G signi�cantly. Both of these factors will increase the

equilibrium temperature. Assuming �r = 0:75 and augmenting �G by a factor3 of 15, we

obtain Curve b, which indicates that the equilibrium temperature drops below the melting
point of niobium at a � 6� 10�4 cm and b � 2� 10�6 cm = 20 nm. That such an object
would be found or could be created inside a cavity seems highly unlikely. Postulating a

di�erent material would not alter this conclusion.

Dielectric Needle

In order to determine if a dielectric needle would be possible as an orbiting object, in Fig.
12 the ratio of the Qb of Eq. (55) to the Qb of Eq. (41) is plotted versus �, for AR = 300.

(As expected, the size parameter a drops out of the ratio.) From Fig. 12, one can see that
the � of the needle has to be very large before it has an induced electric dipole moment
comparable to that of a conducting needle. Speci�cally, for AR = 300, � � 18000 is required

to obtain a polarization charge (or equivalently an induced dipole moment) of only one half
of that on a similar conducting prolate spheroid. Another factor of 10 in � raises this ratio
to 0.9. This requirement for such a high � is unrealistic and rules out a dielectric needle as

a candidate for the orbiting objects.

IV. OTHER FORCES

A. Axial Force

Looking at Eqs. (3) and (6), it is evident that the Lorentz force F will be perpendicular to
both the internal B and E �elds. While, by symmetry, the E �eld along the cavity axis will

be coincident with the z -axis, as soon as one considers realistic orbits going through points
with � > 0, the E �eld will be characterized by radius of a curvature �, as depicted in Fig.

13. Using geometry and Eqs. (8 and 9), one �nds that the force along the z-axis,

3The resistivity of tungsten [14] increases by a factor � 18 between 20�C and 2727�C; the inequality Eq.
(4) remains valid.
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Fz =
k�z

�
; (60)

where z = 0 de�nes the central plane that passes through the equator of the cavity.

Eq. (60) indicates that a point characterized by z = 0 and � 6= 0 is a point of unstable

equilibrium with respect to motion along the z-axis. When z 6= 0 there will be a component

of force pushing the object parallel to the z -axis away from the central plane towards the

nearest iris. Since this force is proportional to z, the particle will experience an exponentially

accelerating axial motion. One can conclude that the longer an object is observed to remain

inside the cavity, the better centered it must have been initially. The e-folding time for this

motion is

� = !�1

o

s
�

�
; (61)

indicating that the most stringent z-stability test for the model will be the case which

maximizes the product tobs !o
q
��=��, where �� and �� are taken to be quantities appropriately

averaged over the total observation time, tobs. Since �� and �� enter under a square root sign,

the most signi�cant parameter is tobs. In addition, the force of gravity (mentioned below) will
shift and distort this plane of unstable equilibrium at z = 0, further reducing the probability
for a long-lived (meta)stable orbit.

With respect to the z-stability of an orbiting needle, the problem is even more severe.

Stability for an extended period of time is even less likely in the case of the needle because
of the possibility of a rocking or precessing motion about the �gure axis of the needle. Since

the electrical and mechanical centers of the physical needle would not be expected to be
coincident, such a motion would (almost certainly) contain some component of asymmetry
that would destabilize an otherwise precisely centered needle.

Initial Alignment Requirement

In the video data associated with Ref. [1], there are two sequences of a continuing orbit

with tobs > 10 s. Looking at one of these long-lived orbit sequences, we can characterize it
by �� � 1 cm and fo = 20 Hz or !o = 40� s�1. (Fig. 7 is not drawn from this sequence.) A

SUPERFISH calculation of the internal E �elds (Ez and E�) in a single-cell superconducting
CEBAF cavity indicates that �� � 50 cm near the center of the cavity at �� � 1 cm. Hence,

for the sake of a sample calculation, we can use �� = 100 cm (to be conservative). Using

these numbers in Eq. (61) yields

� =
1

40�

s
100

1
= 0:08 s; (62)
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or � 125 e-folds in a 10 s period of observation. For the particle to remain this long within

the con�nes of the cavity (j z j< 5 cm), under the in
uence of the z-instability force, requires

that the magnitude of the initial position

j z0 j < 5e�125 � 3� 10�54 cm: (63)

That at the beginning of the orbit, a particle evolving from some random process could

somehow locate itself to this accuracy (with a null axial velocity) in the plane of unstable

equilibrium in the center of the cavity is too improbable to be considered as plausible. And

there are two examples of tobs > 10 s.

B. Gravitational Force

One can compare a typical harmonic potential force to that of gravity. Using Eq. (9), the
mass of an object satisfying the orbiting criteria in the harmonic potential is

M = k=!2

o ; (64)

which yields a gravitational force of

Mg = kg=!2

o; (65)

where g = 980 cm/s2 is the acceleration of gravity. Dividing this force by the (nominal)
force of the harmonic potential yields

Fg

FHP

=
kg=!2

o

k��
=

g

!2
o ��
: (66)

Eq. (66) indicates that Fg will be a perturbation to FHP , but will not dominate it.

C. Electrostatic Force

One could imagine that an orbiting object could become electrically charged, by �eld emis-
sion, say. But electrostatically charged objects would be attracted toward their image charges

in the walls of the cavity, leading to radial as well as axial instability. Again, this force would

perturb FHP , but would not dominate it.

D. Pondermotive Force

It is also known that electrically charged objects will, through nonlinear e�ects, experience

what is called the pondermotive force, which will push the objects toward regions of smaller

electric �eld strength. If an object, of charge q and mass M is in an electric �eld given by

E = Es1s cos!t, then the formula for this force is [15]
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fn` =
�q2rE2

s

4M!2
: (67)

In the 5-cell test this force o�ers a qualitative solution in the iris region where �elds are

small; however, in the single cell geometry, because the lowest �elds are at the outer ends of

the beam tubes, the pondermotive force will contribute to the z-axis instability of a particle

centered in the cavity as well as push it radially toward the walls. Thus, it cannot be used

to explain closed orbits. Moreover, explicit calculations indicate that the magnitude of fn`
is too small to be relevant in any case.

V. SUMMARY

A model is developed showing that in a superconducting accelerating cavity, a small particle,

comprised of either a conductor or a dielectric, would have an induced oscillating electric

dipole moment, and that the interaction of this oscillating moment with the local magnetic
�eld would lead to a two dimensional potential well centered on the axis of the cavity. Thus,
the model as posed leads to the possibility of closed elliptical orbits. Calculations indicate

that the induced moment in dielectrics is to be too small for dielectric objects to be viable
candidates, still leaving small pieces of a conducting material as candidates for the observed

orbiting objects.

For conducting spheres, it was shown that the only material property contributing to the
calculated orbital frequency was the material density. However, to achieve the observed

orbital frequency of �80 Hz, an extremely low material density is required. A solid sphere of
any known material could not satisfy this requirement. A suitable spherical shell that would
be light enough to satisfy the orbital frequency requirement (much less mass, but the same

induced moment) appears to be too fragile to be a reasonable possibility from a practical
point of view. The conclusion is that spheres of any known material cannot, in this model,

explain in the observations.

It was argued that the usual source of light associated with gas discharges, incandescent
spots on a surface or electronic radiation from ionized atoms or molecules, would not be

possible for the orbiting objects in such low density gasses. This left thermal heating and
the consequent black (or gray) body radiation as the most likely source of luminosity. It was

shown that there is plenty of power available to heat an object to incandescence. Rather,

the problem is the other way around: the orbiting object had to be small enough to avoid
melting.

Shedding mass by positing a needle shaped object could satisfy the orbital criteria, but the

object had to be quite small to avoid melting in the conditions of the test observations. On
the other hand, since the present data do not furnish information on the size or light output

of the objects, a small needle cannot be completely ruled out on this basis. Niobium with
its high melting point would still be a candidate material. However, to avoid melting, it was
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shown that a needle of niobium would have to have a diameter of � 40 nm. This seems

much too small to be practically realized { especially by uncontrolled processes inside an

accelerator cavity.

The above results are summarized in Table I; that is, there are strong arguments that it

is highly unlikely that one can �nd a physically realizable object of any known material

or shape that will satisfy the requirements imposed by the observed data as inputs to the

small particle model. It also should be remarked that excluding the sphere and the needle,

which e�ectively bracket the behavior that one would expect from other more general (and

irregular) shapes, e�ectively excludes any general geometric shape from satisfying the orbital

requirements dictated by this model.

Having noted the extreme improbability of �nding an object of a suitable density and shape

to yield the observed orbital frequencies, it is perhaps even more important to note that

even should such object be found, the z -instability dictated by this model would render it
(essentially) impossible for such an object to remain in a stable orbit for the longer periods
of observation (> 10 s).

VI. FUTURE AVENUES

Experimental

To proceed on the experimental front, it is important to determine the basic parameters that

lead to this phenomenon. Then, as noted by Delayen and Mammosser, it would be useful
to obtain spectral and intensity information on the light emitted by the orbiting objects.

Stereo camera viewing, a faster camera frame rate, and better spatial resolution would be
useful for orbital tracking and particle size determinations. Monitoring cavity pressure and
a detailed gas analysis, as a function of time, would be also of interest.

Theoretical

The small particle model, as developed here, is clearly incomplete as a possible basis to

explain the observed data. There are two speci�c areas that need further development:

1) The z-stability problem. The curvature of the electric �eld inside the cavity was shown
to lead to an unstable equilibrium point in the center of the cavity, and the observed 10 s

time periods of some orbits are much longer than would be possible without a mechanism
to a�ord z-stability. It was pointed out that the force of gravity exacerbates this problem.

2) Orbital perturbations. The observed orbits were occasionally nearly perfect ellipses, but

usually they manifested distortions of various kinds, i:e:; the class 2) \irregular-shaped closed

orbits" referred to in Ref. [1]. This indicates that more than one type of force is at work, or
there is a time varying force, or some nonlinear spatial force, or perhaps all of the above.
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From a theoretical perspective, it would be of gratifying if these questions could be under-

stood. A model of wider scope needs to be developed. However, to �nd the path to this

wider scope poses a signi�cant challenge.

Finally, while it was not covered in this paper, it is worth noting that the transient and di�use

luminosity or \
ash of light" [1], which often precedes the onset of orbiting cavity lights, is

also worth study. It might be due to a burst of ionized gas released into the cavity, or, more

intriguing, it may be a new physics phenomenon in its own right. Intensity, spectral content,

and time waveforms associated with this light would assist in an evaluating this question.
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Table I

CANDIDATE COMMENTS

Conducting Sphere: Too heavy to achieve observed orbital frequency.

Conducting Spherical Shell: Too fragile to be practically realized.

Dielectric Sphere: Too heavy to achieve observed orbital frequency.

Dielectric Spherical Shell: Induced electric dipole moment too small to achieve

observed orbital frequency.

Conducting Needle: Must have a high aspect ratio to achieve observed orbital

frequency. Must be of small size and of a material of high
enough melting point to yield observed luminosity through

black (or gray) body radiation without melting. The
probability of such an object in the cavity seems highly unlikely.

Dielectric Needle: Must have a high aspect ratio to achieve observed
orbital frequency, which in turn requires an unrealistically
high dielectric constant.
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FIGURE CAPTIONS

1. A sphere of radius a in a uniform �eld Ez. The induced electric dipole � is indicated.

2. Modeling a resistive sphere with a geometry suitable for a lumped component equiva-

lent circuit. The resistivity of the sphere is lumped into a discrete resistor connecting

the two conducting hemispheres.

3. Equivalent circuit of the resistive sphere model (Fig. 2) used for a power and luminosity

analysis.

4. A sphere of radius a with an incremental slice of thickness �z indicated. The angle �

gives the location of the slice.

5. Prolate spheroidal boss, of semi-axes a and b, protruding from a ground plane. Using
the symmetry in the ground plane, this geometry properly represents a 
oating or
orbiting prolate spheroid embedded in, and aligned with, a uniform electric �eld Ez

along the z -axis.

6. A prolate spheroid with an incremental slice of thickness �z indicated. This �z slice
intersects the surface of the spheroid (� = �0) at �.

7. A reproduction of Fig. 2a of Ref. [1], depicting a closed elliptical orbit segment. The
major axis of the ellipse is indicated. Points A and B denote the termini of the orbital
segment as determined by variations in the track luminosity.

8. The sine wave variation of the orbit along the major axis of the elliptical orbit. The
locations of points A and B that are derived from Fig. 7 are indicated.

9. A plot versus AR of the induced moment of a prolate spheroid normalized to that of a

sphere for the same a. The induced moment drops as AR increases, but not as fast as
the volume drops.

10. A plot versus AR of the geometric enhancement factor RE of the prolate spheroid

relative to a sphere. RE includes both the reduction in the induced moment and the
reduction in volume as AR increases. It can be seen that an RE of � 5200 dictates a

prolate spheroid characterized by AR � 300.

11. Plots of the equilibrium temperature versus the major semi-axis a of a niobium needle

with AR = 300. Curve a was calculated using the resistivity �
 = 12:5 �
-cm, the
resistivity of niobium at 273 K, as input. The point at a = 0.013 cm and T = 2600 K is

indicated. Because resistivity increases signi�cantly with temperature, Curve a is well
below what would actually be expected. Curve b was calculated using the resistivity

of �
 = 187:5 �
-cm, the estimated resistivity of niobium at �2600 K. Also, �r = 0:75,

an estimated emissivity, was used. The point at a � 6 � 10�4 cm and T = 2600
K is indicated. A dashed line is depicted to indicate an estimate of the e�ect of the
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change in resistance with temperature, assuming that the point at 2600 K is a proper

estimate. As one goes to smaller a, the equilibrium T will drop, tending to bring the

actual curve closer to Curve a.

12. Assuming AR = 300, a plot as a function of dielectric constant � of the ratio of the

polarization charge induced on a dielectric prolate spheroid with respect to that on a

conducting prolate spheroid. As one would expect for a large AR, � must be excep-

tionally large for the moment of a dielectric spheroid to approach that of a conducting

spheroid.

13. A depiction of the curvature of the E �eld inside the accelerating cavity, which is shown

in the text to lead to an unstable equilibrium with respect to z-axis motion. The radius

of curvature, �, is indicated.
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