
SLAC-PUB-8398 
March 2000 

Characterizing an Improved Broad Band Impedance* 
Sam Heifets and Alex Chao 

Stanford Linear Accelerator Center, Stanford Unversity, CA 94309 

Abstract 

A phenomenological model of broadband impedance containing two free pa- 
rameters has been recently proposed. This paper attempts to assign physical 
charaterizations to these free parameters by relating them to the geometric di- 
mensions of a stand-alone cavity structure. 
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One problem with the usual broad band resonator impedance model is that 

it behaves as a pure capacitance at high frequencies, i.e. Z(w) N i/w. This is 

not the correct behavior because at high frequencies, we expect a cavity to be 

described by the diffraction model, for which Z(w) N (1 + i)w-‘i2. To overcome 

this problem, it has been suggested that an improved longitudinal broad band 

impedance model can be parametrized as[l, 21 

z(w) = - (1 -:WwLT)S,2 (1) 

Compared with the usual broad band resonator model, the impedance model 

(1) allows for the correct behavior at high frequencies. 

The attempt of this note is to connect the free parameters L and T in Eq.( 1) 

to the geometric dimensions of a cavity, shown in Fig.1. We are aware that, 

depending on the various relative sizes of g, b, and d, the resulting model will 

have varying degrees of accuracy. However, we intend to proceed in a simplistic 

and straightforward manner. 
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Figure 1: Cavity geometry. 
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We first decompose the impedance (1) into real and imaginary parts: 

ReZ(w) = $f(wT), ImZ(w) = -$&wT) (2) 

where 

f(x) = (1 + Z2)3/4 sin (i tan-lx) 

xJC&&+v’m) 
fi(l +x2)5/4 

g(x) = (1 + $4 
co.5 (i tan-lx) 

= 
xJG-&(2-67) 

Jz(1 +x2)5/4 

The functions f(x) and g(x) are shown in Fig.2. 

Figure 2: f(x) and g(x). 
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At low frequencies, we have 

ImZ(w) z -wL (5) 

ReZ(w) M ;w2LT (6) 

while at high frequencies, we have 

The procedure we adopt is to determine the parameters L and T by connecting 

Eqs(5) and (7) with what we expect from the cavity of Fig.1. The whole 

impedance is then determined. We then mention a few properties of the resulting 

impedance and calculate the loss factor using this model. 

At low frequencies, we expect the cavity of Fig.1. to behave like a pure 

inductance, [3] 

Z(w) 
gd M -iwZo- 

2xbc 

where Ze = 377R. Identifying this with Eq.(5) gives 

L=Z,& 

At high frequencies, the diffraction model predicts[3] 

Z(w)=(l+i)& z 
\i 

(8) 

(9) 

(10) 

Identifying this with Eq.(7), and using h.(9), gives 

(11) 

Equations (9) and (11) complete the impedance model (1). We make a few 

comments on this result below: 



(1) The longitudinal wake function is given by 

oh eiwz”Z(w) = Woh( $) 

where[4] 

l/3 w, = 

{ 

0, x>o 
h(x) = 

-&(l+%)eZ, a:<0 

The functions h(x) is shown in Fig.3. 

hlxl 

Figure 3: h(x) versus CC. 

(2) The real part of the impedance has a maximum (see Fig.2), 

(12) 

(13) 

(14) 

These expressions may be identified as the “resonant frequency” and “shunt 

impedance” of this impedance model. Note that this resonant frequency is 

independent of the pipe radius b. 



(3) One could perhaps also identify the “resonant frequency” as the fre- 

quency when the imaginary impedance vanishes. This gives a resonant frequency 

very close to that given in Eq.(14). 

(4) At low frequencies, the usual broad band resonator model gives ReZ N 

Rsw2/Q2u$. If we let RS = 0.6 L/T and WR = 1.7/T as proposed in Eq.(14), 

then the low-frequency real part of the impedance is ReZ - 0.2 w2LT/Q2. 

Compared with Eq.(G), one obtains an effective “Q-value” of 

Q eff M 0.37 (15) 

Equations (14) and (15) are the “resonant frequency”, the “shunt impedance”, 

and the “Q-value” of the impedance model (1). The low value of Qe* indicates 

this impedance is rather broad. 

(5) For a gaussian beam bunch with rms bunch length (T*, the loas factor is 

given by 

k = WoH(o,/cT) (16) 

where 

(17) 

where f(u) is given by Eq.(3) and Wo is given by Eq.(13). Figure 4 shows H(x). 

(6) As a reference, it maybe useful to consider the case when g = d = b. In 

this case, we find 

L = O.I69 
C 

T = I.16b 
C 
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Figure 4: H(z) versus x. 

w, = 0.22? 

Wmax = 1.5; 

ReZ,, = 0.08 Z,, = 30 52 (18) 

(7) As a numerical example, Fig.5 shows a comparison of the loss factors 

predicted using the impedance model (1) and the broadband resonator (Q = 1) 

impedance model with the loss factor predicted by the code ABC1 for a cavity 

with b = 2.5 cm, g = 1 cm, and d = 0.5 cm (CT = 0.732 cm, L = 0.4 nH). For 

short bunches, the agreement between model (1) with ABC1 is better than the 

agreement between the broadband resonator model with ABCI. 
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Figure 5: Comparison of the loss factors predicted using the impedance model 

(l), using the broadband resonator (Q = 1) impedance model, and using ABC1 

code. 
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