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Abstract

Using non-relativistic e�ective theories, new next-to-next-to-leading order (NNLO) QCD

corrections to the total t�t production cross section at the Linear Collider have been calcu-

lated recently. In this article the NNLO calculations of several groups are compared and the

remaining uncertainties are discussed. The theoretical prospects for an accurate determina-

tion of top quark mass parameters are discussed in detail. An outlook on possible future

improvements is given.
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1 Introduction

Top{antitop quark pair production close to the threshold will provide an integral part of the top

quark physics program at the Linear Collider (LC). The theoretical interest in the top{antitop quark

threshold arises from the fact that the large top quark mass and width (�t � 1:5 GeV) lead to a

suppression of non-perturbative e�ects [1, 2, 3]. This makes perturbative methods a reliable tool to

describe the physics of non-relativistic t�t pairs, and allows for measurements of top quark properties

directly at the parton level. Due to the large top width the total t�t production cross section line shape

is a smooth function of the energy, which rises rapidly at the point where the remnant of a toponium

1S resonance can be formed. From the energy where this increase occurs, the top quark mass can be

determined, whereas shape and height of the cross section near threshold can be used to determine

�t, the coupling strength of top quarks to gluons and, if the Higgs boson is not heavy, the top Yukawa

coupling [4]. From di�erential quantities, such as the top momentum distribution [5, 6], the forward{

backward asymmetry or certain leptonic distributions [7, 8], one can obtain measurements of �t, the

top quark spin and possible anomalous couplings.

The measurements of the top quark mass and the total top quark width from a threshold line

shape scan are particularly interesting. In contrast to the standard top mass determination method,

which relies on the reconstruction of the invariant mass of jets originating from a single top quark,

the line shape measurement has the advantage that only colour-singlet t�t events have to be counted.

Therefore, the e�ects of �nal state interactions are suppressed, and systematic uncertainties in the top

mass determination are small. For the total top quark width only a few other ways to determine it

directly are known. Simulation studies, which also took into account the smearing of the c.m. energy

from beam e�ects, have shown that, for a total luminosity of 100 fb�1, statistical and systematical

experimental uncertainties in the top mass determination are below 50 MeV [9]. The top quark width

can be determined with experimental uncertainties of better than 20% for given top quark mass and

�s [10, 11, 12].

With this prospect in view it is obvious that a careful analysis and assessment of theoretical

uncertainties in the prediction of the total cross section is mandatory, in order to determine whether the

theoretical precision can meet the experimental one. Within the last two years, considerable progress

has been achieved in higher order calculations of the total cross section. Using the concept of e�ective

�eld theories, calculations of NNLO QCD corrections to the total cross section have been carried out

by several groups: Hoang{Teubner [13, 14], Melnikov{Yelkhovsky [15], Yakovlev [16], Beneke{Signer{

Smirnov [17], Nagano{Ota{Sumino [18] and Penin{Pivovarov [19]. In contrast to previous LO [20]

and NLO calculations [4, 5, 6, 7, 8, 21], the new results at NNLO do not rely on potential models

that need phenomenological input, but represent �rst-principle QCD calculations. The results are

not just some new higher order corrections, but have led to a number of surprising and important

insights. The NNLO corrections to the location where the cross section rises and the height of the

cross section were found to be much larger than expected from the known NLO calculations. It was

suggested that the large corrections to the location of the rise are an artifact of the on-shell (pole) mass

renormalisation [22]. Several authors realized that the quark pole mass cannot be extracted with an

uncertainty smaller than O(�QCD) from non-relativistic heavy quark{antiquark systems [23, 22, 24].

New top quark mass de�nitions were subsequently employed to allow for a stable extraction of the top

quark mass parameter [17, 14]. The remaining uncertainties in the normalisation of the cross section

seem to jeopardise the measurements of the top width, the top quark coupling to gluons, and the
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Higgs boson. The results obtained by all groups are formally equivalent at the NNLO level. However,

they di�er in the use of the calculational methods and the intermediate regularization prescriptions,

and their treatments of higher order corrections. Apart from analysing the theoretical uncertainties

estimated from the result of one individual group, a comparison of the results obtained from the

di�erent groups serves as an additional useful instrument to assess the theoretical uncertainties. In

this article the results for the NNLO QCD calculations for the total cross section obtained by the

individual groups are compared and an overview of what has been achieved so far based on the results

of all groups is given. As an outline for possible future work, some remaining open questions are

addressed.

The outline of this note is as follows: in Sec. 2 a brief introduction into the technical issues

relevant to the calculation of the total cross section at NNLO is given, and some aspects of the e�ective

�eld theory approach are reviewed. In Sec. 3 the NNLO QCD calculations obtained by the di�erent

groups are compared in the pole mass scheme. In Sec. 4 three alternative mass de�nitions tested by

Beneke{Signer{Smirnov, Hoang{Teubner and Melnikov{Yelkhovsky are discussed. Section 5 contains

a brief summary and mentions some issues that should be addressed in the future.

2 Total Cross Section at NNLO and E�ective Theory Approach

For the total cross section close to the threshold, where the velocity v of the top quarks is small, v � 1,

the conventional perturbative expansion in the strong coupling breaks down, owing to singular terms

� (�s=v)
n that arise in the n-loop amplitude. This singularity is caused by the instantaneous Coulomb

attraction between the top quarks, which cannot be treated as a perturbation if their relative velocity

is small. It is therefore mandatory to resum the terms that are singular in v to all orders in �s. At

LO in the non-relativistic expansion of the total cross section, this amounts to resumming all terms

proportional to v(�s=v)
n, n = 0; : : : ;1. The most convenient tool to carry out this resummation is

the Schr�odinger equation

�
�

~r2

M
pole
t

�
CF �s

jrj
� (

q
q2 � 2M

pole
t )� i�t

�
G(r; r0;

q
q2) = �(3)(r � r

0) ; (1)

where M
pole
t and �t are the top quark pole mass and width, respectively. The Schr�odinger equation

has the simple form shown in Eq. (1) only in the pole mass scheme. The decay of the top quark

is implemented by adding the term i�t to the c.m. energy
p
q2 [3]. At LO in the non-relativistic

expansion, counting �t as being of order M
pole
t �2s , this is the correct way to implement electroweak

e�ects [17, 14]. The total cross section �tot(e
+e� ! �; Z�! t�t) reads

�
;Z
tot (q

2) = �pt

�
Q2
t � 2

q2

q2 �M2
Z

ve vtQt +

�
q2

q2 �M2
Z

�2 h
v2e + a2e

i
v2t

�
Rv(q2)

+ �pt

�
q2

q2 �M2
Z

�2 h
v2e + a2e

i
a2t R

a(q2) ; (2)

where

�pt =
4 � �2

3 q2
; (3)
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vf =
T
f
3 � 2Qf sin2 �W

2 sin �W cos �W
; (4)

af =
T
f
3

2 sin �W cos �W
: (5)

Here, � is the �ne structure constant, Qt = 2=3 the electric charge of the top quark, �W the Weinberg

angle, and T
f
3 refers to the third component of the weak isospin; Rv and Ra represent the contributions

to the cross section induced by vector- and axial-vector current, respectively. R � Q2
tR

v is equal to

the total normalised photon-induced cross section, which is usually referred to as the R-ratio. Close to

threshold, �
;Z
tot is dominated by the vector-current contribution Rv , which describes top quark pairs in

an angular momentum S-wave state. Higher angular momentum states are suppressed by additional

powers of v; P-wave production, which is associated to the axial-vector current contribution Ra is

suppressed by v2 and needs to be taken into account at NNLO [25, 19, 14, 26]. The absorptive part

of G(0; 0;
p
q2), obtained from Eq. (1), is the �rst term of a non-relativistic expansion of Rv close to

threshold:

Rv(q2 � 4M2
t ) =

72 �

q2
Im
h
G(0; 0;

q
q2)

i
+ : : : : (6)

To determine NLO corrections to the cross section, corresponding to a resummation of all

terms / v(�s=v)
n� [�s; v], n = 0; : : : ;1, the one-loop corrections to the Coulomb potential [27] have

to be added in Eq. (1) and a short-distance correction to the top{antitop production current has to

be included [28]. The latter is implemented by multiplying the Green function of the Schr�odinger

equation by a factor C = 1 + c1
�s

�
, where c1 is a real number. The NLO corrections do not pose any

conceptual problem, because the short-distance corrections to C factorise unambiguously, and because

the absorptive part of the Green function does not contain any ultraviolet divergences at this order.

The corrections at NNLO, corresponding to a resummation of all terms / v(�s=v)
n � [�2s ; �s v; v

2],

n = 0; : : : ;1, require the inclusion of the kinetic energy term �
~r4

4M3
t

, two-loop corrections to the static

potential [29] and new potentials suppressed by additional powers of 1=M2
t and �s=Mt into Eq. (1).

In addition, the short-distance factor C has to be determined at the two-loop level [30, 31]. The new

potentials are the generalisation of the Breit{Fermi potential, known from positronium, in QCD. The

determination of the NNLO corrections is non-trivial because the additional mass-suppressed terms

in the Schr�odinger equation lead to UV divergences in the absorptive part of the Green function G.

This is because they contain momenta to a high positive power. These divergences are a consequence

of the non-relativistic expansion.

The problem of UV divergences can be conveniently dealt with in the framework of non-

relativistic e�ective theories. All the NNLO calculations performed in Refs. [13, 15, 16, 17, 18, 19, 14]

have been carried out in this framework. In the e�ective �eld theory approach the top quark and

the gluonic degrees of freedom that are o�-shell in the non-relativistic top{antitop-quark system are

integrated out, leaving only those degrees of freedom as dynamical that can become on-shell. The

relevant momentum regimes associated with non-relativistic degrees of freedom have a non-trivial

structure [32] and were �nally identi�ed by Beneke and Smirnov [30]. The resulting e�ective �eld

theory obtained by integrating out the degrees of freedom that are o�-shell has been called \potential

non-relativistic QCD" (PNRQCD) [33]. PNRQCD represents an e�ective theory of NRQCD; the lat-

ter was �rst proposed by Caswell and Lepage [34] and is widely used in charmonium and bottomonium
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physics [35]. As the NRQCD Lagrangian, the PNRQCD Lagrangian contains an in�nite number of

operators, where operators of higher dimension are associated to interactions suppressed by higher

powers in v. The corresponding Wilson coe�cients can be determined perturbatively (as a conven-

tional series in �s) by matching on-shell scattering amplitudes in PNRQCD and full QCD. The main

feature of PNRQCD is the existence of spatially non-local instantaneous four-quark interactions, which

represent an instantaneous interaction of a quark{antiquark pair separated by some spatial distance

r:

LPNRQCD

non�local =

Z
d3r

�
 y 

�
(r)V (r)

�
�y�

�
(0) : (7)

Here,  and � represent the two-component Pauli spinors describing the top and antitop quarks after

the corresponding small component has been integrated out. The Wilson coe�cients V (r) of these non-

local interactions are generalisations of the concept of the heavy quark potential. We emphasise that

these Wilson coe�cients are strict short-distance quantities that can be calculated perturbatively. In

addition, PNRQCD contains the interactions of dynamical gluons (having energies and momenta of the

order of the top quark kinetic energy) with the top quarks. These dynamical gluons lead to top{antitop

quark interactions that are not only non-local in space but also in time. These interactions are called

\retardation e�ects". External electroweak currents, which describe production and annihilation of

a top quark pair are rewritten in terms of PNRQCD currents, providing a systematic small-velocity-

expansion of the corresponding relativistic current{current correlators. The Wilson coe�cients of

the PNRQCD currents contain short-distance information speci�c to the corresponding electroweak

current producing or annihilating the top{antitop-quark pair. The short-distance factor C is the

modulus square of the Wilson coe�cient of the �rst term in the non-relativistic expansion of the

vector current. PNRQCD provides so-called \velocity counting rules" that unambiguously state which

of the operators have to be taken into account to describe the quark{antiquark dynamics at a certain

parametric precision. For the description of a non-relativistic t�t pair at NNLO, these rules show

that the interactions of dynamical gluons can be neglected. The resulting equation of motion for

a heavy quark{antiquark pair has the form of Eq. (1), supplemented by corrections up to NNLO.

UV divergences in the calculation of the absorptive part of the Green function are subtracted and

interpreted in the context of a particular regularization scheme for PNRQCD. The absorptive part

of the Green function then contains a dependence on the regularization scheme parameter. This

dependence on the regularization parameter is cancelled by that of the two-loop corrections to the

short-distance factor C.

We note that, strictly speaking, the new NNLO calculations represent true NNLO results only

for the case of a stable top quark. None of the new NNLO calculations contains a consistent treatment

of electroweak e�ects at NNLO. All groups took into account the top quark width by adding i�t to

the c.m. energy in the Schr�odinger equation, as shown in Eq. (1)1. However, we do not expect that

the neglected electroweak corrections will exceed several per cent for the total cross section.

1 Some NNLO corrections proportional to the top width have been determined in Refs. [19, 14].
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3 NNLO Results for the Total Cross Section

in the Pole Mass Scheme

Six groups have calculated the NNLO QCD corrections to the total cross section close to thresh-

old: Hoang{Teubner [13, 14], Melnikov{Yelkhovsky [15], Yakovlev [16], Beneke{Signer{Smirnov [17],

Nagano{Ota{Sumino [18] and Penin{Pivovarov [19]. In this section the methods of the di�erent groups

are briey summarised and di�erences are pointed out. The results are compared numerically in the

pole mass scheme. Because NNLO corrections are only relevant to the vector-current-induced total

production cross section, we will only compare the normalised photon-induced cross section R. Results

for the cross section including also the full Z-exchange contributions can be found in Refs. [26, 19, 14].

The methods for the NNLO results from the groups Melnikov{Yelkhovsky, Yakovlev and Nagano{Ota{

Sumino are identical. Because the numerical results provided by these groups for this comparison agree

with each other to better than one per mille, they will be treated as belonging to a single group.

The di�erent groups have used the following methods in their NNLO calculations:

� Hoang{Teubner (HT) [14] have solved the NNLO Schr�odinger equation exactly in momentum

space representation. As ultraviolet regularization they restricted all momenta to be smaller

than the cuto� �, which is of the order of the top quark mass. The short-distance coe�cient C

was determined by using the \direct matching procedure" [36], where the total cross section in

the e�ective �eld theory is matched to the total cross section in QCD in the limit �s � v � 1 and

for �t = 0. The result for the total cross section depends on two scales, �soft, the renormalisation

scale of the strong coupling in the static potential and the cuto� scale �. The renormalisation

scale in the short-distance coe�cient C is also �soft. The sensitivity to � is considerable at LO

and has been shown to be small at NLO and NNLO.

� Melnikov{Yelkhovsky{Yakovlev{Nagano{Ota{Sumino (MYYNOS) [15, 16, 18] solved

the NNLO Schr�odinger equation exactly in coordinate space representation. As regularization

prescription they determined the Green function at a �nite distance r0 from the origin and

expanded in r0. Only logarithms of r0 were kept and inverse powers of r0 were discarded. The

value of r0 was chosen of the order of the inverse top quark mass. The short-distance coe�cient

C was determined by using the \direct matching procedure". The result for the total cross

section depends on three scales, �soft, the renormalisation scale in the static potential, 1=r0, the

cuto� scale, and �hard, the renormalisation scale in the short-distance coe�cient C. The scale

�hard was set equal to the top quark mass. The sensitivity to r0 has been shown to be small.

� Penin{Pivovarov (PP) [19] solved the Schr�odinger equation perturbatively in coordinate space

representation. They started from the analytically known solution of the LO Coulomb prob-

lem and determined NLO and NNLO corrections analytically via Rayleigh-Schr�odinger time-

independent perturbation theory. As regularization prescription they determined the Green

function at a �nite distance to the origin, discarding all power-like divergences. In order to

avoid multiple poles in the energy denominators of the Green function, which naturally arise

in a perturbative determination of the Green function and which lead to instabilities in the

cross-section shape, PP supplemented their calculation by reabsorbing the corrections to the

energy eigenvalues into single-pole energy denominators. The short-distance coe�cient C was

determined by using the \direct matching procedure". The result for the total cross section
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Order LO NLO NNLO

�soft[GeV] 15 30 60 15 30 60 15 30 60

HT
1:22 0:96 0:80 0:86 0:90 0:88 1:14 1:08 1:04

348:06 348:69 349:26 347:75 347:93 348:17 347:12 347:34 347:55

MYYNOS
1:70 1:28 1:03 0:80 0:86 0:87 1:33 1:15 1:06

348:14 348:79 349:36 347:83 348:03 348:27 347:22 347:48 347:68

PP
1:70 1:28 1:03 0:77 0:87 0:89 1:56 1:16 1:04

348:14 348:79 349:36 347:96 348:04 348:29 347:12 347:46 347:71

BSS
1:70 1:28 1:03 1:08 1:02 0:95 1:53 1:23 1:12

348:15 348:79 349:36 347:81 348:03 348:26 347:14 347:46 347:70

Table 1: The values of R (upper numbers) at the respective peak position (lower numbers in units

of GeV) at LO, NLO and NNLO in the pole mass scheme for M
pole
t = 175:05 GeV, �s(MZ) = 0:119,

�t = 1:43 GeV and �soft = 15, 30, 60 GeV. The values have been determined from results provided by

the groups Hoang-Teubner (HT), Melnikov{Yelkhovsky{Yakovlev{Nagano{Ota{Sumino (MYYNOS),

Penin{Pivovarov (PP) and Beneke{Signer{Smirnov (BSS).

depends on three scales, �soft, the renormalisation scale in the static potential, �fac, the cuto�

scale, and �hard, the renormalisation scale in the short-distance coe�cient C. The scales �fac

and �hard have been chosen of the order of the top quark mass. The sensitivity to variations of

�fac and �hard has been shown to be small.

� Beneke{Signer{Smirnov (BSS) [17] solved the Schr�odinger equation perturbatively using

dimensional regularization as a regularization prescription. They started from the analytically

known solution of the LO Coulomb problem and determined all corrections analytically via

Rayleigh{Schr�odinger time-independent perturbation theory. At NLO BSS included the second

iteration of the one-loop corrections to the static potential. The short-distance coe�cient C was

determined by extracting the hard momentum contribution in the two-loop amplitude for  ! t�t

close to threshold for �t = 0 [31], using the \threshold expansion" [30], which is an algorithm to

calculate the asymptotic expansion of diagrams describing processes involving massive quark{

antiquark pairs in the kinematic region close to the two-particle threshold. In order to avoid

the destabilising e�ects of multiple poles in the energy denominators of the Green function,

BSS supplemented their result by reabsorbing the corrections to the two lowest lying energy

eigenvalues into single-pole energy denominators. In contrast to all other groups, BSS have not

implemented the short-distance coe�cient C as a global factor, but have expanded C together

with the non-relativistic corrections to the Green function up to NNLO. The result of BSS

depends on the scale �soft and on the QCD/NRQCD matching scale �h. The dependence on the

scale �h has been shown to be small.

In Figs. 1 the total normalised photon-induced cross section R obtained from HT (� =M
pole
t ),

MYYNOS (r0 = e2�=2M
pole
t , �hard = M

pole
t ), PP (�fac = �hard = M

pole
t ) and BSS (�h = M

pole
t )

are displayed at LO (dotted lines), NLO (dashed lines) and NNLO (solid lines) in the non-relativistic
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Figure 1: The total normalised photon-induced t�t cross section R at the LC versus the c.m. energy in

the threshold regime at LO (dotted curves), NLO (dashed) and NNLO (solid) in the pole mass scheme

for M
pole
t = 175:05 GeV, �s(MZ) = 0:119 , �t = 1:43 GeV and �soft = 15, 30, 60 GeV. The plots

have been generated from results provided by the groups Hoang-Teubner (HT), Melnikov-Yelkhovsky-

Yakovlev-Nagano-Ota-Sumino (MYYNOS), Penin-Pivovarov (PP) and Beneke-Signer-Smirnov (BSS).

expansion in the pole mass scheme for M
pole
t = 175:05 GeV, �s(MZ) = 0:119, �t = 1:43 GeV and

�soft = 15, 30, 60 GeV. The value for the top quark pole mass is the highest-order entry of Table 3,

taking mt(mt) = 165 GeV as a reference value. The range 15{60 GeV for �soft is chosen, because

it covers the typical top quark three momentum in the t�t system. The e�ects of the beam energy

spread due to initial-state radiation and beamstrahlung, which lead to a smearing of the e�ective

centre-of-mass energy and a loss of luminosity, are not included in this comparison. In Table 1 the

values of R (upper numbers) at the visible maximum (lower numbers in units of GeV) at LO, NLO

and NNLO in the pole mass scheme are displayed using the same set of parameters as in Figs. 1. The

various results presented in Figs. 1 and Table 1 are of the same order and only di�er with respect to

the treatment of higher order corrections, and with respect to the regularization scheme.

As far as the position of the maximum, called \peak position" in the rest of this article, is

concerned the results of all groups are consistent: they all show that the position of the peak receives

large NNLO corrections and that the peak is moved to smaller c.m. energies at higher orders. For

�soft = 15=30=60 GeV, the NLO shift is around 300=800=1200 MeV versus 600{800=600=600 MeV at

NNLO. The convergence is better for higher renormalisation scales, but the size of the overall shift is
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also increasing. In addition, the dependence of the peak position on the renormalisation scale is not

reduced when going from NLO to NNLO2. At LO, NLO and NNLO, the variation is around 1200,

400 and 400 MeV respectively. An extraction of the top quark pole mass based on the location of the

peak would result in a theoretical uncertainty of around 300 MeV, although an exact estimate based

on the results given above is di�cult. (The uncertainty coming from the use of di�erent calculational

methods by the various groups, for the same input parameters, is only around 50 MeV at LO and NLO,

and around 80 MeV at NNLO.) The rather bad behaviour of the peak position is not unexpected,

because it is known that the pole mass de�nition su�ers from a sensitivity to low scales (i.e. scales

that are smaller than the physical scales relevant to the problem), which increases for higher orders in

perturbation theory. This leads to large arti�cial corrections in larger orders of perturbation theory.

The problem is known as the \renormalon problem" of the pole mass de�nition [37] and exists even in

the presence of the large top quark width. (A formal proof can be found in Ref. [38].) In practice, this

means that, as a matter of principle, the top quark pole mass cannot be determined to better than

O(�QCD). The pole mass de�nition could, at least in principle, still be used as a correlated parameter

that would depend on the order of the calculation and the choice of the theoretical parameters, such as

the strong coupling, the renormalisation scale, etc., but it is wise not to put this option into practice.

A way that avoids the problem of large higher order corrections to the peak position is to use top

quark mass de�nitions that do not have the same strong sensitivity to low scales as the pole mass.

Such masses can also be de�ned in a way that the correlation of the peak position on the value of the

strong coupling is small. Some suggested alternative mass de�nitions [22, 14, 39], called \threshold

masses" in this article, are discussed in Sec. 4.

As far as the normalisation of the cross sections obtained by the di�erent groups is concerned,

all results clearly show that the sensitivity of the NLO total cross section with respect to changes in

�soft does not give an estimate for the true size of the NNLO corrections. However, for the actual size of

the NNLO corrections the situation is less coherent. Compared to the other groups, the normalisation

of the cross sections from HT has the smallest sensitivity to variations of �soft, and the smallest size

of NLO and NNLO corrections. At the peak position, the value of R from HT varies by (40,4,10)% at

(LO,NLO,NNLO) for a variation of �soft from 15 to 60 GeV, compared to (50,8,23)% for MYYNOS,

(55,14,45)% for PP and (52,6,33)% for BSS. The NLO and NNLO corrections to R at the peak position

for �soft = (15; 30; 60) GeV amount to (0:36; 0:06; 0:08) and (0:28; 0:18; 0:16) for HT, (0:90; 0:42; 0:16)

and (0:53; 0:29; 0:19) for MYYNOS, (0:93; 0:41; 0:14) and (0:79; 0:29; 0:15) for PP, and (0:62; 0:26; 0:08)

and (0:45; 0:21; 0:17) for BSS. Note that the NLO results of BSS for di�erent �soft di�er qualitatively

from all others. This is a consequence of a di�erent treatment of the short-distance coe�cient C

as explained above. The stability of the results from HT is mainly a consequence of the use of a

cuto� regularization scheme, which does not allow for any momenta larger than the cuto� � in the

Green function of Eq. (1), and of the fact that they solved Eq. (1) exactly rather than treating higher

order corrections perturbatively. All other groups use regularization schemes that allow for in�nitely

large (i.e. relativistic) momenta in Eq. (1), in particular when their contributions do not lead to

ultraviolet divergences. The existence of this cuto� in the result of HT implies that the meaning \LO

approximation" is modi�ed. (See Ref. [14] for a discussion of the cuto�-dependence of the results

obtained by HT.) While LO approximation for all other groups means that all terms v(�s=v)
n in the

2 There is also a rather strong correlation of the peak position to the choice of �s, which arises from a quadratic

dependence of the peak position on the strong coupling, Mpeak � 2Mpole
t = �

4

9
�
2
sM

pole
t [1 + : : :]. The ellipses denote

electroweak and higher order QCD corrections.
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full QCD cross section are summed and no others are included, the LO approximation of HT contains

cuto�-dependent terms that represent higher order short-distance corrections. The di�erence between

the results obtained by HT and the others indicates the size of these higher order terms. Solving the

Schr�odinger equation (1) exactly rather than perturbatively, on the other hand, has the most impact

at NNLO, which can be seen from the NNLO scale variation in the results from MYYNOS compared

to the results from PP and BSS. The results show that the resummation of the corrections of the

NNLO contributions in the Sch�odinger equation (1) to all orders leads to a partial compensation of

the large (�xed order) NNLO corrections. However, we are not aware of any formal argument that the

exact solution of an approximate equation of motion in the framework of an e�ective theory should

a priori lead to a more reliable result than the perturbative one. Which of the scale dependences

provides a more realistic estimate of yet higher order corrections can only be answered when the full

NNNLO corrections have been calculated.

The introduction of \threshold masses" does not lead to a reduction of the large NNLO nor-

malisation corrections (see the discussion in Sec. 4.) At the present stage, a �nal estimate for the

normalisation uncertainty of the total cross section at NNLO is di�cult. In view of the di�erent be-

haviour of the NNLO corrections calculated by the various groups, the variation of the normalisation

with respect to changes in �soft seems not to be a reliable estimator. We take the size of the NNLO

correction to R at the peak position at �soft = 30 GeV as an estimate for the current normalisation

uncertainty of the NNLO total cross section, which amounts to about 20%. This estimate is consistent

with the variation of the NNLO peak cross section with the used di�erent calculational methods by the

various groups at �soft = 30 GeV. Just recently, some NNNLO corrections to the zero-distance wave

function of a (stable) toponium 1S state have been determined [40, 41]. Because the value of R at the

peak is proportional to the square of the toponium 1S wave function at the origin, these corrections

can be used as a consistency check for the error estimate based on the NNLO corrections alone. In

Ref. [40] the ultrasoft corrections (coming from the interactions of the top quarks with dynamical

gluons) were calculated, and in Ref. [41] the leading logarithmic contributions proportional to ln2(�s).

Both contributions are below 10%, which seems to support the error estimate of 20% given above.

However, a concrete statement about the true size of the NNNLO corrections can only be drawn once

the full NNNLO corrections have been determined. In Ref. [42] non-perturbative corrections originat-

ing from the gluon condensate have been calculated. These corrections amount to less than a per cent

in the normalisation and are negligible compared to the current perturbative uncertainties.

Simulation studies [9] have shown that the normalisation uncertainty does not seem to a�ect

signi�cantly the determination of the top quark mass. However, it jeopardises the measurements of

top quark couplings from the threshold scan.

4 Threshold Masses

The pole mass de�nition seems to be the natural choice to formulate the non-relativistic e�ective

theory that describes the t�t dynamics close to threshold. The heavy quark pole mass is IR-�nite and

gauge-invariant. In the pole mass scheme the equation of motion for the non-relativistic t�t pair has the

simple form of Eq. (1), which is well known from non-relativistic problems in QED. Intuition also seems

to favour the pole mass de�nition, because close to threshold the top quarks only have a very small

virtuality of order M2
t v

2. However, it is known that the use of the pole mass can lead to (arti�cially)

10



large high order corrections, because of its strong sensitivity to small momenta [37]. The results for

the corrections to the peak position obtained by all groups show that this is also the case for the total

t�t production cross section. Technically, in the calculations for the total cross section, the origin of the

large corrections to the peak position is the heavy quark potential (which is traditionally always given

in the pole mass scheme). At large orders of perturbation theory the potential causes large corrections

from momenta smaller than Mt�s, the relevant momentum scale for the non-relativistic dynamics of

the t�t system [43]. This can be visualised by considering the small momentum contribution to the

heavy quark potential in con�guration space representation for distances of the order of the inverse

Bohr radius 1=Mt�s:

�
V (r � 1=Mt�s)

�IR
�

jqj<��Mt�sZ
d3q

(2�)3
~V (q) exp(�i qr) (8)

�

jqj<��Mt�sZ
d3q

(2�)3
~Vc(q) + : : : : (9)

Here, ~Vc is the static potential in momentum space representation. At large orders of perturbation

theory the RHS of Eq. (9) is dominated by r-independent corrections, which grow asymptotically like

���nsn!. It has been shown that the total static energy 2M
pole
t + Vc(r) does not contain these large

corrections [23, 22, 24]3. Thus the large high order corrections can be avoided if a top quark mass

de�nition is adopted that does not contain the same strong sensitivity to small momenta as the pole

mass. Such masses are called \short-distance" masses. With a careful de�nition their ambiguity is

parametrically of order �2
QCD=Mt or smaller. However, in the context of the non-relativistic e�ective

theory only those short-distance masses are useful that di�er from the pole mass by terms that are

at most of the order of the non-relativistic energy of the top quarks in the t�t system, i.e. of order

Mt�
2
s . A di�erence that is parametrically larger than Mt�

2
s (such as Mt�s) would formally break the

\power counting" of the non-relativistic e�ective theory [22]. This breakdown can be visualised in

the Schr�odinger equation (1), where all terms are of order Mtv
2 � Mt�

2
s : expressing the pole mass

by a short-distance mass msd
t plus �msd

t � Mt �msd
t � msd

t �s would make �msd
t the dominant term

in Eq. (1). From the formal point of view, this excludes the MS mass from being a useful threshold

mass.

Three threshold mass parameters have been proposed so far: Beneke suggested the \potential-

subtracted mass" (mPS
t ) [22], Hoang{Teubner suggested the \1S mass" [14], and Bigi et al. the \kinetic

mass" [39] (also called \low-scale running mass" in some publications). The latter has originally been

devised to improve the perturbation series of semileptonic B decay partial widths, but can be equally

well applied to heavy-quark{antiquark systems, because the large order behaviour of the RHS of

Eq. (9) is universal. The PS mass is de�ned by

mPS
t; �PS

f

= M
pole
t +

1

2

jqj<�PS
fZ

d3q

(2�)3
~Vc(q)

3 In Refs. [44], in the framework of potential models, it had already been noted that the small momentum part of the

static heavy-quark{antiquark potential corresponds to a constant in the potential in con�guration space representation.

This constant was considered as an arbitrary and incalculable number universal to all heavy-quark{antiquark systems,

which would cancel for example in the di�erence between the top and the bottom quark pole mass, up to mass-suppressed

corrections. It was not realized, however, that the corresponding ambiguity does not exist in the total static energy.
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= M
pole
t �

4

3

�s

�
�PSf + : : : ; (10)

and can be regarded as the minimalistic way to eliminate the large order corrections in Eq. (9). The

1S mass is de�ned as one half of the mass of the perturbative contribution of a �ctitious n = 1, 3S1

toponium bound state, assuming that the top quark is a stable particle:

m1S
t =

1

2

h
M�t�t(1S)

i
pert

= M
pole
t �

2

9
�2sM

pole
t + : : : : (11)

The NNLO expression for the RHS of Eq. (11) was �rst calculated in Ref. [45]. The 1S scheme is

motivated by the fact that twice the 1S mass is equal to the peak of the total cross section up to

corrections coming from the �nite top width. By construction, the 1S scheme strongly reduces the

correlation of the mass parameter to other theoretical parameters. The kinetic mass is de�ned as

mkin
t; �kin

f

= M
pole
t �

h
��(�kinf )

i
pert

�

"
�2�(�

kin
f )

2M
pole
t

#
pert

+ : : :

= M
pole
t �

16

9

�s

�
�kinf + : : : ; (12)

where
h
��(�kinf )

i
pert

and
h
�2�(�

kin
f )

i
pert

are perturbative evaluations of matrix elements of operators

(de�ned in \heavy quark e�ective theory", an e�ective theory widely employed in the theory of B

meson decays) that describe the di�erence between the pole and the B meson mass. The two-loop

contributions to the kinetic mass have been calculated in Ref. [46]. In the �rst line of Eq. (12) the

ellipses indicate matrix elements of higher dimension operators, which have not been taken into account

for this comparison. In Eqs. (10{12) the respective �rst order corrections have also been displayed.

The PS and the kinetic masses depend on the scales �PSf and �kinf , respectively. These scales are used

as a cuto� for the corresponding momentum integrations and cannot be chosen parametrically larger

than Mt�s to preserve the non-relativistic power counting rules. For �PSf = �kinf = 0 the PS and the

kinetic masses are equal to the pole mass. The 1S mass is cuto�-independent.

The three threshold masses eliminate the large higher order corrections to the peak position

mentioned above. In addition, they can reduce the correlation of the peak position to the value of

the strong coupling and theoretical parameters, such as the renormalisation scale �soft. For the 1S

mass this is achieved automatically; for the PS and the kinetic mass this is achieved by setting �f

to a value of order Mt�s � 15{20 GeV. (Choosing �f much smaller than Mt�s also eliminates the

large corrections at high orders, but does not reduce the correlation to �soft and �s in a signi�cant

way [18].) In Tables 2 and 3 numerical values of the top quark PS mass for �PSf = 20 GeV, the 1S mass,

and the kinetic mass for �kinf = 15 GeV are given, taking the MS mass mt(mt) = 160; 165; 170 GeV

as a reference point and using �s(165 GeV) = 0:1066; 0:1091; 0:1117. As a comparison, also the

corresponding values for the top quark pole mass have been displayed in Table 3. The knowledge of

the two- [47] and three-loop corrections [48, 49]4 in the relation between the pole and the MS mass

are required to obtain the two- and three-loop values of the PS, 1S and kinetic mass. For the PS, 1S

and pole masses the relation to the MS mass is known at three loops and for the kinetic mass at two

4 To obtain the numerical values given in Tables 2 and 3 we used Eq. (6) of the �rst publication of Ref. [48].
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mt(mt) [GeV] mPS
t;20GeV [GeV] m1S

t [GeV]

1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop

�s(Mz) = 0:116 [�s(165 GeV) = 0:1066]

160.00 166.36 167.49 167.75 167.82� 166.86 168.03 168.25 {

165.00 171.56 172.72 172.99 173.06� 172.05 173.24 173.46 {

170.00 176.76 177.96 178.23 178.31� 177.23 178.45 178.68 {

�s(Mz) = 0:119 [�s(165 GeV) = 0:1091]

160.00 166.51 167.69 167.97 168.05� 167.02 168.23 168.46 {

165.00 171.72 172.93 173.22 173.30� 172.21 173.45 173.68 {

170.00 176.92 178.17 178.47 178.55� 177.39 178.67 178.91 {

�s(Mz) = 0:122 [�s(165 GeV) = 0:1117]

160.00 166.66 167.90 168.20 168.28� 167.17 168.43 168.68 {

165.00 171.87 173.15 173.45 173.54� 172.36 173.65 173.90 {

170.00 177.08 178.39 178.70 178.80� 177.55 178.88 179.13 {

Table 2: Top quark PS and 1S mass values for a given value of the top quark MS mass mt at the

scale mt for �s(MZ) = 0:116, 0:119 and 0:121. Large-�0 estimates are indicated by a star.

loops. For the PS mass the four-loop contributions in the \large-�0" limit have been derived from

the expression for the Borel transform of the static potential [43] and of the di�erence between the

pole and the MS mass [50]. The same information is in principle su�cient to determine the four-loop

\large-�0" correction in the di�erence between the 1S and the MS mass. For the kinetic mass the

three-loop contributions in the \large-�0" limit have been determined in [46]. (The three-loop \large-

�0" corrections in the relation between the kinetic and the MS mass have been obtained using Eq. (21)

in the preprint version of Ref. [46].) In Tables 2 and 3 the large-�0 corrections are indicated by a star.

We emphasise that the numbers shown in these tables do not contain any electroweak corrections.

The latter can amount to shifts at the 1 GeV level [51].

The numbers displayed in the tables show an excellent convergence of the perturbative relation

between the threshold masses and the MS mass. For �s(MZ) = 0:119 and mt(mt) = 165 GeV the

one-, two-, three- and the available four-loop large-�0 corrections for the threshold masses are 6:7{7:2,

1:2, 0:2{0:3 and 0:1 GeV, respectively. The corresponding corrections in the relation between the

pole mass and mt(mt) read 7:6, 1:6, 0:5 and 0:3 GeV. For the pole mass the three-loop corrections

are about a factor two and the four-loop large-�0 corrections a factor three larger. This behaviour

is caused by the infrared-sensitivity of the pole mass and corresponds to the ambiguity of the pole

mass of order �QCD. The numbers displayed in the tables also show that a shift in �s(MZ) by 0:001

corresponds to a shift of about 70 MeV in the threshold masses.

In the framework of the Linear Collider Workshop several presentations were given by

M. Beneke, A. H. Hoang, K. Melnikov, Y. Sumino, T. Teubner and O. Yakovlev of, in part, preliminary

results for the cross section using threshold masses. The following discussion provides a summary of

these results, choosing one representative example for each of the three threshold mass de�nitions.

The results for the discussion have been provided by HT in the 1S scheme for m1S
t = 173:68 GeV,
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mt(mt) [GeV] mkin
t;15GeV [GeV] M

pole
t [GeV]

1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop

�s(Mz) = 0:116 [�s(165 GeV) = 0:1066]

160.00 166.33 167.38 167.63� { 167.27 168.80 169.28 169.50�

165.00 171.53 172.62 172.87� { 172.47 174.03 174.52 174.74�

170.00 176.73 177.85 178.12� { 177.66 179.26 179.75 179.98�

�s(Mz) = 0:119 [�s(165 GeV) = 0:1091]

160.00 166.48 167.58 167.85� { 167.44 169.05 169.56 169.80�

165.00 171.68 172.83 173.10� { 172.64 174.28 174.80 175.05�

170.00 176.89 178.07 178.35� { 177.84 179.52 180.05 180.30�

�s(Mz) = 0:122 [�s(165 GeV) = 0:1117]

160.00 166.63 167.79 168.07� { 167.61 169.29 169.84 170.11�

165.00 171.84 173.03 173.32� { 172.82 174.53 175.09 175.36�

170.00 177.05 178.28 178.58� { 178.02 179.77 180.34 180.61�

Table 3: Top quark kinetic and pole mass values for a given value of the top quark MS mass mt at

the scale mt for �s(MZ) = 0:116, 0:119 and 0:122. Large-�0 estimates are indicated by a star.

by Melnikov{Yelkhovsky (MY) in the kinetic mass scheme for mkin
t;15GeV = 173:10 GeV, and by BSS

in the PS mass scheme for mPS
t;20GeV = 173:30 GeV. The numerical values of the respective thresh-

old masses are the known highest order entries in Tables 2 and 3 for common �s(MZ) = 0:119 and

mt(mt) = 165 GeV. HT and BSS used the codes developed for Refs. [14] and [17], respectively.

Yakovlev and NOS have also provided results in the PS mass scheme. Their results are in qualita-

tive agreement with those of BSS. In Figs. 2 the total normalised photon-induced cross section R is

displayed at LO (dotted lines), NLO (dashed lines) and NNLO (solid lines) using the three threshold

masses mentioned above for �s(MZ) = 0:119 and �soft = 15, 30, 60 GeV, and ignoring the e�ects of

beamstrahlung and initial state radiation. The values of R (upper number) at the respective peak

position (lower number in units of GeV) are given in Table 4.

The threshold masses have been implemented employing the non-relativistic power-counting

rules for the perturbative series describing the di�erence between threshold and pole mass. This means

that for all threshold masses the one-loop corrections displayed in Eqs. (10{12) have been treated as

LO in the non-relativistic expansion, the two-loop corrections as NLO and so on. The results in

Figs. 2 and Table 4 show that the peak positions obtained with di�erent threshold masses converge

when higher orders are included. This is a consequence of the fact that the numerical values of all

the threshold masses have been determined from mt(mt) = 165 GeV as a reference value. Compared

to the results in the pole mass scheme displayed in Sec. 3, the results in Figs. 2 and Table 4 show

an improved stability of the peak position with respect to the size of higher order corrections, and

with respect to the sensitivity to changes in �soft. For �soft = 15=30=60 GeV, the NLO (NNLO)

shifts of the peak position are 20=� 90=� 310 MeV (0=� 80=� 110 MeV) for HT in the 1S scheme,

640=260=�50MeV (�190=�50=�40MeV) forMY in the kinetic mass scheme and 220=�30=�330MeV
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Figure 2: The total normalised photon-induced t�t cross section R at the LC versus the c.m. energy

in the threshold regime at LO (dotted curves), NLO (dashed) and NNLO (solid). Hoang{Teubner

used the 1S mass scheme with m1S
t = 173:68 GeV, Melnikov{Yelkhovsky the kinetic mass at 15 GeV

with mkin
t;15GeV = 173:10 GeV, and Beneke{Signer{Smirnov and Yakovlev the PS mass at 20 GeV

with mPS
t;20GeV = 173:30 GeV. The plots have been generated from results provided by the groups

Hoang{Teubner (HT), Melnikov{Yelkhovsky (MY) and Beneke{Signer{Smirnov (BSS) and Yakovlev.

(�360=� 200=� 140 MeV) for BSS in the PS scheme. The lack of convergence that can be observed

for some numbers is not an indication of large unknown higher order corrections, but a consequence

of the fact that the threshold masses that have been used for the analysis partially lead to NLO shifts

that are much smaller than the parametric accuracy that can be achieved at the NLO level. A better

quanti�cation is obtained by comparing the shift from LO directly to NNLO with the corresponding

shift, when the cross section is plotted for �xed pole mass as in Figs. 1. The variation of the peak

position when �soft is varied between 15 and 60 GeV at LO/NLO/NNLO is 370=40=70 MeV for HT

in the 1S scheme, 580=110=40 MeV for MY in the kinetic mass scheme and 580=40=260 MeV for BSS

in the PS scheme. The scale variation of the peak position at NNLO obtained by BSS in the PS mass

scheme is by a factor of 4{5 larger than the corresponding variation obtained by HT in the 1S and

by MY in the kinetic mass scheme. The fact that the stability of the results in the PS mass scheme

is worse than in the 1S and the kinetic mass scheme might originate from the fact that the di�erence

between the PS and the pole mass contains only corrections from the static potential. The 1S and

the kinetic mass contain additional corrections, which are subleading in the non-relativistic velocity
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Order LO NLO NNLO

�soft[GeV] 15 30 60 15 30 60 15 30 60

HT (m1S
t )

1:22 0:96 0:80 0:86 0:90 0:88 1:14 1:08 1:04

347:51 347:65 347:88 347:53 347:56 347:57 347:53 347:48 347:46

MY (mkin
t;15 GeV)

1:70 1:28 1:03 0:80 0:86 0:87 1:33 1:15 1:06

347:05 347:33 347:63 347:69 347:59 347:58 347:50 347:54 347:54

BSS (mPS
t;20 GeV)

1:69 1:27 1:03 1:09 1:03 0:96 1:53 1:23 1:11

347:47 347:74 348:05 347:69 347:71 347:73 347:33 347:51 347:59

Table 4: The values of R (upper numbers) at the respective peak position (lower numbers in units

of GeV) at LO, NLO and NNLO. Hoang-Teubner used the 1S mass scheme with m1S
t = 173:68 GeV,

Melnikov{Yelkhovsky the kinetic mass at 15 GeV with mkin
t;15GeV = 173:10 GeV, and Beneke-Signer-

Smirnov the PS mass at 20 GeV with mPS
t;20GeV = 173:30 GeV. The values have been determined

from results provided by the groups Hoang{Teubner (HT), Melnikov{Yelkhovsky (MY) and Beneke{

Signer{Smirnov (BSS).

counting. However, it should be noted that the stability of the peak position for a �xed threshold mass

is not necessarily a useful quanti�cation of the theoretical error. A mass de�nition that would be equal

to the peak position, for example, would lead to no variation at all. The shifts of the peak position

quoted above should therefore be considered in conjunction with the variation of the threshold mass

values with the order of perturbation theory given in Tables 2 and 3.

From the size of the NNLO corrections to the peak positions and from the scale variation of

the peak positions at NNLO, we estimate that the current theoretical uncertainty of a determination

of the threshold masses from the peak position based on the NNLO calculations is about 100 MeV.

(The uncertainty coming from the di�erent calculational methods used by the various groups has

been estimated in Sec. 3 and is included in this number.) In Refs. [52, 40, 41] the ultrasoft corrections

and the leading logarithmic contributions proportional to ln�s were calculated for the mass of a

�ctitious toponium 1S state at NNNLO. Up to corrections coming from the top width (and other

electroweak corrections), the toponium 1S mass is equal to the location of the peak of R. As for

the normalisation, these corrections can be used as a consistency check for the error estimate of the

top mass extraction based on the NNLO corrections alone. Both types of corrections amount to

about 200 MeV, corresponding to a shift of 100 MeV in the top quark mass. This supports the error

estimate based on the NNLO calculations alone. However, as for the case of the normalisation, a

concrete statement about the true size of the NNNLO corrections can only be drawn once the full

NNNLO corrections have been determined. Taking into account four-loop corrections in the relation

between the threshold masses and the MS mass,mt(mt) can be determined with comparable precision

for an uncertainty in �s(MZ) of around 0:001{0:002. Realistic simulation studies [9] have shown that

these conclusions remain valid if beam e�ects from initial state radiation or beamstrahlung are taken

into account.

The threshold masses do not lead to an improvement of the stability in the normalisation of
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R because their main e�ect is to rede�ne the binding energy of the t�t system. An energy shift leaves

the wave function of the t�t system una�ected and, therefore, cannot a�ect higher order corrections to

the normalisation.

5 Summary and Open Issues

In this article the results for the NNLO QCD calculations for the total photon-mediated t�t produc-

tion cross section obtained by di�erent groups have been compared. A detailed assessment of the

dependence of the individual results on the calculational techniques, the intermediate regularization

prescriptions and the treatment of higher order corrections has been carried out. As far as the deter-

mination of the top quark mass from the position of the peak in the total cross section is concerned,

the uncertainty caused by the use of di�erent methods is around 50{80 MeV. Using the top quark pole

mass to parameterise the total cross section, the latter uncertainty is negligible with respect to the

perturbative uncertainty in an extraction of the pole mass parameter, which is estimated to be around

300 MeV. This estimate matches formal arguments based on the analysis of the large order behaviour

of perturbation theory, which state that the pole mass cannot be determined to a precision better than

O(�QCD). Using so-called \threshold masses", which lead to a much better high order behaviour and

which preserve the non-relativistic velocity counting, the uncertainty in the mass extraction is around

100 MeV. The top quark MS mass mt(mt) can be determined with comparable precision if �s(MZ)

is known with an uncertainty of 0:001{0:002. (An uncertainty in �s(MZ) of 0:001 corresponds to an

uncertainty of 70 MeV in mt(mt).) Realistic simulation studies have shown that these conclusions

remain valid if realistic beam e�ects are taken into account. For the normalisation of the total cross

section, we �nd that the NNLO corrections are much larger than indicated by the renormalisation

scale dependence of the NLO results. The normalisation at NNLO also has a considerable dependence

on calculational methods and the renormalisation scale �soft. We estimate the uncertainty of the

normalisation of the NNLO cross section as around 20%, which seems to jeopardise accurate measure-

ments of top quark couplings or the total top quark width. The calculation of NNNLO corrections will

be mandatory to reduce the current uncertainties in the normalisation of the total cross section. At

present, the most di�cult parts of a complete NNNLO QCD calculation of the total cross section seem

to be the three-loop corrections to the static potential and the short-distance coe�cient C. Another

way to get information about the size of higher order corrections is to resum logarithmic contributions

to all orders in perturbation theory using the renormalisation group evolution of the operators in

the non-relativistic e�ective theory for t�t close to threshold. First attempts at carrying out such a

resummation consistently have been made in Refs. [17, 53].

Except for the NNLO calculations of the top three momentum distribution in Refs. [18, 14],

practically nothing is known about the size of NNLO corrections to di�erential observables. In view

of the large NNLO QCD corrections to the total cross section, calculations of the complete NNLO

corrections to di�erential observables, such as the top momentum distribution, the forward{backward

asymmetry and certain leptonic spectra, are needed to obtain realistic estimates of the theoretical

uncertainties. A �rst step toward this aim is the development of a consistent and systematic approach

to account for electroweak e�ects. The present calculations of the total t�t cross section at NNLO

have only taken into account relativistic corrections in the framework of QCD. So far, electroweak

e�ects have been taken into account, mainly by shifting the energy in the Schr�odinger equation (1)
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into the upper complex plane by i�t. This treatment accounts for all electroweak e�ects at LO in the

non-relativistic expansion. At NLO electroweak e�ects lead to �nal state interactions originating from

the exchange of gluons between the top quarks and their decay products. These corrections are called

\non-factorisable" (or \rescattering") corrections because they can in general not be unambiguously

considered as being either corrections to t�t production or to top quark decay. For the total cross

section it has been shown that the non-factorisable corrections cancel at NLO and that the net e�ect

of the electroweak corrections reduces to shifting the c.m. energy by i�t [54]. For a number of di�er-

ential observables, such as the top quark momentum distribution and the energy spectrum of leptons

originating from the decay of a W-boson, NLO non-factorisable corrections have been calculated [8]

and shown to be of order 10%, as can be expected for O(�s) corrections. No consistent and system-

atic prescription to implement electroweak e�ects at NNLO has been developed yet, and practically

nothing is known about the size of the non-factorisable corrections beyond NLO.
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