
SLAC{PUB{8389

Mar 2000

TRACKING IN FULL MONTE CARLO DETECTOR

SIMULATIONS OF 500 GeV e+e� COLLISIONS a

M.T. RONAN

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

and

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

In full Monte Carlo simulation models of future Linear Collider detectors, charged
tracks are reconstructed from 3D space points in central tracking detectors. The
track reconstruction software is being developed for detailed physics studies that
take realistic detector resolution and background modelling into account. At this
stage of the analysis, reference tracking eÆciency and resolutions for ideal detector
conditions are presented.

1 Introduction

High performance detectors are being designed to carry out precision studies of
e+e�annihilation events in the energy range of 500 GeV to 1.5 TeV. Physics pro-
cesses under study include Higgs mass and branching ratio measurements, measure-
ments of possible manifestations of Supersymmetry (SUSY), precision Electro-Weak
(EW) studies and searches for new phenomena beyond our current expectations.
The relatively-low background machine environment at future Linear Colliders will
allow precise measurements if proper consideration is given to the e�ects of the
backgrounds on these studies. In current North American design studies, full Monte
Carlo detector simulation and analysis is being used to allow detector optimization
taking into account realistic models of machine backgrounds.

In this paper the design of tracking software that is being developed for full
detector reconstruction is discussed. In this study, charged tracks are found from
simulated space point hits allowing for the straight-forward addition of background
hits and for the accounting of missing information. The status of the software
development e�ort is quanti�ed by some reference performance measures, which
will be modi�ed by future work to include background e�ects.

2 Linear Collider Detector Simulations

The current Linear Collider Detector (LCD) simulation e�ort on detailed Monte
Carlo tracking and event reconstruction studies is focused on two detector design
options, known as Large and Small 1. The Large detector is based on a central
Time Projection Chamber (TPC) tracking system with a 3 Tesla superconducting

aPresented at the International Workshop on Linear Colliders, April 28 - May 5, 1999 Sitges,
Barcelona, Spain

Work supported by Department of Energy contracts DE{AC03{76SF00515 (SLAC) and DE{
AC03{76SF00098 (LBNL).

1

Figure 1: Display of a simulated 500 GeV e+e�!W
+
W
�event for the Large TPC detector model

in the (y-z) non-bend plane. The �rst-level pattern recognition algorithm described in this paper
�nds helical tracks originating from the origin from the simulated 3D space points. Note that the
spiraling low-pt tracks would be absorbed by beam line magnets not included in these simulations.

coil mounted outside of Electromagnetic (EM) and Hadronic (HAD) calorimeters.
The Small silicon tracking detector has a 6 Tesla �eld with the coil located inside
of the Hadronic (HAD) calorimeter. Both detector models include an inner vertex
detection system based on similar CCD designs, and an outer muon identi�cation
system. Complete parameter lists for the Large and Small reference detector models
are described elsewhere 1;2. Here we summarize the relevant parameters of the
tracking systems.

2.1 Large \TPC" Detector Model

The simulated TPC tracking detector has resolutions of 140 microns in r-� and
1.4 mm in z. The TPC inner radius is 25 cm, the outer radius is 200 cm and the
TPC half-length is 290 cm. The magnetic �eld is taken to be 3 Tesla. The CCD
detector has 5 layers starting at an inner radius of 2.0 cm with a measurement
resolution of 5 microns. A simulated event for this detector model is shown in
Fig. 1.

2.2 Small \Silicon" Detector Model

The simulated Silicon tracking detector has resolutions of 10 microns in r-� and in
z. The inner radius of the central tracker is 14 cm, the outer radius is 75 cm and the
half-length varies from 31 to 89 cm. The magnetic �eld is taken to be 6 Tesla. The
CCD detector has 5 layers starting at an inner radius of 1.0 cm with a measurement
resolution of 5 microns.

2

2.3 LCD Simulation System

The GISMO C++ Monte Carlo tracking package is used to model the detectors.
The GISMO program reads generated physics events from StdHEP format �les,
simulates hits in the various detectors without resolution smearing and writes out
a portable ASCII format data �le. A separate Java program reads these �les and
writes fully formated object data �les for input into the JAS / hep.lcd reconstruc-
tion and analysis framework 3. A Driver module in the LCD analysis system,
SmearDriver, smears the points with the appropriate detector resolution func-
tions.

3 Tracking Code

The overall Java reconstruction and analysis software design 3 emphasizes exibil-
ity and extensibility in following object-oriented (OO) design rules. The hep.lcd
framework de�nes Drivers to control the data processing sequence and modular
Processor objects to carry out the actual event processing. A software design goal
is to provide a light-weight tracking package that can be easily adapted to di�erent
detector designs. Currently, the hep.lcd.recon.tracking package contains full pattern
recognition and preliminary track �tting software, including simple vertex detector
hit association. In the Java OO design, track reconstruction interfaces are speci�ed
for the Tracker, TrkFinder, TrkFitter and VertexDetector objects.

3.1 Tracker

A base implementation of the Tracker is provided by an abstractAbsTracker class
implementing theProcessormethods. Detector speci�c classes, such asTPCReco
and SiliconReco for the Large and Small detector options, respectively, extend the
base class in specifying the dimensions and parameters of the di�erent trackers.

AbsTracker ! Tracker

The LCD processor AbsTracker picks up the simulated object-formatted LCDE-
vent data, reorders the 3D TrackerHits by layer and passes them to the Trk-
Finder pattern recognition software. The AbsTracker invokes the TrkFinder's
�ndTracks method to perform the pattern recognition. The implemented Tracker
public methods include:

� setupParameters - sets the number of layers in the tracking detector and the
number of levels of pattern recognition to be performed, and then executes
the TrkFinder's setupFinder method to set the pattern recognition strategy.

� getNTracks - returns the number of tracks found.

� getTrkParam(int) - returns a double array of the parameters for the given
track number.

� getNPoints(int) - returns the number of points on the given track number.

3

� getTrkPoint(int,int) - returns a double array of the x,y,z coordinates of the
given point on the given track.

3.2 Track Finding

AbsTrkFinder ! TrkFinder

The AbsTrkFinder class implements common methods for returning track infor-
mation, leaving the actual pattern recognition to concrete implementations.

TPCPat2 ! AbsTrkFinder ! TrkFinder

The track �nding is accomplished in a 3D pattern recognition class, TPCPat2,
using various triplets of layers to �nd helical tracks that originate from the origin
and satisfy minimum pt requirements. Graded levels of pattern recognition are
employed to optimize tracking eÆciency, whereby large-angle high pt tracks are
found �rst, followed by smaller angle tracks and then lower pt tracks in di�erent
angular regions.

The track �nder contains parameters that limit the number of tracks, Max-
Tracks, and the number of points on a track, MaxTrkPts. The pattern recognition
strategy (Strategy) is de�ned by the number of levels, NLevels, the minimum ra-
dius of curvature for each level, minRadius[], the number of patterns, NPatterns,
and the layer numbers, triplets[][], and number of points to require, NPoints[], for
each pattern. The following public methods are implemented:

� setupFinder - initiates a call-back through the setupParameters method to set
pattern recognition strategy.

� setupParamters - implemented by subclasses to set parameters then to call
back the setupStrategy method.

� setupStrategy - sets up the pattern recognition strategy de�ned by the num-
ber of levels, the minimum radius of curvature for each level, the number of
patterns, and the layer numbers and number of points to require for each
pattern.

� �ndTracks - at each level, it uses the 3D points to �nd tracks for the speci�ed
minimum radius of curvature. It �nds all possible tracks passing through
points on the triplet of layers used for each pattern.

� assignPoints - searches through the given set of points to �nd points on the
trajectory of the selected track.

Basically, the track �nder uses all points in a number of layer triplets to �nd
tracks that originate from near the beam-beam interaction point. In the process
it varies the minimum radius of curvature allowed as it steps through a number of
levels of pattern recognition. At each level, all points in three di�erent layers are
considered. Pairs of points in the inner and outer pivot layers are used to restrict
the track's origin before searching through points in the third layer. Points in the

4

middle veri�cation layer determine the radius of curvature (xy plane) of possible
tracks, and helical position (z deviation). Tracks above the minimum radius of
curvature with small z deviation from an ideal helix are formed from unused points
in all layers that are within tolerance of the determined trajectory. If the minimum
number of hits required is met then the track is saved and its points are agged as
being used.

3.3 Vertex Detector

CCDReco [Processor] ! VertexDetector

The present level of track reconstruction includes associating points in the vertex
detector to the found tracks. The association is implemented for a 3D CCD vertex
detector in the hep.lcd.recon.tracking.ccd package. The processor class,CCDReco,
speci�es the vertex detector option and accesses the VXDHits from the LCDE-
vent data and orders them by layer. It uses the Tracker assignPoints method to
associate hits in the vertex detector with the ideal helical trajectories calculated for
the found tracks. These points are later accessed in forming track candidates. The
following VertexDetector methods are implemented

� getNPoints(int) - returns the number of vertex detector points on the given
track number.

� getTrkPoint(int,int) - returns a double array of the x,y,z coordinates of the
given vertex detector point on the given track.

New code for combined vertex detector and tracker pattern recognition are
presently being tested.

3.4 Track �tting

Several track �tters have been modi�ed to work in the Linear Collider Detector
simulation environment: a SLD Weight Matrix �tter and a Kalman �tter. However,
because of a lack of time, track �tting was not used for the results presented at
Sitges, Barcelona 1999. The track momentum resolution obtained from a set of 3
averaged points in the Tracker/Vertex detector, as described for track candidates
below (Sec. 3.5), was adequate in outlining the tracking e�ort and for presenting
preliminary results.

3.5 Reconstructing tracks

Track candidates

A track candidate TrkCandidate object is created from the tracker and vertex
detector hits for each track found. It contains a candidate ag, the track number,
the list of hits on the track (TrkHotList), the track parameters (TrkParams),
the extrapolated positions of the track (TrkExtrap) and the overall chi-squared.
The getTrackHits method selects up to 9 hits at the middle and inner/outer ex-
tremes of the track to be averaged. The average position and reduced error are

5

used to create average points (TrkHitOnTrk) for improving the determination of
the track's parameters. The recalculateTrack method uses these average points to
recalculate the parameters of an ideal helical trajectory, calculates the chi-squared
for the track and returns the result of a test on the quality of the track. The ex-
trapolated positions at the entrance and exit of the outer detectors are determined
by swimming the track through the magnetic �eld to the middle of the magnet coil
then extrapolating to the outermost detectors (using the HelicalSwimmer). In
summary, the TrkCandidate methods are

� getTrackHits - returns an array containing average inner, mid and outer points
on the track.

� recalculateTrack - given the detector speci�cations, it uses the array of 3
points on the track to recalculate the parameters of an ideal helical trajectory,
calculates the chi-squared for the track and returns the result of a test on the
quality of the track.

Track parameters

Standard parameters are chosen for describing a track. The �ve parameters (Trk-
Params) are:

� d0 [cm]- the closest distance in the x-y plane from the origin to the orbit.

� �0 - the azimuth corresponding the track direction in the x-y plane.

� k - the curvature of the track. The magnitude of k = 1/pt in (GeV/c)�1.

� z0 [cm] - the z position of the orbit.

� s = tanLambda - the slope of the track (tangent of the dip angle).

AddReconTrks [Processor]

The LCD processor AddReconTrk creates the track candidates for each track
found by the pattern recognition code. After the track candidate's parameters have
been updated and an improved chi-squared has been calculated, a cut on the quality
of the track is made. A reconstructed track, ReconstructedTrack, implementing
the hep.lcd.event.Track de�nitions 3, is created for each selected track and added
to a track list, ReconTrackList, to be put into the LCDEvent record.

TrackReco [Driver]

A LCD track reconstruction driver TrackReco is used to execute the track �nding
and �tting processes described above. The present performance of the track recon-
struction code for a 300 MHz processor running Java JDK 1.1.8 is 1-3 sec/event for
500 GeV e+e�!W+W�events. The reconstruction and analysis is performed on a
Windows NT server (sldnt0.slac.stanford.edu) from clients running on Solaris or
Linux platforms.

6

0
0 40 80 120

Number of Points
160 200

1500

3000

4500

6000

7500

N
um

be
r

of
 T

ra
ck

s

2-2000
8531A2

Figure 2: Number of points on tracks found in Large TPC detector simulations. The peak at 144
points corresponds to large angle tracks hitting all of the TPC layers.

4 Tracking Analysis

4.1 Analyzing track distributions

The analysis of tracking distributions provides an important check on the code. An
example is given in Fig. 2 where the number of points on TPC tracks is displayed
for a sample of reconstructed 500 GeV e+e�!W+W�events. For large-angle high
pt tracks, one �nds the expected peak at the number of tracking layers. Smaller
angle tracks passing out of the endcap region are picked up by tracking strategies
involving di�erent TPC layers.

Additional analysis checks were performed on both detectors.

4.2 Event scans

A simple event display plugin (hep.lcd.plugin.LCDPlugin) was written for the
JAS/hep.lcd analysis framework3. Scans of simulated 500 GeV e+e�!W+W�and
e+e�!t�t events, such as the one shown in Fig. 1, found that the tracking code
maintains its high eÆciency pattern recognition even in high multiplicity environ-
ments. In the scans, a small contamination of fake tracks was found that will be
easily eliminated in the next software development phase.

4.3 Tracking EÆciency and Resolutions

Tracking eÆciencies and resolutions can be measured by comparing reconstructed
tracks with the Monte Carlo generator.

7

0
0 1 2

pt (GeV)
3 4 5

600

1200

1800

2400

3000

3600

N
um

be
r

C
ha

rg
ed

2-2000
8531A3

Figure 3: Tracking eÆciency curves for the Large detector model. The solid histogram displays
the transverse momentum distribution for all Monte Carlo charged tracks within the detector
acceptance (jcos(�)j� 0:95). The data points display the same distribution for reconstructed

tracks. The ratio of the two curves gives the tracking eÆciency which is not shown.

SimpleAnlReconTrks [Processor]

A simple track analysis processor SimpleAnlReconTrks compares reconstructed
tracks with the original Monte Carlo charged particles. The processor searches
through all of the MC charged particles and selects the closest in angle (�) to the
reconstructed track requiring that cos� � 0:99. If no MC particle is found then the
reconstructed track is considered to be mismeasured or a fake track.

Tracking EÆciency

Since the present tracking is limited in angle coverage and transverse momentum
range by the central tracker and the high magnetic �eld, ineÆciencies at low pt

are expected. Fig. 3 shows the number of reconstructed tracks and charged MC
particles as a function of pt. One observes that the eÆciency reaches nearly 100%
only above 1-1.5 GeV/c. Variations of the tracking strategies to concentrate on
inner tracker layers improves the low pt eÆciency signi�cantly at the cost of in-
creased reconstruction time, and may not stand up to high background conditions.
Combined vertex detector and tracker pattern recognition algorithms are being per-
sued to reach high eÆciency for very low pt tracks while physics studies have been
initiated based on the present \�rst-pass" algorithms.

8

0

1000

500

1500

2000

2500

0
dP/P

–0.02 0.020
dP/P

–0.02 0.02

1000

0

2000

3000

4000

5000

N
um

be
r

of
 T

ra
ck

s

(a) (b)

3-2000
8531A4

Figure 4: Large(a) and Small(b) detector momentum resolutions based on ideal helical trajectory
determination, with no track �tting, from the �rst-level pattern recognition algorithm.

Momentum Resolution

Figure 4 shows the momentum resolution for reconstructed tracks based on the
di�erence in momentum of their corresponding Monte Carlo particles. At this stage
of the analysis, with no track �tting, the average momentum resolutions for the
two detector designs are � 1:5 � 4 � 10�3. Here the di�erence between the two
detector designs is a result of the larger multiple scattering at low momentum for
the Small detector. Actual track �tters are being developed to better characterize
the performance of the di�erent detector models.

Energy Loss

From the average di�erence in energy between the reconstructed track and the
Monte Carlo particle, one �nds the energy loss in the inner detector material to be
� 2:0 MeV for both detector designs.

5 Plans

Basically, the plan is to continue to optimize the pattern recognition and track
�tting for this stage of the analysis. That is, high-level optimization of the full
reconstruction system may well be beyond the scope of design level studies. Tech-
niques for mixing reconstructed tracks with parameterized simulations of missing
Monte Carlo particles are being developed 4 to allow precision physics studies to be
made. As the physics and detector issues are better de�ned, detailed studies of the
variation in performance of the detectors for di�erent e�ects will be determined by
understanding the sensitivity to de�ciencies in the reconstruction (e.g. the e�ect of
missing low pt or small angle tracks) and by controlling the mixing of reconstructed
and Monte Carlo particles that are missed 4.

9

5.1 Background simulations

Detailed machine background simulations have been made for the most signi�cant
sources of backgrounds. These backgrounds will be superimposed on the simulated
tracker hits before executing the pattern recognition software.

Acknowledgments

The track �nding code inAbsTrkFinder was derived fromPAT2, written by Henri
Videau and modi�ed by Gerry Lynch and Orin Dahl for PEP4-TPC tracking. It
was modi�ed for BaBar Silicon vertex detector standalone tracking by Gerry Lynch.
A C++ version, BaBarPat2 written by Natalia Kuznetsova, was ported to Java
by the author.

I'd like to thank Tony Johnson and Nick Sinev for numerous comments and
checks of the Java track reconstruction code.

References

1. J. Brau, Overview of the American Detector Models, in these proceedings.
2. R. Dubois, LCD Small and Large Calorimeter Single Particle Resolutions, in

these proceedings.
3. M.T. Ronan et al., Java Analysis Studio and the hep.lcd Class Library, in

these proceedings.
4. M.T. Ronan, A Hybrid Monte Carlo System for Detector Simulations, in

preparation.

10

