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Abstract: The coeÆcients in perturbative expansions in gauge theories are factorially in-

creasing, predominantly due to renormalons. This type of factorial increase is not expected

in conformal theories. In QCD conformal relations between observables can be de�ned

in the presence of a perturbative infrared �xed-point. Using the Banks-Zaks expansion

we study the e�ect of the large-order behavior of the perturbative series on the confor-

mal coeÆcients. We �nd that in general these coeÆcients become factorially increasing.

However, when the factorial behavior genuinely originates in a renormalon integral, as im-

plied by a postulated skeleton expansion, it does not a�ect the conformal coeÆcients. As

a consequence, the conformal coeÆcients will indeed be free of renormalon divergence, in

accordance with previous observations concerning the smallness of these coeÆcients for spe-

ci�c observables. We further show that the correspondence of the BLM method with the

skeleton expansion implies a unique scale-setting procedure. The BLM coeÆcients can be

interpreted as the conformal coeÆcients in the series relating the �xed-point value of the

observable with that of the skeleton e�ective charge. Through the skeleton expansion the

relevance of renormalon-free conformal coeÆcients extends to real-world QCD.
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1 Introduction

The large-order behavior of a perturbative expansion in gauge theories is inevitably

dominated by the factorial growth of renormalon diagrams [1, 2, 3, 4]. In the case

of quantum chromodynamics (QCD), the coeÆcients of perturbative expansions in

the QCD coupling �s can increase dramatically even at low orders. This fact, to-

gether with the apparent freedom in the choice of renormalization scheme and renor-

malization scales, limits the predictive power of perturbative calculations, even in

applications involving large momentum transfer where �s is e�ectively small.

A number of theoretical approaches have been developed to reorganize the pertur-

bative expansions in an e�ort to improve the predictability of perturbative QCD. For

example, optimized scale and scheme choices have been proposed, such as the method

of e�ective charges [ECH] [5], the principle of minimal sensitivity [PMS] [6], and the

Brodsky-Lepage-Mackenzie [BLM] scale-setting prescription [7] and its generaliza-

tions [8]{[20]. More recent development [4] include resummation of the formally diver-

gent renormalon series and parameterization of related higher-twist power-suppressed

contributions.

In general, a factorially divergent renormalon series arises when one integrates over

the logarithmically running coupling �s(k
2) in a loop diagram. Such contributions

do not occur in conformally invariant theories, which have a constant coupling. Of

course, in the physical theory, the QCD coupling does run. Nevertheless, relying on

a postulated \dressed skeleton expansion", we shall show that a conformal series is

directly relevant to physical QCD predictions.

In quantum electrodynamics the dressed skeleton expansion can replace the stan-

dard perturbative expansion. The skeleton diagrams are de�ned as those Feynman

graphs where the three-point vertex and the lepton and photon propagators have

no substructure [21]. Thanks to the QED Ward identity, the renormalization of the

vertex cancels against the lepton self-energy, while the e�ect of dressing the photons

in the skeleton diagrams by vacuum polarization insertions can be computed by inte-

grating over the Gell-Mann Low e�ective charge ��(k2). The perturbative coeÆcients

de�ned from the skeleton graphs themselves are conformal { they correspond to the

series in a theory with a zero � function. Therefore they are entirely free of running

coupling e�ects such as renormalons. Each term in the dressed skeleton expansion

resums renormalon diagrams to all orders in a renormalization scheme invariant way.

The resummation ambiguity, which is associated with scales where the coupling be-

comes strong, can be resolved only at the non-perturbative level.

In QCD, a skeleton expansion can presumably be constructed based on several

di�erent dressed Green functions (see for example [22]). It is yet unclearx, although

much more interesting, whether there exists an Abelian-like skeleton expansion, with

only one e�ective charge function. A diagrammatic construction of such a skeleton

expansion using the \pinch technique" [23, 24, 25] has been established only through

xThe basic diÆculties, comparing with the Abelian case, are the presence of gluon self interaction
diagrams and the essential di�erence between vacuum polarization insertion and charge renormal-
ization.
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two-loop order. The corresponding skeleton e�ective charge ��s(k
2), which is de�ned

from \vacuum-polarization-like" contributions, has been identi�ed and shown to be

gauge invariant. This technique may eventually provide a de�nition to all orders.

In this paper, we shall simply postulate that an Abelian-like skeleton expansion can

be de�ned at arbitrary order in QCD. As in QED, we can then identify running

coupling e�ects to all orders in perturbation theory, and treat them separately from

the conformal part of the perturbative expansion.

The conformal coeÆcients which appear in the assumed skeleton expansion are

free of renormalons and are therefore expected to be better behaved. They also have

a simple interpretation in the presence of a perturbative infrared �xed-point, as may

occur in multi-
avor QCD: they are the coeÆcients in the series relating the �xed-

point value of the observable under consideration with that of the skeleton e�ective

charge. As a consequence, these coeÆcients can be obtained from the standard

perturbative coeÆcients using the Banks-Zaks expansion [28, 29], where the �xed-

point coupling is expanded in powers of �0.

The conformal series can be seen as a template [9] for physical QCD predictions,

where instead of the �xed coupling one has at each order a weighted average of the

skeleton e�ective charge ��s(k
2) with respect to an observable- (and order-) dependent

momentum distribution function. The momentum integral corresponding to each

skeleton term is renormalization-scheme invariant. It can be evaluated up to power-

suppressed ambiguities, which originate in the infrared and are resolved by taking

explicitly non-perturbative e�ects into account. Thus the skeleton expansion gives

a natural framework in which renormalon resummation and the analysis of non-

perturbative power corrections are performed together [26, 27].

As an alternative to evaluating the dressed skeleton integral, one can approximate

it by the coupling at the BLM scale [7], in analogy to the mean-value theorem [11].

By going to higher orders in the perturbative expansion, this approximation can be

systematically improved, although it is not yet clear how to deal with renormalon

ambiguities and power-corrections in this approach. It is useful to form QCD predic-

tions by relating the e�ective charges of one physical observable to another at their

respective scales. These \commensurate scale relations" [12] can be obtained by al-

gebraically eliminating the intermediate skeleton e�ective charge. The coeÆcients

of the perturbative series for such commensurate scale relations are again conformal

coeÆcients, as guaranteed by the transitivity property of the renormalization group.

Thus we can once more use the conformal theory as a template for the perturba-

tive expansion relating any two observables in QCD. The e�ect of the remaining

non-conformal contributions, including the renormalon ambiguity, is shifted into the

scales of the QCD coupling. In the case of the Crewther relation [30, 31, 18], which

connects the e�ective charges of the e+e� annihilation cross section to the Bjorken

and Gross-Llewellyn Smith sum rules for deep inelastic scattering, the conformal se-

ries is simply a geometric series. This example highlights the power of characterizing

QCD perturbative expansions in terms of conformal coeÆcients.

The main purpose of this work is to study the consequences of the assumed

Abelian-like skeleton expansion. We therefore start in section 2 by recalling the
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concept of the skeleton expansion in the Abelian case [21] and stating the main as-

sumptions concerning the non-Abelian case. We continue, in section 3, by reviewing

the standard BLM scale-setting procedure and recalling the ambiguity of the proce-

dure beyond the next-to-leading order. We then show how this ambiguity is resolved

upon assuming a skeleton expansion, provided we work in the appropriate renor-

malization scheme, the \skeleton scheme", and require a one-to-one correspondence

between the terms in the BLM series and the dressed skeletons. We then concentrate

(section 4) on the coeÆcients which remain after performing BLM scale-setting. We

derive a relation between these BLM coeÆcients and the conformal coeÆcients de-

�ned in the infrared limit in the conformal window, where a non-trivial perturbative

�xed-point exists [32]{[36].

Having made the connection with the conformal coeÆcients, we recall in section 5

the standard way to calculate such coeÆcients, namely the Banks-Zaks expansion.

We also present there an alternative derivation which makes use of the explicit log-

structure in the perturbative series. In sections 6 and 7 we investigate whether

conformal coeÆcients are a�ected by the factorial increase of the perturbative co-

eÆcients. We know that renormalons arise due to the running coupling, and thus

conformal expansions should be free of renormalons. On the other hand, conformal

coeÆcients correspond to speci�c combinations of the perturbative coeÆcients, and

thus it is non-trivial how the former can be free of renormalons when the latter are

dominated by them. In section 6 we study simple examples of a single Borel pole

or Borel cut which serve as models for the large-order behavior characterizing renor-

malons. We �nd that, in general, in these examples conformal coeÆcients do become

factorially increasing. In section 7 we show that assuming a skeleton expansion con-

formal coeÆcients are, almost by de�nition, renormalon-free. We then construct a

more speci�c example to contrast with section 6, where the coeÆcients are gener-

ated by a renormalon integral. We show how the renormalons are cancelled in the

corresponding conformal relation.

In section 8 we make the connection between our general arguments and previous

observations concerning the smallness of conformal and Banks-Zaks coeÆcients. In

section 9 we look at the e�ective charge approach from the point of view of the

skeleton expansion and present a simple relation between the two at the next-to-

next-to-leading order level (�2). We also calculate there the �0 = 0 limit of the

skeleton coupling � function coeÆcient ��2. The conclusions are given in section 10.

2 Renormalons and the skeleton expansion

Consider a Euclidean QED observable aR(Q
2), which depends on a single external

space-like momentum Q2 and is normalized as an e�ective charge. The perturbative

expansion in a generic renormalization scheme is then given by,

aR(Q
2) = a(�2) + r1a(�

2)
2
+ r2a(�

2)
3
+ � � � ; (1)

where a = �=� and � is the renormalization scale.
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The perturbative series can be reorganized and written in the form of a skeleton

expansion

aR(Q
2) = R0(Q

2) + s1R1(Q
2) + s2R2(Q

2) + � � � ; (2)

where the �rst term, R0, corresponds to a single dressed photon: it is the in�nite

set of \renormalon diagrams" obtained by all possible vacuum polarization insertions

into a single photon line. The second term, s1R1, corresponds to a double dressed-

photon exchange and so on. In QED, vacuum polarization insertions amount to

charge renormalization. Thus R0 can be written as

R0(Q
2) �

Z 1

0
�a(k2)�0

�
k2=Q2

� dk2
k2

(3)

where k2 is the virtuality of the exchanged photon, �a(k2) is the Gell-Mann Low

e�ective charge representing the full propagator, and �0 is the (observable dependent)

Feynman integrand for a single photon exchange diagram, which is interpreted as the

photon momentum distribution function [14]. Similarly, R1 is given by

R1(Q
2) �

Z 1

0
�a(k21) �a(k

2
2)�1

�
k21=Q

2; k22=Q
2
� dk21
k21

dk22
k22

(4)

and so on.

For convenience the normalization of �i in Ri(Q
2) has been set to 1 such that

the Ri(Q
2) in (2) have an expansion Ri(Q

2) = �a(Q2)i+1 + � � �. For example, the

normalization of �0(k
2=Q2) in R0 isZ 1

0
�0
�
k2=Q2

� dk2
k2

= 1: (5)

In QED fermion loops appear either dressing the exchanged photons or in light-

by-light type diagrams, where they are attached to four or more photons (an even

number). Barring the latter, the dependence on the number of massless fermion


avors Nf is fully contained in the Gell-Mann Low e�ective charge. It follows that

the skeleton coeÆcients si as well as the momentum distribution functions �i are

entirely free of Nf dependence. Light-by-light type diagrams have to be treated

separately, as the starting point of new skeleton structures.

The skeleton expansion (2) is a renormalization group invariant expansion: each

term is by itself scheme invariant. This is in contrast with the standard scale and

scheme dependent perturbative expansion (1). The renormalons in (1) can be ob-

tained upon expansion of the dressed skeleton terms in (2) in some scheme. Let us

consider �rst the leading skeleton (3) and examine, for simplicity, its expansion in

�a(Q2). We assume that �a(k2) obeys the renormalization group equation,

d�a(k2)

d lnk2
= �

�
�0�a(k

2)2 + �1�a(k
2)3 + ��2�a(k

2)4 + � � �
�
� ��(�a) (6)

where �0 is negative in QED and positive in QCD. Then �a(k2) can be expanded as

�a(k2) = �a(Q2)+�0t�a(Q
2)2+

�
�1t + �2

0t
2
�
�a(Q2)3+

�
��2t +

5

2
�1�0t

2 + �3
0t

3

�
�a(Q2)4+� � �

(7)
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where t � � ln(k2=Q2). Inserting this in eq. (3) under the integration sign we obtain

R0(Q
2) = �a(Q2) + r

(1)
1 �0�a(Q

2)2 +
�
r
(2)
2 �2

0 + r
(1)
1 �1

�
�a(Q2)3

+

�
r
(3)
3 �3

0 +
5

2
r
(2)
2 �1�0 + r

(1)
1

��2

�
�a(Q2)4 + � � � (8)

where

r
(i)
i �

Z 1

0

h
� ln

�
k2=Q2

�ii
�0(k

2=Q2)
dk2

k2
: (9)

We note that in the largeNf (large �0) limit�, the perturbative coeÆcients ri = r
(i)
i

and thusy

aR(Q
2)
���
large �0

= �a(Q2)

"
1X
i=0

r
(i)
i

�
�0�a(Q

2)
�i
+O (1=�0)

#
: (10)

At large orders i � 1, both small and large momentum regions become dominant

in (9), giving rise to the characteristic renormalon factorial divergence (r
(i)
i � i!).

As mentioned above, this is believed to be the dominant source of divergence of the

perturbative expansion (1). On the other hand, in the skeleton expansion (2) the

renormalons are by de�nition resummed and so the remaining coeÆcients si should

be free of this divergence. These coeÆcients are expected to increase much slower

leading to a better behaved expansion.

As mentioned in the introduction, the generalization of the Abelian skeleton ex-

pansion to QCD is not straightforward. Diagrammatically, the skeleton expansion in

QCD has a simple realization only in the large Nf limit where gluon self-interaction

contributions are negligible so that the theory resembles QEDz. In the framework

of renormalon calculus, one returns from the large Nf limit to real world QCD by

replacing Nf with the linear combination of Nf and Nc which appears in the leading

coeÆcient [38] of the � function,

�0 =
1

4

�
11

3
Nc �

2

3
Nf

�
: (11)

This replacement, usually called \naive non-Abelianization" [39, 14, 15, 16], amounts

to taking into account a gauge invariant set of diagrams which is responsible for the

one-loop running of the coupling constant. To go beyond the \naive non-Abelianization"

level and construct an Abelian-like skeleton expansion in QCD, one needs a method to

�In QCD, Abelian correspondence in the large Nf limit requires that the coeÆcient ��i of the
skeleton coupling � function (6) would not contain N i+1

f . It has to be a polynomial of order N i
f

in Nf . This would guarantee that in the large Nf limit ��(�a) is just the one-loop � function. Note
that while some schemes (e.g. MS and static potential e�ective charge) have this property, generic
e�ective charges (de�ned through observable quantities) do not. This property of the skeleton

scheme is used making the identi�cation of r
(i)

i in (8) as the large Nf coeÆcients.
yWe comment that the sub-leading terms in 1=Nf in (8) of the form �1�

i�2
0 were computed to

all-orders in [15]. However, other terms which involve higher order coeÆcients of the � function
contribute at the same level in 1=Nf .

zThis can also be understood from the Nc ! 0 limit discussed in ref. [37].
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identify skeleton structures and to isolate vacuum-polarization-like insertions which

are responsible for the running of the coupling at any order. The pinch technique

[23, 24, 25] may provide a systematic way to make this identi�cation. The resulting

set of skeleton structures would surely be larger than in the Abelian theory. It may

include, for example, fermion loops attached to an odd number of gluons, which van-

ish in the Abelian limit. Like Abelian light-by-light type diagrams, these structures

should be treated separately. As opposed to the Abelian theory, where light-by-light

type diagrams are distinguished by their characteristic dependence on the charges,

in the non-Abelian case these structures may not be separable based only on their

group structure. We shall assume that there is a unique way to identify skeleton

structures in QCD and a gauge invariant way to \dress" them corresponding to the

skeleton e�ective charge. Then, upon excluding speci�c classes of diagrams, e.g. of

the type described above, we expect the form of eq. (2) with Nf independent si and

�i to be relevant to QCD.

We stress that the coupling constant �a(k2) in (3) is understood to be a speci�c

e�ective charge, in analogy to the Gell-Mann Low e�ective charge in QED. This

\skeleton e�ective charge" �a(k2) should be de�ned diagrammatically order by order

in perturbation theory. In the framework of the pinch technique, �a(k2) has been

identi�ed at the one-loop levelx, e.g. it is related to the MS coupling by

�a(k2) = aMS (�
2) +

"
��0

 
log

k2

�2
�

5

3

!
+
Nc

3

#
aMS (�

2)
2
+ � � � (12)

Recently, there have been encouraging developments [25] in the application of the

pinch technique beyond one-loop. This would hopefully lead to a systematic identi�-

cation of the \skeleton e�ective charge" at higher orders, namely the determination

of higher order coeÆcients ( ��i for i � 2) of the � function ��(�a) = d�a=d lnk2. This �

function should coincide with the Gell-Mann Low function upon taking the Abelian

limit CA = 0 (see ref. [37]).

Being scheme invariant and free of renormalon divergence, the skeleton expansion

(2) seems much favorable over the standard perturbative QCD expansion (1). This

advantage may become crucial in certain applications, e.g. for the extraction of �s

from event shape variables [27]. However, in the absence of a concrete all-order

diagrammatic de�nition for the skeleton expansion in QCD, the use of it directly as

a calculational tool is limited to the leading skeleton term. On the other hand, the

BLM scale-setting procedure, which is well de�ned up to arbitrary large order, can be

considered as a manifestation of the skeleton expansion. As we shall see, it is possible

in this framework to study sub-leading terms, which carry the correct normalization

of sub-leading terms in the skeleton expansion, provided the skeleton scheme is used.

Currently, since the skeleton e�ective charge has not been identi�ed, the choice of

scheme in the BLM procedure remains an additional essential ingredient.

xThis means that the corresponding QCD scale �� is identi�ed.
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3 BLM scale-setting

The BLM approach [7] is motivated by the skeleton expansion. The basic idea is

that the dressed skeleton integral (3) can be well approximated by R0 ' �a(�2) + � � �

provided that the renormalization scale � is properly chosen. Indeed, by the mean

value theorem [11], there exists a scale k0 such that

R0(Q
2) =

Z 1

0
�a(k2)�0

�
k2=Q2

� dk2
k2

= �a(k20)

Z 1

0
�0(k

2=Q2)
dk2

k2
= �a(k20) (13)

where the last step follows from the assumed normalization for �i (5).

A �rst approximation to k0 is given by the average virtuality of the exchanged

gluon,

k20;0 = Q2 exp

 Z 1

0
ln

k2

Q2
�0(k

2=Q2)
dk2

k2

,Z 1

0
�0(k

2=Q2)
dk2

k2

!
= Q2 exp

�
�r

(1)
1

�
(14)

where r
(1)
1 is the next-to-leading coeÆcient of aR in the large �0 limit (9). The scale

(14) is called the \leading order BLM scale". It can be determined directly from the

Nf dependent part of the next-to-leading coeÆcient (r1) in the perturbative series of

the observable in terms of �a(Q2),

aR(Q
2) = �a(Q2) + r1�a(Q

2)
2
+ r2�a(Q

2)
3
+ � � � : (15)

Thanks to the linear Nf dependence of r1, it can be uniquely decomposed into a term

linear in �0, which is related to the leading skeleton, and a free term

r1 = r
(0)
1 + r

(1)
1 �0; (16)

where both r
(1)
1 and r

(0)
1 are Nf independent. After BLM scale-setting, with k20;0 given

by (14), one has

aR(Q
2) = �a(k20;0) + r

(0)
1 �a(k20;0)

2
+ � � � : (17)

Thus, technically, the BLM scale-setting procedure amounts, at leading order, to

eliminating the �0 dependent part from the next-to-leading order coeÆcient. Note

that although the leading order BLM scale k0;0 of (14) has a precise meaning as the

average gluon virtuality it is just the lowest order approximation to k0 of eq. (13). In

other words, aiming at the evaluation of the leading skeleton term (3) it is just the

�rst step. Based on higher orders in the perturbative expansion this approximation

can be systematically improved (see eq. (33) below).

3.1 Multi-scale BLM and skeleton expansion correspondence

A BLM series [12] can be written up to arbitrary high order

aR(Q
2) = a(k20) + c1a(k

2
1)

2
+ c2a(k

2
2)

3
+ c3a(k

2
3)

4
+ � � � (18)
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where k2i are, in general, di�erent scales proportional to the external scale Q2 (as in

(14)) and ci are Nf independent coeÆcients. The intuition behind this generalization

is that each skeleton term in (2) is approximated by a corresponding term in the multi-

scale BLM series: each skeleton term may have di�erent characteristic momenta. This

one-to-one correspondence with the skeleton expansion requires that the coupling a

will be the skeleton e�ective charge a = �a such that

Ri(Q
2) = �a(k2i )

i+1: (19)

In this case the coeÆcients of sub-leading terms in (18) should coincide with the

coeÆcients of the sub-leading skeleton terms, namely ci = si.

More generally, a BLM series can be written in an arbitrary scheme: then the

coupling a in (18) can be either de�ned in a standard scheme like MS or, as suggested

in [12], be another measurable e�ective charge. In the latter case, (18) can be used

to compare experimental data of two observables directly and thus test perturbative

QCD without any intermediate renormalization scheme.

Let us recall how the BLM scale-setting procedure is performed beyond the next-

to-leading order [12, 8], yielding an expansion of the form (18). Suppose that the

perturbative expansion of aR(Q
2) in terms of a(Q2) is given by{

aR(Q
2) = a(Q2) + r1a(Q

2)
2
+ r2a(Q

2)
3
+ r3a(Q

2)
4
+ � � � (20)

Based on the fact that ri are polynomials of order i in Nf and that �0 and �1 are

linear in Nf , we can write r1 as in (16) and

r2 = r
(0)
2 + r

(1)
2 r

(0)
1 �0 + r

(2)
2 �2

0 + r
(1)
1 �1 (21)

where r
(j)
i are Nf independent. The reason for the �1 dependent term in (21) shall

become clear below. Expanding a(k2i ) in terms of a(Q2) similarly to eq. (7), the

next-to-next-to-leading order BLM series (18) can be written as

aR(Q
2) = a(Q2) + (c1 + t0�0) a(Q

2)2 +
�
c2 + 2t1c1�0 + t0�1 + t20�

2
0

�
a(Q2)3: (22)

Writing the scale-shifts ti � ln(Q2=k2i ) as a power series in the coupling

ti � ti;0 + ti;1 a(Q
2) + ti;2 a(Q

2)2 + � � � (23)

where ti;0 are assumed to be Nf independent, we get

aR(Q
2) = a(Q2) + (c1 + t0;0�0) a(Q

2)2 (24)

+
�
c2 + (2t1;0c1 + t0;1)�0 + t0;0�1 + t20;0�

2
0

�
a(Q2)3:

{We work now in a generic scheme but at a di�erence with (1) we start here with the renor-
malization scale � = Q thereby simplifying the formulas that follow. Since the scale is tuned in
the BLM procedure, this initial choice is of little signi�cance. The only place where the arbitrary
renormalization scale is left at the end is in the power series for the scales-shifts, eq. (23) below.
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An order by order comparison of (24) and (20) yields the scale shifts t0 = ln(Q2=k20)

and t1 = ln(Q2=k21) and the coeÆcients c1 and c2 in terms of r1 and r2 and the

coeÆcients of the � function of a(Q2). The comparison at the next-to-leading order

gives

c1 = r
(0)
1 (25)

and

t0;0 = r
(1)
1 : (26)

The comparison at the next-to-next-to-leading order for the �i independent piece

gives

c2 = r
(0)
2 (27)

while for the �0 dependent piece it gives

t0;1 + 2t1;0r
(0)
1 + �0

�
r
(1)
1

�2
= r

(1)
2 r

(0)
1 + �0r

(2)
2 : (28)

Thanks to the explicit �1 dependent term introduced in (21), the equality of the

corresponding piece there to that in (24) is satis�ed based on the next-to-leading

order result (26). To proceed we need to specify t0;1 and t1;0 such that eq. (28) is

satis�ed. Having two free parameters with just one constraint there is apparently

no unique solution. Two natural possibilities are the so called multi-scale BLM

prescription [12],

t0;1 = �0

�
r
(2)
2 �

�
r
(1)
1

�2�
(29)

t1;0 =
1

2
r
(1)
2

and the single-scale BLM prescription [8] where t1;0 � t0;0 and

t0;1 = �0

�
r
(2)
2 �

�
r
(1)
1

�2�
� 2r

(1)
1 r

(0)
1 + r

(1)
2 r

(0)
1 : (30)

Having in mind the original motivation for BLM, it is interesting to examine the

case where the scheme of a coincides with the skeleton e�ective charge �a. Then

we would like to have a one-to-one correspondence (19) between the terms in the

BLM series (18) and those of the skeleton expansion (2). The multi-scale procedure

is consistent with this requirement: the leading term �a(k20) in the BLM series (18)

represents only the leading skeleton term R0 in (2), since the scale-shift

t0 = r
(1)
1 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�0�a(Q

2) (31)

involves only coeÆcients which are leading in the large �0 limit and originate in �0
(cf. eq. (9)). On the other hand the single-scale procedure violates this requirement,

since there t0 involves (30) terms which are sub-leading in �0 and do not belong to

the leading skeleton term R0. In fact, in order to guarantee that the scale-shift t0

9



would represent just the leading skeleton R0 we are bound to choose t0;1 proportional

to �0 and thus the solution (29) is uniquely determined.

We see that a unique scale-setting procedure at the next-to-next-to-leading order

(r2) is implied by the requirement that the scale-shift t0 should represent the leading

skeleton R0. In order to continue and apply BLM at the next order (r3) we have to

impose further constraints based on the structure of both R0 and R1.

3.2 BLM scale-setting for the leading skeleton

Let us �rst examine the structure of the scale-shift t0 by applying BLM to a hypo-

thetical observable that contains only an R0 term of the form (3). Expanding the

coupling �a(k2) under the integration sign in terms of a(Q2) we obtain (8). We would

like to apply BLM to the latter series obtaining simply �a(k20), with t0 � ln(Q2=k20) =

t0;0 + t0;1�a(Q
2) + � � �. Expanding �a(k20) we obtain from (7),

�a(k20) = �a(Q2) + �0t0;0�a(Q
2)2 +

�
�0t0;1 + �1t0;0 + �2

0t
2
0;0

�
�a(Q2)3 (32)

+

�
�0t0;2 + �1t0;1 + 2�2

0t0;0t0;1 +
��2t0;0 + �3

0t
3
0;0 +

5

2
�0�1t

2
0;0

�
�a(Q2)4 + � � �

Comparing (8) with (32) we get

t0 = r
(1)
1 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�0�a(Q

2) (33)

+

��
r
(3)
3 � 2r

(1)
1 r

(2)
2 +

�
r
(1)
1

�3�
�2
0 +

3

2

�
r
(2)
2 �

�
r
(1)
1

�2�
�1

�
�a(Q2)2 + � � �

Here we recovered the two leading orders in t0 of eq. (31). At order �a(Q2)2 we

obtained an explicit dependence on both �0 and �1. The combination r
(2)
2 �

�
r
(1)
1

�2
appearing at the next-to-leading order in t0 has an interpretation as the width of

the distribution �0, assuming the latter is positive de�nite (see [14, 17]). In general,

eq. (33) can be written in terms of central moments of the distribution �0, de�ned by

Mn =

*0
@ln Q2

k2
�

*
ln
Q2

k2

+
�0

1
A
n+

�0

=

* 
ln
k20;0

k2

!n+
�0

(34)

for n � 2, where M1 =
D
ln Q2

k2

E
�0

= ln Q2

k2
0;0

corresponds to r
(1)
1 in eq. (9). In terms of

the central moments we have

t0 = M1 +M2�0 �a(Q
2) +

�
[M3 +M1M2]�

2
0 +

3

2
M1�1

�
�a(Q2)2 + � � �

= M1 +M2�0 �a(k
2
0;0) +

�
M3�

2
0 +

3

2
M1�1

�
�a(k20;0)

2 + � � � (35)

At large orders n the moments Mn become sensitive to extremely large and small

momenta and thus develop renormalon factorial divergence, similarly to the standard

perturbative coeÆcients in eq. (9). We thus see that in the BLM approach, the

scale-shift itself is an asymptotic expansion, a�ected by renormalons.

10



3.3 BLM scale-setting for sub-leading skeletons

Next, let us consider an R1 term, given by (4). Expanding the couplings �a(k21) and

�a(k22) under the integral in terms of �a(Q2) using (7), we get (cf. the expansion of R0

in eq. (8))

R1(Q
2) = �a(Q2)2 + �0r

(1)
2 �a(Q2)3 +

�
r
(2)
3 �2

0 + r
(1)
2 �1)

�
�a(Q2)4 + � � � (36)

where

r
(1)
2 � �

(1;0)
1 + �

(0;1)
1 (37)

r
(2)
3 � �

(2;0)
1 + �

(1;1)
1 + �

(0;2)
1

with

�
(j;k)
1 �

Z 1

0

h
� ln(k21=Q

2)
ij h

� ln(k22=Q
2)
ik

�1
�
k21=Q

2; k22=Q
2
� dk21
k21

dk22
k22

: (38)

The BLM scale-setting procedure can now be applied according to (19): R1(Q
2)

given in eq. (36) should be written as �a(k21)
2. Expanding �a(k21)

2 in terms of �a(Q2)

using (7) and t1 = t1;0 + t1;1�a(Q
2) + � � � we have

�a(k21)
2 = �a(Q2)2 + 2t1;0�0�a(Q

2)3 +
�
2t1;1�0 + 3t21;0�

2
0 + 2t1;0�1

�
�a(Q2)4 + � � � : (39)

The comparison with (36) at the next-to-leading order implies

t1;0 =
1

2
r
(1)
2 : (40)

The comparison at the next-to-next-to-leading order then yields

2t1;1�0 +
3

4

�
r
(1)
2

�2
�2
0 + r

(1)
2 �1 = r

(2)
3 �2

0 + r
(1)
2 �1 (41)

which implies that t1;1, just as t0;1, is bound to be proportional to �0. Finally we

obtain the scale-shift for R1,

t1 =
1

2
r
(1)
2 +

1

2

�
r
(2)
3 �

3

4

�
r
(1)
2

�2�
�0�a(Q

2): (42)

Similarly, applying BLM to R2,

R2 = �a(Q2)3 + r
(1)
3 �0�a(Q

2)4 + � � � ; (43)

we get

t2 =
1

3
r
(1)
3 : (44)
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3.4 Skeleton decomposition and its limitations

Let us now return to the case of a generic observable (20) and see that with these

skeleton-expansion-correspondence constraints there is a unique BLM scale-setting

procedure. The basic idea is that, given the existence of a skeleton expansion, it is

possible to separate the entire series into terms which originate in speci�c skeleton

terms. This corresponds to a speci�c decomposition of each perturbative coeÆcient

ri similarly to (16) and (21). Then the application of BLM to the separate skeleton

terms, namely representing Ri by �a(k
2
i )

i+1, immediately implies a speci�c BLM scale-

setting procedure for the observable. For example, when this procedure is applied

up to order �a(Q2)4, the scale-shifts ti for i = 0; 1; 2 are given by (33), (42) and (44),

respectively.

To demonstrate this argument let us simply add up the expanded form of the

skeleton terms up to order �a(Q2)4 with R0 given by (8), R1 by (36) and R2 by (43).

For R3 we simply have at this order R3 = �a(Q2)4. Altogether we obtain,

aR = �a+
h
s1 + r

(1)
1 �0

i
�a2 (45)

+
h
s2 + s1r

(1)
2 �0 + r

(2)
2 �2

0 + r
(1)
1 �1

i
�a3

+

�
s3 + s2r

(1)
3 �0 + s1r

(2)
3 �2

0 + r
(3)
3 �3

0 + r
(1)
1

��2 +
5

2
r
(2)
2 �1�0 + s1r

(1)
2 �1

�
�a4

Here we identify the notation si which is the coeÆcient in front of the skeleton term

Ri with r
(0)
i . We recognize the form of r1 and r2 as the decompositions introduced

before in eq. (16) and (21) in order to facilitate the application of BLM. We see

that the skeleton expansion structure implies a speci�c decomposition. Suppose for

example we know r1 through r3 in the skeleton scheme. Eq. (45) then de�nes a unique

way to decompose them so that each term corresponds speci�cally to a given term in

the skeleton expansion. The decomposition of ri includes a polynomial in �0 up to

order �i0,

si +
iX

k=1

si�kr
(k)
i �k0 (46)

where s0 = 1 by the assumed normalization. The other terms in ri in (45) depend

explicitly on higher coeÆcients of the � function ��j with 1 � j � i� 1. Up to order

�a(Q2)4 these terms depend exclusivelyk on coeÆcients r
(k)
j which appeared at previous

orders in the �0 polynomials (46). Finally, we need to verify that a decomposition of

the form (45) is indeed possible. For a generic observable aR, the coeÆcient ri is a

polynomial of order i in Nf . Since also the � function coeÆcients ��i are polynomials

of maximal order i, the decomposition of ri according to (45) amounts to solving i+1

equations with i+1 unknowns: r
(k)
i with 0 � k < i. Thus in general there is a unique

solution.

kAs we shall see below, this is no longer true beyond this order, where the coeÆcients depend on
moments which appeared at previous orders, but cannot be expressed in terms of the lower order
coeÆcients themselves.
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We see that based on the assumed skeleton structure, one can uniquely perform

a \skeleton decomposition" and thus also BLM scale-setting which satis�es a one-

to-one correspondence of the form (19) with the skeleton terms. By construction in

this procedure the scale t0 is determined exclusively by the large �0 terms r
(i)
i which

belong to R0 (see (33)), t1 is determined by r
(i�1)
i terms which belong to R1 (see

(42)), t2 is determined by r
(i�2)
i terms which belong to R2, etc.

It should be stressed that formally the decomposition (45), and thus also BLM

scale-setting, can be performed in any scheme: given the coeÆcients ri up to order

n, all the coeÆcients si and r
(j)
i for i � n and j � i are uniquely determined. No

special properties of the \skeleton e�ective charge" were necessary to show that the

decomposition is possible. Even the assumption that for this e�ective charge the

� function coeÆcients ��i are polynomials of order i can be relaxed. For example,

the decomposition (45) can be formally performed in physical schemes where ��i are

polynomials of order i+1. In this case, however, the interpretation of r
(j)
i in terms of

the log-moments of distribution functions is not straightforward. It is also clear that

a one-to-one correspondence between BLM and the skeleton expansion (19) exists

only if the coupling a is chosen as the skeleton e�ective charge �a.

Let us now address several complications that limit the applicability of the discus-

sion above. First, we recall the assumption we made that the entire dependence of the

perturbative coeÆcients on Nf is related to the running coupling. This means that

any explicit Nf dependence which is part of the skeleton structure is excluded from

(45). In reality there may be skeletons with fermion loops as part of the structure,

which would have to be identi�ed and treated separately.

Having excluded such Nf dependence, we have seen that up to order �a(Q2)4 a for-

mal \skeleton decomposition" (45) of the perturbative coeÆcients can be performed

algebraically without further diagrammatic identi�cation of the skeleton structure.

This is no longer true at order �a(Q2)5, where the \skeleton decomposition" requires

the moments of the momentum distribution functions to be identi�ed separately. Such

an identi�cation depends on a diagrammatic understanding of the skeleton structure.

Looking at R1, the coeÆcient of �a(Q2)5 in eq. (36) is

�3
0

h
�
(3;0)
1 + �

(0;3)
1 + �

(1;2)
1 + �

(2;1)
1

i
(47)

+ �1�0

�
2�

(1;1)
1 +

5

2

�
�
(2;0)
1 + �

(0;2)
1

��
+ �2

h
�
(1;0)
1 + �

(0;1)
1

i
:

Writing the �a(Q2)5 term in (45), one will �nd as before, that the terms which depend

explicitly on higher coeÆcients of the � function ��l with 1 � l � 3, contain only

moments of the skeleton momentum distribution functions �
(j;k)
i which appeared in

the decomposition (45) in the coeÆcients of �
j+k
0 �a1+i+j+k at the previous orders.

However, the coeÆcient of �1�0 will depend on a new linear combination of moments,

di�erent from the one identi�ed at order �a(Q2)4 (compare the coeÆcient of �1�0 in

(47) with r
(2)
3 in eq. (37)). Thus, strictly based on the algebraic decomposition of the

coeÆcients at previous orders there is no way to determine the coeÆcient of �1�0 at

order �a(Q2)5. Additional information, namely the values of �
(1;1)
1 , �

(2;0)
1 and �

(0;2)
1 is

13



required. In the Abelian case, where the diagrammatic identi�cation of the skeleton

structure is transparent, it should be straightforward to calculate these moments

separately. In the non-Abelian theory this not yet achievable.

The need to identify the skeleton structure, as a preliminary stage to writing the

decomposition of the coeÆcients (and thus also to BLM scale-setting) may actually

arise at lower orders if several skeletons appear at the same order. The simplest

example in the Abelian theory is e�e� scattering with both t channel and u channel

exchange. Several skeletons at the same order also occur in single-scale observables

considered here. In this sense the assumed form of the skeleton expansion (2) is

oversimpli�ed and should be generalized to include several di�erent siRi(Q
2) terms

at any order i. For example, in the non-Abelian theory it is natural to expect that

di�erent group structures characterizing di�erent vertices will be associated with

di�erent skeletons. Assume, for instance, that instead of a single sub-leading skeleton

term s1R1(Q
2), we have a sum of two terms: sA1R

A
1 (Q

2) and sF1 R
F
1 (Q

2) where sA1 is

proportional to CA and sF1 is proportional to CF . Now both RA
1 (Q

2) and RF
1 (Q

2)

have the structure of (4) where the corresponding momentum distribution functions

�A1 and �F1 carry no group structure. In the decomposition of the coeÆcients (45)

one then has,

aR = �a+
h
s1 + r

(1)
1 �0

i
�a2 (48)

+
h
s2 +

�
sA1 r

(1)
2;A + sF1 r

(1)
2;F

�
�0 + r

(2)
2 �2

0 + r
(1)
1 �1

i
�a3 + � � �

where s1 = sA1 + sF1 (cf. eq. (114)) and the pure numbers r
(1)
2;A and r

(1)
2;F are uniquely

determined. Applying BLM scale-setting in this case, one should treat separately the

two O(�a2) skeletons, leading to a BLM series of the form

aR(Q
2) = �a(k20) + sA1 �a(k

2
1;A)

2
+ sF1 �a(k

2
1;F )

2
+ � � � (49)

Thus, provided the contribution of the di�erent skeletons can be identi�ed, the scales

k1;A and k1;F can be determined.

In general, the color group structure of the coeÆcients is not suÆcient to dis-

tinguish between the contributions of di�erent skeletons. In the Abelian theory,

at the s1R1 level there are two skeletons: the planar two-photon exchange diagram

(s
p
1 � �

p
1CF ) and the non-planar diagram (s

np
1 � �

np
1 CF ) with crossed photons. In the

Abelian case both skeletons are proportional to CF , but in general they have di�erent

momentum distribution functions which correspond to the di�erent momentum 
ow

in the skeleton diagram. It is reasonable to expect that in the non-Abelian case there

will be just one more skeleton term at this order, the one based on a three-gluon

vertex, proportional to CA. Given that the full �0 independent next-to-leading order

coeÆcient in the skeleton scheme is s1 = �ACA + �FCF , where the Abelian piece is

decomposed according to �F = �
p
1 + �

np
1 , the non-Abelian decomposition should be

s1 =

�
�A +

1

2
�
np
1

�
CA + �

np
1

�
CF �

1

2
CA

�
+ �

p
1CF (50)
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where the combination
�
CF �

1
2
CA

�
corresponding to the non-planar skeleton is de-

termined by the large Nc limit��.

To summarize, we have seen that by tracing the 
avor dependence of the pertur-

bative coeÆcients in the skeleton scheme, one can identify the contribution of the

di�erent skeleton terms. This procedure allows one to \reconstruct" the skeleton ex-

pansion algebraically from the calculated coeÆcients as summarized by eq. (45). This

decomposition implies a unique BLM scale-setting which has a one-to-one correspon-

dence with the skeleton expansion. We also learned that there are several limitations

to the algebraic procedure which can probably be resolved only by explicit diagram-

matic identi�cation of the skeleton structures and the skeleton e�ective charge. These

limitations include the need to

a) treat separately contributions from skeleton structures which involve fermion

loops (in the Abelian case these are just the light-by-light type diagrams)

b) identify separately the di�erent moments �
(j;k)
i of a given momentum distribution

function which appear as a sum with any j and k such that j + k = n in the

perturbative coeÆcients of �n0 �a
1+i+n

c) identify separately the contributions of di�erent skeleton terms which happen to

appear at the same order in �a.

4 BLM and conformal relations

Let us now consider the general BLM scale-setting method, where the scheme is not

necessarily the one of the skeleton e�ective charge, and no correspondence with the

skeleton expansion is sought for. Then any scale-setting procedure which yields an

expansion of the form (18) withNf independent ci coeÆcients and scale-shifts that are

power series in the coupling (23) is legitimate. We saw that under these requirements

there is no unique procedure for setting the BLM scale beyond the leading order

(k0;0). Nevertheless, as we now show, the coeÆcients ci are uniquely de�ned. In fact,

the ci have a precise physical interpretation as the \conformal coeÆcients" relating

aR and a in a conformal theory de�ned by

�(a) = ��0a
2 � �1a

3 + � � � = 0: (51)

To go from real-world QCD to a situation where such a conformal theory exists

one has to tune Nf : when Nf is set large enough (but still below 11
2
Nc, the point

where asymptotic freedom is lost) �1 is negative while �0 is positive and small. Then

the perturbative � function has a zero at aFP ' ��0=�1; i.e. there is a non-trivial

infrared �xed-point [32]{[36]. The perturbative analysis is justi�ed if �0, and hence

aFP, is small enough.

��In SU(Nc) the combination
�
CF �

1
2
CA

�
is sub-leading in Nc compared to CA = NC and

CF = (Nc
2
� 1)=(2Nc).
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Physically, the existence of an infrared �xed-point in QCD means that correla-

tion functions are scale invariant at large distances. This contradicts con�nement

which requires a characteristic distance scale. In particular, when �0 ! 0 the in-

frared coupling is vanishingly small. Then it is quite clear that a non-perturbative

phenomenon such as con�nement will not persist. The phase of the theory where the

infrared physics is controlled by a �xed-point is called the conformal window. In this

work we are not concerned with the physics in the conformal windowyy. We shall just

use formal expansions which have a particular meaning in this phase.

The BLM coeÆcients ci are by de�nition Nf -independent. Therefore the expan-

sion of aR according to eq. (18) is valid, with the same ci's both in the real world

QCD and in the conformal window. In the conformal window a generic coupling

a(k2) 
ows in the infrared to a well-de�ned limit a(k2 = 0) � aFP. In particular,

eq. (18) becomes

aFPR = aFP + c1aFP
2 + c2aFP

3 + c3aFP
4 + � � � (52)

where we used the fact that the ki's are proportional to Q, which follows from their

de�nition k2i = Q2 exp(�ti); together with the observation that the scale-shifts ti in

(23) at any �nite order are just constants when a(Q2) �! aFP. Eq. (52) is simply the

perturbative relation between the �xed-point values of the two couplings (or e�ective

charges) aR and a.

Note that in this discussion we ignored the complication raised at the end of the

previous section, concerning the possibility of applying BLM scale-setting in the case

of several skeletons contributing at the same order (cf. eq. (49)). In this case the

argument above holds as well, while the conformal coeÆcients will be the sum of all

BLM coeÆcients appearing at the corresponding order. For the example considered

in the previous section (48), we would then have c1 = s1 = sF1 + sA1 .

According to the general argument above, the BLM coeÆcients (18) should coin-

cide with the conformal coeÆcients in (52). In the next section we calculate conformal

coeÆcients directly and check this statement explicitly in the �rst few orders.

5 Calculating conformal coeÆcients

Let us now investigate the relation between the conformal coeÆcients ci appearing

in (52) and the perturbative coeÆcients ri.

For this purpose, it is useful to recall the Banks-Zaks expansion: solving the

equation �(a) = 0 in (51) for such Nf where �0 is small and positive and �1 is

negative, we obtain: aFP ' ��0=�1 > 0. If we now tune Nf towards the limit
11
2
Nc from below, �0 and therefore aFP become vanishingly small, which justi�es the

perturbative analysis [28, 29]. In particular, it justi�es neglecting higher orders in the

� function as a �rst approximation. In order to take into account the higher orders

in the � function, one can construct a power expansion solution of the equation

yyIn [36] this phase is investigated from the point of view of perturbation theory in both QCD
and supersymmetric QCD.
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�(a) = 0, with the expansion parameter as the leading order solution,

a0 � �
�0

�1j�0=0

=
�0

��1;0
: (53)

In the last equality we de�ned �1 � �1;0 + �1;1�0 where �i;j are Nf -independent.

Similarly, we de�nezz for later use

�2 � �2;0 + �2;1�0 + �2;2�
2
0 + �2;3�

3
0 : (54)

We shall assume that the coupling a has the following Banks-Zaks expansion

aFP = a0 + v1a
2
0 + v2a

3
0 + v3a

4
0 + � � � (55)

where vi depend on the coeÆcients of �(a), see e.g. [35]. For instance, the �rst

Banks-Zaks coeÆcient is

v1 = �1;1 �
�2;0

�1;0
: (56)

Suppose that the perturbative expansion of aR(Q
2) in terms of a(Q2) is given by

aR(Q
2) = a(Q2) + r1a(Q

2)
2
+ r2a(Q

2)
3
+ � � � (57)

Based on the fact that ri are polynomials of order i in Nf , and that a0 is linear

in Nf , one can uniquely write a decomposition of ri into polynomials in a0 with

Nf -independent coeÆcients

r1 = r1;0 + r1;1a0 (58)

r2 = r2;0 + r2;1a0 + r2;2a0
2

r3 = r3;0 + r3;1a0 + r3;2a0
2 + r3;3a0

3

and so on. For convenience we expand here in a0 rather than in �0. The relations

with the \skeleton decomposition" of r1 and r2 in eqs. (16) and (21) (or in (45)) are

the following

r1;0 = r
(0)
1

r1;1 = ��1;0r
(1)
1

r2;0 = r
(0)
2 + �1;0r

(1)
1

r2;1 = ��1;0r
(1)
2 r

(0)
1 � �1;0�1;1r

(1)
1

r2;2 = �2
1;0r

(2)
2 :

(59)

For r3 we have, based on (45),

r3;0 = r
(0)
3 + r

(1)
2 r

(0)
1 �1;0 + r

(1)
1 �2;0: (60)

Using eq. (57) at Q2 = 0 with (58) and the Banks-Zaks expansion for aFP (55), it

is straightforward to obtain the Banks-Zaks expansion for aFPR

aFPR = a0 + w1a
2
0 + w2a

3
0 + w3a

4
0 + � � � (61)

zzWe recall that in the skeleton scheme ��2;3 = 0.
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with

w1 = v1 + r1;0 (62)

w2 = v2 + 2r1;0v1 + r1;1 + r2;0

w3 = v3 + 2r1;0v2 + r1;0v1
2 + 2r1;1v1 + 3r2;0v1 + r2;1 + r3;0

Having the two Banks-Zaks expansions, one can also construct the series which

relates two e�ective charges aFPR and aFP at the �xed-point. Inverting the series in

(55) one obtains a0 as a power series in aFP,

a0 = aFP + u1a
2
FP

+ u2a
3
FP

+ u3a
4
FP
+ � � � (63)

with u1 = �v1 and u2 = v21 � v2 etc. Substituting eq. (63) in (61) one obtains the

\conformal expansion" of aFPR in terms of aFP according to eq. (52) with

c1 = r1;0 (64)

c2 = r1;1 + r2;0

c3 = �r1;1v1 + r2;1 + r3;0

c4 = 2r1;1v1
2 � r1;1v2 � r2;1v1 + r2;2 + r3;1 + r4;0

Thus the coeÆcients vi of the Banks-Zaks expansion (55) and the coeÆcients ri of

(57) are suÆcient to determine the conformal coeÆcients ci to any given order.

Clearly, the Banks-Zaks expansions (55) and (61) and the conformal expansion of

one �xed-point in terms of another (52) are closely related. Strictly speaking, both

type of expansions are meaningful only in the conformal window. However, we saw

that the coeÆcients of (52) coincide with the ones of the BLM series (18) which is

useful in real world QCD. We recall that the general argument in the previous section

does not depend on the speci�c BLM scale-setting prescription used, provided that

the scales ki are proportional to Q and the ci's are Nf independent. Comparing

explicitly c1, c2 and c3 in eq. (64) with the BLM coeÆcients obtained in the previous

section, namely ci = r
(0)
i , we indeed �nd that they are equal (compare using eq. (59),

(60) and (56)). In particular, the \skeleton decomposition" of eq. (45), which can be

formally performed in any scheme, provides an alternative way to compute conformal

coeÆcients.

>From (64) it follows that the conformal coeÆcients relating the �xed-point values

of aR and a cannot be obtained just from the perturbative relation (57) between the

two. Additional information related to the � function �(a), which is encoded in the

Banks-Zaks coeÆcients vi, is essential beyond the next-to-next-to-leading order. On

the other hand, as we show below, the conformal coeÆcients are obtainable from the

perturbative expansion if the log-structure is explicit. Using for example, a multi-

scale form

aR(Q
2) = a(k20) + r1a(k

2
1)

2
+ r2a(k

2
2)

3
+ r3a(k

2
3)

4
+ � � � (65)

where k2i = Q2 exp(�ti) are arbitrary and the ri's are written as in eq. (58) we obtain

aR = a(Q2) + [r1;0 + (r1;1 � �1;0t0) a0] a(Q
2)2 +

h
�1;0t0 + r2;0 (66)

+ (��1;0�1;1t0 � 2r1;0�1;0t1 + r2;1) a0 +
�
�2
1;0t

2
0 + r2;2 � 2r1;1�1;0t1

�
a20

i
a(Q2)3 + � � �
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where we used the expansion of the � function coeÆcients in terms of �0 (and ex-

pressed it in terms of a0 using eq. (53)). Now we take the limit Q2 �! 0 in (66), and

express a0 as a power series in aFP using the inverse Banks-Zaks expansion (63). We

obtain,

aFPR = aFP + r1;0a
2
FP
+ (r1;1 + r2;0)a

3
FP

(67)

+ [r2;1 + r3;0 + r1;1u1 + (��1;0�1;1 + �2;0 � �1;0u1) t0] a
4
FP

+ [r2;2 + r3;1 + r4;0 + r2;1u1 + r1;1u2 + (��1;0�2;1 + �3;0 � �1;0u2 � �1;0�1;1u1) t0

+ 2r1;0(��1;0�1;1 + �2;0 � �1;0u1) t1] a
5
FP
+ � � �

The coeÆcients ui are �xed by requiring that the logs ti do not appear in the �nal

conformal expansion. Thus in this procedure we obtain at once the (inverse) Banks-

Zaks expansion (63) and the conformal expansion of aFPR in terms of aFP. The latter

simply corresponds to the terms free of ti in (67). The vanishing of the terms linear in

t0 gives a new constraint on ui at each order. These constraints allow one to calculate

u1 at order a
4
FP
, u2 at order a

5
FP
, etc. Higher orders in t0 which appear at order a6

FP

and beyond are proportional to previous constraints and thus vanish automatically

upon the substitution of ui. The same holds for all the terms which depend on ti for

i � 1.

In the next sections we shall investigate the large-order behavior of conformal ex-

pansions. We shall assume that the observable aR has renormalons in its perturbative

expansion (57), and investigate the consequences for the conformal expansion. As for

the scheme coupling a we shall assume no renormalons and a simple two-loop � func-

tion. Whether these assumptions can be really justi�ed remains an open question.

We do believe that other choices of a truncated � function, namely other schemes,

would not change the conclusions. Further simpli�cation is achieved if we consider a

hypothetical model of QCD in which �1 is independent of Nf . In this case we can

de�ne a0 as

a0 � �
�0

�1
; (68)

rather than (53). The advantage is that a, which is assumed to obey a two-loop

renormalization group equation, has a trivial Banks-Zaks expansion: aFP = a0; i.e.

vi = 0 for any i � 1. It obviously follows that the Banks-Zaks expansion (61) and

the conformal expansion of aFPR in terms of aFP (52) coincide, with the coeÆcients

ci =

[i=2]X
k=0

ri�k;k (69)

for any i, where the square brackets indicate a (truncated) integer value. In this

model then, ci is simply the sum of all the possible rj;k coeÆcients such that j+k = i

and j � k.
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6 Conformal coeÆcients with renormalons

In this section we demonstrate that conformal coeÆcients can in general diverge

factorially due to the presence in the perturbative expansion of factorials of the kind

characterizing renormalons.

We begin with the simplest example corresponding to a single simple pole in the

Borel transform of the observable aR

B(z) =
1

1� (z=zp)
(70)

where zp = p=�0 is the renormalon location. Note that in this example we choose the

renormalon residue to be simple, but in fact in QCD it can be a generic Nf -dependent

function. The inverse Borel transform is de�ned as

aR(Q
2) =

Z 1

0
B(z)e�z=adz (71)

and yields

aR(Q
2) = �zpEi(1;�zp=a)e

�zp=a: (72)

The perturbative series of aR(Q
2) then has the following factorially increasing coef-

�cients

ri = i!

 
�0

p

!i

: (73)

In our model where �1 is negative and Nf -independent (i.e. eq. (68) applies)

the decomposition of the coeÆcients of (73) in powers of a0 according to (58) yields

ri;i = (��1=p)
i i! and ri;j = 0 for any j 6= i. The resulting conformal coeÆcients (69)

in this model are therefore

ci =

(
0 i odd

(i=2)! (��1=p)
i=2

i even
(74)

Thus the conformal coeÆcients do diverge factorially. In some sense the factorial

divergence is slowed down: ci contains just (i=2)! rather than i!. Consequently we

de�ne u = i=2 and write the Banks-Zaks expansion as:

aFPR = a0

1X
u=0

u!

 
��1

p

!u

a0
2u = a0

1X
u=0

u!(�Æ)�u (75)

where

Æ �
p�1

�2
0

: (76)

We found that in the simple Borel pole example the factorial divergence of the

perturbative series does enter the conformal coeÆcients. However, this example is not

completely self-consistent: on one hand it was assumed that a runs according to the

two-loop � function (it has a �xed-point), but on the other hand we used the one-loop
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� function form of the Borel singularity, namely a simple pole. In fact, it is known that

a non-vanishing two-loop coeÆcient in the � function modi�es the Borel singularity

to be a branch point. For instance, for the leading infrared renormalon associated

with the gluon condensate (p = 2) we have the following singularity structure in the

Borel plane [2]

B(z) =
1

[1� (z=zp)]1+Æ
(77)

where Æ is de�ned in (76). The corresponding perturbative coeÆcients are

ri =
�(1 + Æ + i)

�(1 + Æ)

 
�0

p

!i

: (78)

The large-order behavior is ri � i! iÆ (�0=p)
i
, which is di�erent from the previous

example (73).

As opposed to the previous example, the ri are not polynomials in �0, so starting

with (78) we cannot obtain the form (58). To see this, let us examine the expansion

of the � function in ri

fi(Æ) �
�(1 + Æ + i)

�(1 + Æ)
= (Æ + i)(Æ + i� 1)(Æ + i� 2) : : : (Æ + 1): (79)

It is clear that fi(Æ) can be written as a sum

fi(Æ) =
iX

k=0

f
(i)
k Æk (80)

where f
(i)
k are numbers. Since Æ is proportional to 1=�0

2, fi(Æ) contains all the even

powers of 1=�0 from 0 up to 2i. The additional positive power of �0 in (78) �nally

leads to having half of the terms with positive power of �0 and half with negative

powers. The latter correspond to non-polynomial functions of Nf which are impos-

sible to obtain in a perturbative calculation. This suggests that the current example

is unrealistic.

The �rst possibility that comes to mind how to avoid having negative powers of �0
in the coeÆcients is simply to truncate them and keep only the positive powers. This

procedure can be seen as an intermediate step between the large �0 limit (in which

the � function is strictly one-loop) and the actual QCD situation. The truncation

makes sense provided it does not alter the eventual large-order behavior of ri, a point

which we shall check explicitly. Note that there is some ambiguity in the truncation:

one can in principle truncate (80) at di�erent k values and still obtain the same

asymptotic behavior. We shall choose the most natural possibility: truncate just the

terms which lead to negative powers of �0.

In order to proceed we should �nd the coeÆcients f
(i)
k . This can be done by

writing a recursion relation using the property fi(Æ) = (Æ + i)fi�1(Æ). This condition

is equivalent to the following

f
(i)
k =

8><
>:

1 k = i

f
(i�1)
k�1 + if

(i�1)
k 0 < k < i

i! k = 0

(81)
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It is straightforward to use these recursion relations to obtain f
(i)
k to arbitrarily high

order.

After truncating the terms with negative powers of �0, the coeÆcients (78) become

~ri =

 
�0

p

!i [ i
2
]X

k=0

f
(i)
k Æk: (82)

In order to make sure that the truncation of the high powers of Æ does not a�ect the

large-order behavior of the series we calculated the ratio

~ri=ri =

2
4[i=2]X
k=0

f
(i)
k Æk

3
5
,"

iX
k=0

f
(i)
k Æk

#
(83)

for various values of Æ, as a function of the order i. It turns out that this ratio

approaches 1 fast, indicating a common asymptotic behavior. For instance, for

Æ = 462=625, corresponding to eq. (76) with p = 1 and the values of �0 and �1
in QCD with Nf = 4, we �nd ~ri=ri ' 0:995 for i = 8.

At the next step we write the decomposition of ~ri as a polynomial in a0 according

to (58),

~ri;j = f
(i)
i�j
2

(�1)j
 
�1

p

! i+j
2

; (84)

where j is odd for odd i and even for even i (as always j � i). Finally, the conformal

coeÆcients (69) in this example are

~c2u =
uX

j=0

~r2u�j;j =

"
2uX
k=u

f
(k)
k�u(�1)

k

# 
�1

p

!u

(85)

and the expansion is

aFPR = a0

1X
u=0

"
2uX
k=u

f
(k)
k�u(�1)

u+k

#
(�Æ)�u: (86)

The square brackets should be compared with u! (75) characterizing the simple Borel

pole example. It turns out that the ~c2u increase faster than u!, but slower than (2u)!.

Thus the factorial behavior of the conformal coeÆcients persists also in this example.

Another possible approach to analyze the Borel cut example (77) is the following:

the large-order behavior of the coeÆcients is

ri =
1

�(1 + Æ)
i! iÆ

 
�0

p

!i

: (87)

Let us now ignore the 1=�(1 + Æ) factor, which can be absorbed into the residue of

the renormalon and expand iÆ � exp(Æ ln(i)) = 1 + Æ ln(i) + 1
2
Æ2 ln2(i) + � � �. Again
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we �nd that high powers of Æ lead to non-polynomial dependence of the coeÆcients.

As before we truncate these terms and write an approximation to ri

�ri = i!

[ i
2
]X

k=0

1

k!
lnk(i)

 
p�1

�2
0

!k  
�0

p

!i

: (88)

We checked numerically that the ratio �ri=ri approaches 1 as i increases, so the asymp-

totic behavior is not altered by this truncation. We comment that the logarithmic

factor in (88) which has the same asymptotic behavior as

ln i ' 	(2i+ 1) + 
E = 1 +
1

2
+

1

3
+ � � �+

1

2i
; (89)

can actually be understood diagrammatically, as explained in [3].

We proceed and write

�ri;j =
i!

i�j
2
!
(�1)j (ln i)

i�j
2

 
�1

p

! i+j
2

; (90)

and �nally, using (69), the conformal coeÆcients are

�c2u =
uX

j=0

�r2u�j;j =

"
2uX
k=u

k!

(k � u)!
(�1)k(ln k)k�u

# 
�1

p

!u

: (91)

The large-order behavior of �c2u turns out to be again between u! and 2u!. In fact,

the two ways we used to construct the coeÆcients in this example lead to roughly

the same asymptotic behavior of the conformal coeÆcients: the ratio between �c2u
and ~c2u approaches a geometrical series at large orders. The reason for this is simply

the fact that in both examples the dominant term in the sum is the one coming

from the highest power of the coupling (~r2u;0 in (85) and �r2u;0 in (91)). In fact, the

contributions to the conformal coeÆcients from increasing orders in the coupling are

monotonically increasing in both cases. We stress, however, that the decomposition

of ri into polynomials in �0 (ri;j) is not at all similar in the two cases.

7 Conformal coeÆcients without renormalons

In the previous section we saw that, in general, conformal coeÆcients can diverge

factorially when the corresponding perturbative series has Borel singularities of the

renormalon type. We tried to provide semi-realistic examples by requiring that the

coeÆcients would be polynomials in Nf and that the large order behavior of the series

(i.e. the nature of the cut in the Borel plane) would be consistent with a two-loop �

function.

But is this enough to imitate the e�ect of real-world QCD renormalons? We

saw that the large-order behavior of the perturbative coeÆcients ri (the nature of

the Borel singularity) by itself does not uniquely determine its decomposition into
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powers of �0: several choices of ri;j can �t. Actually, there is no good reason to think

that the decompositions we suggested in the previous section are realistic. In this

section we shall consider the case where the ri;j coeÆcients are determined directly

from a genuine renormalon structure, rather than guessed based on the large-order

behavior of ri.

In a theory where the coupling does not run (�a(k2) = �a), the skeleton expansion

(2) coincides with the perturbative expansion. The integrals Ri of (3), (4) etc. sim-

ply reduce to �ai+1 (the normalization is one by construction). Since renormalons are

understood by de�nition as the particular factorial increase that emerges upon expan-

sion of the skeleton terms Ri (in case of a running coupling), the skeleton coeÆcients

si in (2) do not contain renormalons.

In particular in QCD the assumed structure of the skeleton expansion (2) implies

that taking the infrared limit we obtain a trivial conformal expansion for each skeleton,

namely

Ri(Q
2 = 0) = �ai+1

FP
: (92)

To see this, consider �rst the leading term R0. Changing variables in (3), � � k2=Q2

we obtain

R0(Q
2) =

Z 1

0
�a
�
�Q2

�
�0(�)

d�

�
: (93)

Assuming a conformal �xed-point for �a(k2) we take the limit Q2 �! 0 inside the

integral and obtain RFP

0 = �aFP where we used the assumed normalization of �0 (5).

By a similar argument R1(Q
2) of eq. (4) obeys (92). Again, since renormalons are

understood as the particular factorial increase from the expansion of the skeleton

terms Ri, the coeÆcients si are renormalon-free. It follows that the conformal relation

corresponding to (2),

aFPR � aR(Q
2 = 0) = �aFP + s1�a

2
FP
+ s2�a

3
FP
+ � � � (94)

is renormalon-free.

The absence of renormalons in the skeleton expansion implies also that the Banks-

Zaks expansion is free of renormalons provided that the � function of the \skeleton

coupling" ��(�a) does not contain renormalons. Consider for example the leading

skeleton term R0, for which we have R0(Q
2 = 0) = �aFP. If the expansion of �aFP in

terms of a0 is renormalon-free, it follows immediately that the Banks-Zaks expansion

ofR0 has the same property. As in the previous section, for simplicity one can consider

a model in which �a obeys a two-loop renormalization group equation (as before �1 is

taken to be independent of Nf). Then we simply have R0(Q
2 = 0) = �aFP = a0.

We showed that the conformal expansion of a dressed skeleton Ri is trivial. In

particular, it is free of renormalons in spite of the fact that the corresponding per-

turbative series (e.g. eq. (8) for R0) does have renormalons. Having in mind the

examples of the previous section, this conclusion seems surprising. As opposed to

these examples, in case of a renormalon integral the conformal coeÆcients are built

from the perturbative coeÆcients in such a way that the factorial increase is cancelled.

It is interesting to examine how this cancelation comes about.
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Let us consider the leading skeleton term (3), where we expect according to the

general argument that R0(Q
2 = 0) = �aFP. In order to analyze the conformal coeÆ-

cients we restrict ourselves now to the contribution to R0 from small k2, which is the

origin of infrared renormalons, and expand the momentum distribution function

�0
�
k2=Q2

�
=
X
n

 
k2

Q2

!n

�n
0 (95)

where �n
0 are numbers. It is enough to consider a speci�c infrared renormalon with

n = p, and so we choose our \observable" to be

âR0(Q
2) � p

Z Q2

0

 
k2

Q2

!p

�a(k2)
dk2

k2
(96)

where the upper integration limit is set for simplicity to be Q2.

It was shown in [40, 41] that if �a(k2) satis�es the two-loop renormalization group

equation, the Borel representation of âR0 is

âR0(Q
2) =

Z 1

0
e
�

�1
�0

z 1

[1� (z=zp)]
1+Æ

e�z=�a dz (97)

where �a � �a(Q2). This integral resums all those terms in eq. (8) which depend only

on the �rst two coeÆcients of the � function. Note that eq. (96) is well de�ned thanks

to the infrared �xed-point of the coupling �a(k2). On the other hand, eq. (97) is not

well de�ned due to the infrared renormalon, and it di�ers [40, 41] from eq. (96) by an

ambiguous power-correction. The equality between (96) and (97) should be therefore

understood just as an equality of the (all-order) power series expansion of the two

expressions.

To expand (97) we note that the Borel transform of âR0 with respect to the

modi�ed coupling ~a,
1

~a
�

1

�a
+
�1

�0
; (98)

coincides with the Borel transform (77). Using the coeÆcients (78) we have

âR0 =
1X
i=0

ri~a
i+1 =

1X
i=0

�(1 + Æ + i)

�(1 + Æ)

 
�0

p

!i

~ai+1: (99)

Substituting

~ai+1 =

 
�a

1 + �a�1=�0

!i+1

= �ai+1
1X
k=0

(i+ k)!

i! k!
�ak
 
�
�1

�0

!k

(100)

we obtain

âR0 = �a
1X
i=0

1X
k=0

�(1 + Æ + i)

�(1 + Æ)

(i+ k)!

i! k!

 
�0

p

!i  
�
�1

�0

!k

�ai+k: (101)
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De�ning n = k + i and performing �rst the summation over i we obtain

âR0 = �a
1X
n=0

rn�a
n (102)

with the perturbative coeÆcients rn given by

rn =
nX
i=0

�(1 + Æ + i)

�(1 + Æ)

n!

i! (n� i)!

 
�0

p

!i  
�
�1

�0

!n�i

: (103)

We now use (80) to expand the � function and write explicitly the dependence on

�0. De�ning j = 2i� 2k � n, we obtain rn =
P
rn;ja

j
0 with

rn;j =
nX

i=n+j
2

n!

(n� i)! i!
(�1)if

(i)

i�n+j
2

 
�1

p

!n+j
2

: (104)

A major di�erence between this example and the examples of the previous section

should be noted: here the decomposition of rn into powers of a0 is straightforward and

does not lead to any non-polynomial dependence. Clearly, truncation is not required.

Finally, using (69), the conformal coeÆcients corresponding to the leading skeleton

are given by

c2u =
uX

j=0

r2u�j;j =
2uX
k=u

rk;2u�k =

"
2uX
k=u

kX
i=u

k!

(k � i)! i!
(�1)if

(i)
i�u

# 
�1

p

!u

= 0; (105)

where the last equality was checked explicitly. In other words, the �nal result is

âR0(Q
2 = 0) = �aFP (106)

in accordance with our expectations. As explained before, the vanishing of the con-

formal coeÆcients in this case can be understood directly from the de�ning integral

R0. We note that contrary to the examples of the previous section, (85) and (91), in

(105) the term originating from the highest power of the coupling does not dominate.

This is crucial for the eventual cancelation.

8 Examples

The absence of renormalons in conformal relations strongly suggests that the e�ective

convergence of the skeleton expansion or, alternatively the BLM series in the skeleton

scheme (which, as we saw, coincides with the relevant conformal relation) is better

than that of standard perturbative series in a standard scheme such as MS.

Can we check explicitly the absence of renormalons in conformal relations? The

purpose of this section is to examine through available examples in QCD whether

the expectation stated above is realized. Indeed, as we shall now recall, it has been

noted by several authors (e.g. in [12, 31, 18, 34, 35]) that conformal coeÆcients and

Banks-Zaks coeÆcients are typically small. We would like to interpret these obser-

vations based on the assumed skeleton expansion and relate them to the absence of

renormalons. As concrete examples we shall concentrate on the following observables:
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a) The Adler D-function,

D(Q2) = Q2d�(Q
2)

dQ2
� Nc

X
f

e2f [1 + aD] (107)

where aD is normalized as an e�ective charge, and �(Q2) is the electromagnetic

vacuum polarization,

4�2i

Z
d4x eiq�x h0jT fj�(x); j�(0)g j0i =

�
q�q� � q2g��

�
�(Q2): (108)

b) The polarized Bjorken sum-rule for electron nucleon deep-inelastic scattering,

Z 1

0

h
g
p
1(x;Q

2)� gn1 (x;Q
2)
i
dx �

gA

6
[1� ag1] : (109)

c) The non-polarized Bjorken sum-rule for neutrino nucleon deep-inelastic scatter-

ing, Z 1

0
dx
h
F

��p
1 (x;Q2)� F �n

1 (x;Q2)
i
� 1�

CF

2
aF1 : (110)

d) The static potential,

V (Q2) � �4�2CF

aV

Q2
: (111)

In all four cases perturbative calculations have been performed (refs. [42] through

[45], respectively) up to the next-to-next-to-leading order r2 in eq. (1).

For later comparison with conformal relations, we quote some numerical values

of the coeÆcients in the standard perturbative expansion in aMS � aMS (Q
2) for the

vacuum polarization D-function (107)

aD = aMS + d1 a2
MS

+ d2 a3
MS

+ � � �

2:0 18:2 Nf = 0

1:6 6:4 Nf = 3

0:14 �27:1 Nf = 16

1:06 14:0 Nf = 0::16

(112)

and for the polarized Bjorken sum-rule (109)

ag1 = aMS + k1 a2
MS

+ k2 a3
MS

+ � � �

4:6 41:4 Nf = 0

3:5 20:2 Nf = 3

�0:75 �34:8 Nf = 16

2:1 21:0 Nf = 0::16

(113)

where in the �rst three lines in (112) and (113) the coeÆcients are evaluated at given

Nf values, while the last line corresponds to an average of jrij in the range Nf = 0

through 16.
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We see that the coeÆcients in a running coupling expansion in the MS scheme

increase fast already at the available next-to-next-to-leading order. This increase has

been discussed in connection with renormalons, for example in [4]. A priori, it is hard

to expect that the large-order behavior of the series will show up already in the �rst

few leading orders. We mention, however, that in ref. [46] the Bjorken sum rule series

(for Nf = 3) was analyzed in the Borel plane based on the three known coeÆcients,

indicating that the �rst infrared renormalon at p = 1 does show up.

8.1 Conformal relations in the skeleton scheme

Let us consider �rst the conformal relation in the skeleton scheme (94). Since the

skeleton coupling �a has been identi�ed only at the one-loop level (12), our information

on the coeÆcients si is quite limited: by a direct calculation (using the next-to-leading

order coeÆcient r1 and either (16) or (64)) we can only determine s1. For example,

for the observables de�ned above it is

s1 = r
(0)
1 =

8>>><
>>>:
�(1=4)CA � (1=8)CF = �11=12 D

�(1=4)CA � (7=8)CF = �23=12 g1
�(1=4)CA � (11=8)CF = �31=12 F1

�CA = �3 V

(114)

Note the absence of a CF term in the case of the static potential. This can be

understood based on the Abelian limit, where it is known that this e�ective charge

coincides with the skeleton coupling (there, the Gell-Mann Low e�ective charge) up

to light-by-light type corrections. Therefore the momentum distribution function of

the leading skeleton term �0 is just a Æ-function, �0(k
2) = Æ(k2), and in the Abelian

limit there are strictly no (Nf -independent) sub-leading skeleton terms.

The higher-order coeÆcients si, for i � 2, depend on yet unknown characteristics

of the skeleton coupling scheme. In particular, as we shall discuss in section 9, s2
depends on the skeleton � function coeÆcient ��2. However, as can be seen in eq. (145)

below, the dependence on this coeÆcient cancels in the di�erence of s2 between any

two observables, which is therefore calculable.

It should be stressed that without a diagrammatic identi�cation of the skeleton

structure, one cannot isolate skeletons with fermion loops attached to three gluons,

which may appear at the order considered. Therefore we shall just treat the entire

Nf dependence (excluding Abelian light-by-light diagrams) as if it appears due to

the running coupling, according to eq. (45) where s2 is Nf independent. For the

observables considered above we then �nd:

s
g1
2 � sD2 =

3

8
CF CA +

3

4
CF

2 = 2:833

sF12 � sD2 =

�
43

12
+

85

6
�3 �

115

6
�5

�
CA

2 +

�
�34 �3 �

75

8
+

95

2
�5

�
CF CA

+

�
21

2
+

47

2
�3 � 35 �5

�
CF

2 = 7:045 (115)

sV2 � sD2 =

�
1

4
�2 +

43

24
�

1

64
�4

�
CA

2 �
25

16
CF CA +

23

32
CF

2 = 19:66
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This gives some idea about the size of s2 of these observables. While the vacuum

polarization D-function and the polarized and non-polarized Bjorken sum-rules have

rather small di�erences between their s2 coeÆcients, the static potential s2 di�ers

signi�cantly from the others. Thus if we assume for example that the skeleton scheme

is such that sD2 is small, then also s
g1
2 and sF12 will be rather small, but not so sV2 .

Whereas in the Abelian limit the static potential e�ective charge, with light-by-light

terms excluded, coincides with the skeleton e�ective charge (see the comment below

eq. (114)), the two may eventually be quite distinct in the non-Abelian case (note

the dominance of the CA
2 piece in sV2 � sD2 ).

Based on these di�erences one could conclude that in the non-Abelian theory the

skeleton expansion does not always have good convergence properties. One should

remember, however, that we mistreated here the Nf dependence which should be as-

sociated with the skeleton structure (fermion loops attached to three gluons). Even-

tually, this will have some impact on the magnitude of the skeleton coeÆcients s2,

which we cannot evaluate at present.

8.2 Direct relations between observables

There is a way to consider systematically conformal relations avoiding the use of the

skeleton scheme. Having renormalon-free conformal expansions (94) for two QCD

observables in terms of the skeleton e�ective charge �a, one can eliminate the latter

to obtain a direct conformal relation between the two observables. The existence of

a skeleton expansion (2) for the two observables implies that this conformal relation

is free of renormalons.

Conformal coeÆcients of this type can be computed either from the Banks-Zaks

expansion (64) or in the framework of BLM, as the coeÆcients in a commensurate

scale relation [12]. The latter can be obtained by applying BLM directly to the per-

turbative relation between two observable e�ective charges (and so it does not require

identi�cation of the skeleton coupling). Such relations between several observables

were investigated in [12] in the framework of multi-scale BLM, and were found to

have typically smaller coeÆcients compared to the standard running coupling ex-

pansions, in accordance with the general expectation. The absence of renormalons

in a commensurate scale relation between measurable quantities may have practical

phenomenological implications allowing precision tests of perturbative QCD.

There is one example where a direct all-order conformal relation is known { this

is the Crewther relation relating the vacuum polarization D-function e�ective charge

aD, de�ned by (107), with the polarized Bjorken sum-rule e�ective charge ag1 , de�ned

by (109). The Crewther relation is [30, 31, 18]

ag1 � aD +
3

4
CFag1aD = ��(a)T (a) (116)

where T (a) is a power series in the coupling

T (a) = T1 + T2a + T3a
2 + � � � (117)
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and Ti are polynomials in Nf .

If aD has a perturbative �xed-point aFPD , then it is convenient [35] to write the

r.h.s. of (116) in terms of aD. �(aFPD ) = 0 and so the r.h.s. vanishes at aD = aFPD
corresponding to the infrared limit. Therefore ag1 also freezes perturbatively, leading

to the original conformal Crewther relation

aFPg1 =
aFPD

1 + 3
4
CFa

FP

D

: (118)

Taking Nc = 3 we have CF = 4
3
and then the conformal coeÆcients are just one to

any order in perturbation theory,

aFPD = aFPg1 +
�
aFPg1

�2
+
�
aFPg1

�3
+ � � � (119)

Being a geometrical series this conformal relation provides a nice example of a per-

turbative relation free of renormalon divergence.

As noted in [9] (see also [31]) it is possible to write for two generic observables

A and B, at two arbitrary scales QA and QB, the following decomposition of the

perturbative series relating the two,

aA = CAB(aB) + �(aB)TAB(aB): (120)

Here CAB is the \conformal part" of the series, i.e.

CAB(aB) = aB + c1a
2
B + c2a

3
B + � � � (121)

where ci are the conformal coeÆcients appearing in the expansion of aFPA in terms

of aFPB , and TAB(aB) is a perturbative series of the form (117). In other words the

non-conformal part of the relation between the two observables is factorized [31]

as �(aB)TAB(aB). Taking the limit � ! 0 then gives the conformal relation. In

particular, one can write such a factorized relation between an observable e�ective

charge and the skeleton coupling. Then the conformal coeÆcients ci in (121) are

the skeleton coeÆcients si. Explicitly, this can be shown based on the skeleton

decomposition of the series (45),

aR =
h
�a+ s1�a

2 + s2�a
3 + s3�a

4 + � � �
i
+

h
�0�a

2 + �1�a
3 + ��2�a

4 + � � �
i

(122)

�

�
r
(1)
1 +

�
s1r

(1)
2 + r

(2)
2 �0

�
�a +

�
s2r

(1)
3 + s1r

(2)
3 �0 + r

(3)
3 �2

0 +
3

2
r
(2)
2 �1

�
�a2 + � � �

�
:

Coming back to the Crewther relation, it is natural to compare the �xed-point

relation (119) with the corresponding running coupling expansion of aD � aD(Q
2) in

terms of ag1 � ag1(Q
2) at the same �xed scale Q2,

aD = ag1 + ~d1 a2g1 + ~d2 a3g1 + � � �

�2:6 0:61 Nf = 0

�1:9 0:08 Nf = 3

0:89 9:04 Nf = 16

1:12 2:66 Nf = 0::16 :

(123)
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Whereas the next-to-next-to-leading order coeÆcient in (123) appears to be smaller

than in the MS scheme (eq. (112)), it still di�ers signi�cantly from the conformal

coeÆcient in (119) and it can be much larger, for some Nf values. Note that the

di�erence between the conformal part of the next-to-next-to-leading order coeÆcient

and the full coeÆcient for Nf = 16 is directly related to the term linear in �1 in�

eq. (45), since the terms which depend on �0 are small (�0 vanishes at Nf = 161
2
).

One may worry that the observed smallness of the coeÆcients in (119) is due

to the special relation between the two speci�c e�ective charges, and thus it is not

representative of conformal relations in general. Let us then examine another pair

of e�ective charges, namely the relation between the non-polarized Bjorken sum-rule

(110) and the vacuum polarization D-function. The conformal relation is

aFPD = aFPF1 + 1:67
�
aFPF1

�2
+ 1:57

�
aFPF1

�3
+ � � � : (124)

This can be compared with the running coupling expansion of aD � aD(Q
2) in terms

of aF1 � aF1(Q
2),

aD = aF1 + d01 a2F1 + d02 a3F1 + � � �
�3:76 7:30 Nf = 0

�2:78 3:01 Nf = 3

1:50 13:43 Nf = 16

1:63 4:78 Nf = 0::16

(125)

Again we see that the coeÆcients in the running coupling expansion are in general not

as small as the conformal ones. We stress that the coeÆcients in running coupling

relations between observables, such as (123) and (125), as opposed to conformal

relations (119) and (124), are expected to increase factoriallyy due to renormalons.

The static potential is again an exception. Here the conformal relation with the

vacuum polarization D-function is

aFPD = aFPV + 2:08 (aFPV )
2
� 7:16 (aFPV )

3
+ � � � : (126)

This can be compared with the running coupling expansion of aD � aD(Q
2) in terms

of aV � aV (Q
2),

aD = aV + d001 a2V + d002 a3V + � � �
0:21 �7:22 Nf = 0

�0:11 �10:04 Nf = 3

2:00 �1:63 Nf = 16

0:87 8:40 Nf = 0::16

(127)

In this relation the conformal coeÆcients are of the same order of magnitude as the

running coupling coeÆcients.

�This equation can be viewed as a way to parameterize the non-conformal contribution in any

scheme, in particular in physical schemes. The coeÆcients r
(j)

i are not the moments of the distri-
bution functions, but are still related to them.

yIn case of the Crewther relation (116), using a renormalization scheme in which �(a) is free of
renormalons, the factorial increase should be entirely contained in T (a).
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8.3 The Banks-Zaks expansion

A further observation [34, 35] is that also the coeÆcients in the Banks-Zaks expansion

are usually small. The Banks-Zaks expansion for the �xed-point value of the vacuum

polarization D-function (107) is

aFPD = a0 + 1:22 a0
2 + 0:23 a0

3 + � � � (128)

whereas for the Bjorken sum-rule it is

aFPg1 = a0 + 0:22 a0
2 � 1:21 a0

3 + � � � : (129)

Comparing (129) and (128) with the corresponding running coupling expansions in

MS, namely (112) and (113), the di�erence in magnitude of the coeÆcients is quite

remarkable. For the non-polarized Bjorken sum-rule de�ned by (130), the Banks-Zaks

coeÆcients are even smaller

aFPF1 = a0 � 0:45 a0
2 + 0:16 a0

3 + � � � (130)

and exhibit an impressive cancelation of numerical terms appearing in the running

coupling coeÆcients [35]. As in sections 8.1 and 8.2, the static potential shows a

di�erent behavior. In this case the Banks-Zaks expansion [35, 36]

aFPV = a0 � 0:86 a0
2 + 10:99 a0

3 + � � � (131)

has a signi�cantly larger next-to-next-to-leading order coeÆcient. Note that this large

Banks-Zaks coeÆcient (together with the small coeÆcient in (128)) explains the large

conformal coeÆcient in the direct conformal relation (126) between the D-function

and the static potential. If we assume that the Banks-Zaks expansion of the skeleton

e�ective charge,

�aFP = a0 + �v1a0
2 + �v2a0

3 + � � � (132)

does not involve large coeÆcients (�v1 is known �v1 = 2:14, see e.g. eq. (56) with ��2;0
from eq. (147) below), it would follow from (128) that sD2 is not large. In this case

the large di�erence sV2 � sD2 in (115) would be clearly attributed to a large sV2 .

Another physical quantity for which the Banks-Zaks coeÆcients are relatively

large is the critical exponent 
̂ [29, 34, 35, 36]


̂ =
1

�0

d�(a)

da

�����
a=aFP

(133)

where


̂ = a0 + 4:75 a0
2 � 8:89 a0

3 + � � � (134)

Since this quantity does not depend on Q2, there is no direct comparison between

a running coupling expansion and the Banks-Zaks expansion (or a conformal expan-

sion).
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8.4 Expansions in MS

Finally, it is interesting to return to the expansion in MS we examined in the beginning

of the section.

The �rst observation is that conformal relations of observables with the MS cou-

pling tend to have large coeÆcients. For example, the conformal expansions

aFPD = aFP
MS

� 0:083 (aFP
MS

)
2
� 23:22 (aFP

MS
)
3
+ � � � (135)

and

aFPg1 = aFP
MS

� 0:917 (aFP
MS

)
2
� 22:39 (aFP

MS
)
3
+ � � � (136)

have large next-to-next-to-leading order coeÆcients, in a striking contrast with the

conformal relation (119) between aFPD and aFPg1 . Note that these large conformal coeÆ-

cients do not provide an explanation of the large coeÆcients in (112) and (113). The

former are by assumption independent of Nf , at the di�erence of the latter. For small

�0 (e.g. Nf = 16) the negative sign (and eventually also the magnitude) of the full

coeÆcient can presumably be attributed to the conformal part. However, for larger

values of �0, relevant to real world QCD, the non-conformal part clearly dominates

making the full next-to-next-to-leading order coeÆcients positive.

These large conformal coeÆcients in (135) and (136) are due to an intrinsic prop-

erty of the MS coupling, since they appear already at the level of the Banks-Zaks

expansion [35, 36],

aFP
MS

= a0 + 1:1366 a0
2 + 23:2656 a0

3 + � � � : (137)

Note that aFP
MS

has, by far, a larger next-to-next-to-leading order Banks-Zaks coeÆ-

cient compared to any known physical e�ective charge.

We stress that the large next-to-next-to-leading order coeÆcients in (135), (136)

and (137) are probably not associated with renormalons. The MS � function, being

de�ned through an ultraviolet regularization procedure, should not be sensitive to the

infrared. Therefore infrared renormalons are not expected. It is harder to conclude

�rmly concerning the absence of ultraviolet renormalons. Since there seems to be no

reason to assume a skeleton structure or any other representation in the form of an

integral over a running coupling, we suspect that ultraviolet renormalons do not exist

there as well.

9 The skeleton expansion and the e�ective charge

approach

A priori, the skeleton expansion approach, which relies on the assumption of a uni-

versal skeleton coupling, seems antagonist to the e�ective charge approach [5] which

treats all e�ective charges independently and in a symmetric manner. Remarkably,

we �nd that the two approaches are very simply related, at least at the level of the

leading skeleton.
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To see this, consider the e�ective charge de�ned by the leading skeleton term R0.

The corresponding e�ective charge � function is �R0(R0) � dR0= lnQ
2. Applying the

general relation between e�ective charges [5] to R0 and the skeleton coupling �a, we

have

�R02 = ��2 + �0
�
r2 � r21

�
� �1r1; (138)

where ��2 and �R02 are the three-loop � function coeÆcients of the skeleton coupling

and of R0, respectively.

Using now r1 and r2 of eq. (8) we obtain

�R02 = ��2 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�3
0 : (139)

This means that for any momentum distribution �0, �
R0
2 is simply a sum of a universal

piece ��2, which characterizes the skeleton coupling, and an observable-dependent

piece, namely the width of �0 (see section 3) multiplied by �3
0 . We recall that the

next-to-next-to-leading order � function coeÆcient in the skeleton scheme ��2 is a

polynomial of order �2
0 in �0 (see the footnote following eq. (9)): ��2 = ��2;0 + ��2;1�0+

��2;2�
2
0 . As noted above, in the large �0 limit �R02 is proportional to the width of the

distribution �0. This last statement remains correct also for the � function of the

full e�ective charge aR of eq. (2) since adding sub-leading skeleton terms would not

modify the leading O (�3
0) term (see eq. (140) below).

Recall [14, 17] that the accuracy of the leading order BLM approximation is

controlled by the width of the momentum distribution function

�
r
(2)
2 �

�
r
(1)
1

�2�
. On

the other hand, the accuracy of the e�ective charge approach at this order is controlled

[5] by the magnitude of the three-loop coeÆcient of the e�ective charge � function

�R02 . However, as we just saw (139), in the large �0 limit �R02 is proportional to the

width of �0, and thus the criteria for the accuracy of the two approaches agree! Away

from the large �0 limit, we learn from eq. (139) that a small width implies proximity

of �R02 and ��2. If we assume in addition that the universal ��2 is not large, a small

width implies smallness of �R02 , i.e. good convergence of the e�ective charge approach

applied to R0.

It is natural now to consider the possibility that R0 is a good approximation to the

full observable aR of eq. (2). In the e�ective charge approach at the next-to-next-to-

leading order, this can be realized if �R02 is a good approximation to �R2 . Comparing

the two we have

�R02 = ��2;0 + ��2;1�0 + ��2;2�
2
0 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�3
0

�R2 = �R2;0 + �R2;1�0 + �R2;2�
2
0 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�3
0 ; (140)

where we exhibited the fact that the term leading in �0 is the same in �R02 and �R2 .

Thus, in the large �0 limit we automatically have �R02 = �R2 . For the four examples

considered in the previous section, this parameter is given in table 1.
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��2;3 �D2;3 �
g1
2;3 �F12;3 �V2;3

0 2:625 2:389 1:500 0

Table 1: Comparison of e�ective charge � function coeÆcients in the large �0 ap-

proximation given by the width of �0, �2;3 = r
(2)
2 �

�
r
(1)
1

�2
.

Beyond the large �0 limit one can ask whether

�R2;0 + �R2;1�0 + �R2;2�
2
0 ' ��2 � ��2;0 + ��2;1�0 + ��2;2�

2
0 ; (141)

namely whether �R2;0+�R2;1�0+�R2;2�
2
0 for a generic observable which admits a skeleton

expansion is approximately universal and close to the three-loop skeleton coupling �

function coeÆcient ��2. If this holds for arbitrary �0 then

�R2;i '
��2;i (142)

for i = 0; 1; 2. The violation of the equalities in (141) and (142) is, of course, due to

sub-leading terms in the skeleton expansion R1 and R2. This can be seen explicitly

by substituting ri of eq. (45) in the general relation

�R2 = ��2 + �0
�
r2 � r21

�
� �1r1 (143)

to obtain the \skeleton decomposition" of �R2 ,

�R2 = ��2 +
�
s2 � s21

�
�0 + s1

�
r
(1)
2 � 2r

(1)
1

�
�2
0 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�3
0 � s1�1: (144)

Finally, decomposing ��2 and �1 in terms of �0, we obtain
z

�R2 =
h
��2;0 � �1;0s1

i
+
h
��2;1 � �1;1s1 +

�
s2 � s21

�i
�0

+
h
��2;2 +

�
r
(1)
2 � 2r

(1)
1

�
s1
i
�2
0 +

�
r
(2)
2 �

�
r
(1)
1

�2�
�3
0 : (145)

Clearly, if for a given observable the skeleton coeÆcients determining the normaliza-

tion of the sub-leading skeleton terms (si) are small, then even away from the large

�0 limit �R2 will be close to �R02 .

In order to check (142) explicitly for a given observable, one needs to calculate the

� function coeÆcients of both the observable e�ective charge �R2;i and the skeleton

e�ective charge ��2;i. For the latter we currently know only ��2;0 (see below) and so

the examination of (142) for ��2;1 and ��2;2 cannot yet be accomplished.

zThe scheme of the skeleton coupling can be parameterized at the three-loop order [5] by the

next-to-leading order coeÆcient (s1 and r
(1)

1 ) and by ��2 i.e. ��2;i for i = 0; 1; 2. Eq. (145) then shows
explicitly that the e�ective charge � function coeÆcient �R2 determines uniquely the remaining coef-

�cients of the \skeleton decomposition" (45) namely, s2, r
(1)

2 and r
(2)

2 . This re
ects the observation
in section 3 that formally, the \skeleton decomposition" can be performed in any scheme.
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To obtain ��2;0 we can use the general result [47] or, alternatively use eq. (145),

which is valid for a generic e�ective charge which admits a skeleton expansion. The

latter yields,
��2;0 = �R2;0 + �1;0s1: (146)

Using this relation for various e�ective charges, e.g. the vacuum polarization D-

function (107) or the Bjorken sum-rule (109), in the skeleton coupling scheme (12)

de�ned through the pinch technique, we obtain

��2;0 =
CA

512

�
44C2

F � 88CACF � 301C2
A

�
; (147)

and for Nc = 3,

��2;0 = �
26845

1536
' �17:477: (148)

Finally we check to what extent the suggested universality of the e�ective charge �

function coeÆcients (142) holds for the four e�ective charges examined in the previous

section, namely the e�ective charges related to the vacuum polarization D-function

(107) and the polarized (109) and non-polarized (110) Bjorken sum-rules, as well as

the static potential. The known coeÆcients are listed in the following table.

i ��2;i �D2;i �
g1
2;i �F12;i �V2;i

0 �17:477 �23:607 �30:294 �34:753 �37:54

1 ? �16:032 �11:282 �6:903 5:366

2 ? 8:210 8:057 8:783 11:740

Table 2: Comparison of e�ective charge � function coeÆcients.

Although the coeÆcients �R2;i for these observables have some common trend (e.g.

for a given i the signs are the same, with the exception of �V2;i for i = 1) it turns

out that the 
uctuations in their magnitude are rather large. In particular, in case

of �R2;0 for which we know the value of the universal piece characterizing the skeleton

coupling ��2;0, the latter and the contribution of the sub-leading skeleton R1 (through

s1 in eq. (145)) are of the same order of magnitude. The 
uctuations between di�erent

observables are moderate only for �R2;2.

In [35] it has been observed that �R2 for the observables considered above (the static

potential excluded) exhibit very close numerical proximity, especially for Nf = 0

through 7. The extent to which universality of the sort examined here (142) holds is

not enough to explain this �nding of [35].

The proximity of �R2;2 for the various e�ective charges implies that applying multi-

scale BLM scale-setting for one observable in terms of another, the second scale-shift

t1;0 would be close to the leading skeleton scale-shift t0;0. In this case the single scale

setting procedure [8, 18] could give similar results. The same holds in the skeleton

scheme, if ��2;2 is close to �R2;2. This can be deduced from eq. (145) which gives,

�R2;2 �
��2;2 = s1

�
r
(1)
2 � 2r

(1)
1

�
= 2s1 (t1;0 � t0;0) ; (149)
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where in the last step we used the leading order results for the scale-shifts in eq. (26)

and (29). In this respect it is interesting to note that applying multi-scale BLM in

MS, one in general obtains large values for the t1;0 scale-shift since �
MS

2;2 = 3:385 is not

close to �2;2 of the physical e�ective charges. For example, when applying BLM to

aD(aMS ) one obtains k0;0 = 0:707Q and k1;0 = 0:366 10�6Q. This can be contrasted,

for instance, with the BLM scales for aD(aV ): k0;0 = 1:628Q and k1;0 = 2:487Q.

10 Conclusions

The existence of an Abelian-like skeleton expansion in QCD would make it possible

to separate in a unique way running coupling e�ects from the conformal part of the

perturbative expansion of a generic physical quantity. Running coupling e�ects could

then be resummed to all orders in a renormalization-scheme invariant manner by

renormalon integrals, up to an uncertainty which is related to infrared renormalons.

This uncertainty can be resolved only at the non-perturbative level.

A skeleton expansion also justi�es the BLM scale-setting method and implies a

speci�c procedure to set the BLM scales, such that there is a one-to-one correspon-

dence between the terms in the BLM series and the skeletons, provided that BLM

scale setting is performed in the skeleton scheme.

We have shown that the Nf -independent coeÆcients of the postulated skeleton

expansion and of the BLM series have a precise interpretation when a perturbative in-

frared �xed-point is present: they are the conformal coeÆcients in the series relating

the �xed-point value of the observable under consideration with that of the skele-

ton e�ective charge. The perturbative infrared �xed-point appearing in multi-
avor

QCD allows one to calculate these conformal coeÆcients through the Banks-Zaks

expansion.

We have analyzed the large-order behavior of conformal coeÆcients in models for

the perturbative coeÆcients which are dominated by the factorial divergence charac-

teristic of renormalons. In general, factorially increasing perturbative coeÆcients can

lead to factorially increasing conformal coeÆcients. However, we have shown that

when the factorial divergence genuinely originates in a renormalon integral, it does

not a�ect the conformal coeÆcients. The assumed skeleton structure thus implies

that the conformal relation between the �xed-point value of a generic observable and

that of the skeleton e�ective charge is renormalon-free. Therefore, upon eliminating

the skeleton e�ective charge, conformal coeÆcients in commensurate scale relations

between observables are also renormalon-free.

In order to argue that also the Banks-Zaks expansion is free of renormalons, it is

necessary to assume that the � function of the skeleton coupling is itself renormalon-

free. However, since we do not have a precise identi�cation of the skeleton coupling

at large orders, this remains an open question.

We conclude that BLM (conformal) coeÆcients do not diverge factorially due to

renormalons, provided there is an underlying skeleton structure. Of course, there can

be other e�ects which could make these coeÆcients diverge such as combinatorial
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factors related to the multiplicity of diagrams. Since in QCD this type of divergence

is much softer than that of renormalons, we expect the BLM and possibly also the

Banks-Zaks expansions to be \better behaved". This expectation is supported to

some extent (section 8) by previous observations concerning the smallness of the �rst

few known BLM coeÆcients [12] and the Banks-Zaks coeÆcients [34, 35, 36].

The assumed skeleton expansion has two ingredients: the conformal template,

based on the bare skeleton diagrams, and running-coupling e�ects corresponding to

dressing each skeleton. In this paper we addressed mainly the conformal coeÆcients.

We saw that through the skeleton expansion, conformal relations which have a natu-

ral, maximally convergent, form (like the conformal Crewther relation) become rele-

vant for real-world QCD predictions. Resummation of running coupling e�ects can be

achieved in practice either by BLM scale setting, or - by evaluating the renormalons

integral, as in [27], dealing with the infrared renormalon ambiguity through some

well-de�ned regularization prescription, like principle-value or a cut-o�. The advan-

tage of this procedure is that once the infrared renormalon ambiguity is identi�ed, it

can be used for the parameterization of the related power suppressed e�ects.

The uniqueness of the skeleton coupling in QED, which is identi�ed as the Gell-

Mann Low e�ective charge, is an essential ingredient of the dressed skeleton ex-

pansion. We emphasize that it is an open question whether an Abelian-like skele-

ton expansion exists in QCD and whether there are constraints which would deter-

mine uniquely the skeleton coupling. The pinch technique may provide the answer

[23, 24, 25] once it is systematically carried out to higher orders. The skeleton coupling

is not constrained from the considerations raised in this paper: the only requirement

following from the large Nf limit is that ��i in this scheme does not contain an N i+1
f

term. Since the decomposition of the coeÆcients (45) can be performed in any scheme

yielding the moments r
(j)
i to arbitrary high order, the corresponding functions �i can

be formally constructed, up to the limitations discussed in section 3.4. It thus seems

that one can formally associate a \skeleton expansion" to any given coupling. The

absence of renormalons in the conformal coeÆcients in a speci�c scheme implies that

there are other schemes which share the same property: it is straightforward to see

from the de�nition of the skeleton terms Ri that an Nf -independent re-scaling of the

argument of the coupling leaves the conformal coeÆcients unchanged. More gener-

ally, any \renormalon free" transformation of the skeleton coupling would leave the

\skeleton coeÆcients" free of renormalons. It is certainly interesting to �nd further

constraints on the identity of the skeleton e�ective charge in QCD.
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