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Abstract

Beam based alignment of quadrupoles by variation of quadrupole strength is a widely-used tech-
nique in accelerators today. We describe the dominant systematic limitation of this technique, which
arises from the change in the center position of the quadrupole as the strength is varied, and derive
expressions for the resulting error. In addition, we derive an expression for the statistical resolution
of such techniques in a periodic transport line, given knowledge of the line's transport matrices, the
resolution of the beam position monitor system, and the details of the strength variation procedure.
These results are applied to the Next Linear Collider main linear accelerator, an 11 kilometer ac-
celerator containing 750 quadrupoles and 5,000 accelerator structures. We �nd that in principle a
statistical resolution of 1 micron is easily achievable but the systematic error due to variation of the
magnetic centers could be several times larger.
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I. INTRODUCTION

Modern high-energy particle accelerators use quadrupole magnets to focus the charged particle
beams. In most accelerators, the alignment of these quadrupole magnets is a prerequisite to achieving
the performance goals: most measures of beam quality (transmission, emittance, polarization) are
degraded by poor alignment. The best conventional mechanical alignment techniques typically have
errors larger than � 100�m due to the limited line-of-sight and errors �ducializing the components.
This level of alignment is insu�cient for many operating accelerators and future accelerators will
require even better alignment as requirements on beam quality become more stringent. Two examples
of future accelerators are: the Linac Coherent Light Source (LCLS) [1], a free-electron laser (FEL),
which will generate coherent X-rays using a 15 GeV electron beam and will require beam-to-quad
alignment at the level of 5 microns; and the Next Linear Collider (NLC) [2], a future linear collider,
which will require quadrupole alignment at the level of 1 � 2 microns.
To attain micron-level alignment, it is necessary to use the beam as the alignment tool. In recent

years, several accelerators have developed various beam based alignment techniques. All these
techniques are variations on a common approach in which the strength of a quadrupole is varied,
causing a dipole de
ection of an o�set beam, and then the downstream de
ection is measured as a
function of the quadrupole strength to determine the beam-to-quad o�set.
The statistical error of these beam-based approaches arises from the �nite resolution of the beam

position measurement devices (BPMs). With the development of BPMs having sub-�m resolution,
the statistical errors can be very small and, furthermore, the errors can be reduced with additional
data. In contrast, systematic errors will cause the algorithm to converge to an incorrect solution
and may provide a more fundamental limitation. Fortunately, the quadrupole variation beam-based
alignment algorithms are nulling techniques: if the beam passes through the center of the quadrupole,
no de
ection is produced. Therefore, any systematic errors which distort the �tted magnitude of
the de
ection will be decreased by iterating the procedure, provided the errors are su�ciently small
that the algorithm converges. Examples of these modeling errors are: errors in the strength of the
varied quadrupole, errors in the transport matrix from the quad to the BPMs (including errors in
the energy or energy gain of the beamline), and errors in the BPM scale factors.
One important class of systematic error which is not addressed by iteration of the algorithms

is a shift in the center position of the quadrupole when its strength is varied. These shifts could
be caused by thermal e�ects, mechanical distortion of the magnet, or non-uniform coil placement,
leakage currents in the coils, unequal permeabilities, or remnant �elds in the four pole-pieces which
comprise the magnet. This variation of the magnetic center may be the fundamental limitation to
the resolution of beam-based alignment via quadrupole variation.
In this paper, we discuss the e�ect of these systematic errors as well as the statistical errors. We

will concentrate on the e�ects in a long transport line or accelerator with roughly periodic beta
functions and uniformly spaced quadrupoles; the results can be easily generalized to other lattices.
We will start by brie
y reviewing some of the di�erent quadrupole alignment techniques. Next,
we discuss the statistical and systematic errors and then apply these results to the alignment of
the NLC main linac where we estimate the magnitude of some of these sources of magnetic center
variation. Finally, we used the measured variation in the quadrupole magnets of the Final Focus
Test Beam (FFTB) [3] to estimate the shifts in the magnetic center and the e�ect on the NLC
alignment procedure.
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Lastly, it should be noted that an alternate approach to the quadrupole variation technique is to
vary the beam energy. However, in most systems, it is much easier to vary the quadrupole strength in
a well-controlled manner than the beam energy. In addition, the analysis of data is simpler because
variation of the quad strength allows a subset of quads to be varied (ideally, one quad at a time)
while variation of the energy e�ects the focusing strength of all downstream quads. We will not
address this technique further in this paper except to note that the beam energy variation methods
also have a systematic limitation which is similar to the variation of the magnetic centers, namely, rf
de
ections which are transverse de
ections that depend on the accelerating �elds in the accelerator
structures.

II. BEAM-BASED ALIGNMENT TECHNIQUES

As discussed, all of the quadrupole beam-based alignment techniques are variations on a common
approach: change the quadrupole strength (or the beam energy) and measure the resulting de
ection.
However, over the last decade, a number of di�erent implementations have been developed. In this
section we will brie
y introduce some of these di�erent solutions, concentrating on those applicable
to transport lines or linear accelerators.

1. SLC Injector Linac

The Stanford Linear Collider (SLC) injector linac accelerates bunches of electrons and positrons
from 0.2 GeV to 1.2 GeV for injection into the damping rings. At this low energy, these large emit-
tance beams occupy a signi�cant fraction of the available aperture and, to constrain the beam sizes,
the linac uses a dense array of 62 quadrupoles to transport the beams. Most of these quadrupoles
are very large aperture magnets that are mounted around the accelerator structures. This mounting
system tends lead to relatively large alignment errors. To make the situation worse, the BPMs
are only located between the accelerator structures and thus there are many more magnets than
BPMs and dipole correctors which makes the trajectory correction di�cult. In order to measure
misalignments of the quadrupoles, a pair of consecutive quadrupoles was reduced from nominal to
zero strength, and the resulting de
ection was measured on downstream BPMs [4]; pairs of magnets
were used to limit the beta-beats which would increase the beam size and cause beam loss. By
advancing from upstream to downstream (i.e., �rst quads 1 and 2 are o�, then quads 2 and 3, etc.),
it was possible to measure the misalignment of each quad in the horizontal and vertical planes.

2. SLC Main Linac: Two-Beam Alignment

The SLC main linac accelerates damped electron and positron beams from 1.2 GeV to 46.6 GeV,
and contains 275 quadrupoles. Here, many quadrupoles are powered together in strings and thus
individual variation of the magnets was not possible. In one technique, misalignments were measured
by observing the di�erence between the positron and electron trajectories [5]. In this fashion, the
linac quads were `varied' by 200% without any actual change in magnet strength. This technique
was used to identify magnets with the largest errors to which the alignment crews could be directed.
A similar technique that was developed is the Two-Beam DF Steering which simply steered the
beam to minimize the e�ect of the magnet misalignments; this is discussed below.
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3. Dispersion Free Steering

In a transport line, misaligned quadrupoles dilute the emittance primarily by introducing dis-
persion. In the dispersion free steering (DFS) technique, the dispersion is measured directly by
simultaneously varying all of the quadrupoles by a �xed fraction of their design strength and mea-
suring the change in the beam trajectory. A steering solution is then generated which simultaneously
minimizes the absolute BPM readings and the change in BPM readings with quad strength [6]. The
DFS algorithm was tested at the SLC although performance limitations were not fully understood
[7]. A more successful recent experiment utilized a combination of the Two-Beam and DFS tech-
niques, in which the DFS formalism was used to minimize the di�erence between the electron and
positron trajectories in the SLC main linac [8]. This eliminated the dispersive contribution from
the misalignments without requiring an access to actually realign the components and appeared to
improve the SLC performance signi�cantly.

4. Final Focus Test Beam

The alignment algorithm of the FFTB is close to the `classical' beam based alignment technique:
a set of 3 to 6 consecutive quads would be varied in strength, one at a time, and their misalignments
were �tted by measuring the trajectory at each strength. The quads would then be physically moved
onto the electron beam line by a set of precision translation stages. The FFTB alignment achieved
a resolution of the beam-to-quad o�set which was typically under 10 microns in the vertical plane,
and was under 30 microns for all quadrupoles [9].

5. Next Linear Collider Main Linac

The NLC main linac design contains 750 quadrupoles in a FODO lattice; each quadrupole contains
a high precision BPM and each quadrupole is supported on a precision translation stage similar to
those used in the FFTB. The NLC alignment technique envisions using quadrupole variation to
measure the beam-to-quad o�set of each quad; the o�set is then added to the BPM reading to
determine the o�set between the BPM electrical center and the quadrupole magnetic center. Once
the full set of BPM o�sets are determined, the movers are employed to steer the linac such as to
minimize emittance dilution [10]. Because of the high beam power and the potential damage the
beams could cause, a goal of the NLC algorithm is to be a relatively small perturbation to the collider
operation; this would allow the alignment to be completed without interference with the Machine
Protection System (MPS) and, in the most ideal scenario, the re-alignment might be performed
during luminosity production.

6. Ballistic Alignment

The proposed alignment technique of the Compact Linear Collider (CLIC) main linac is to deac-
tivate 10 to 20 consecutive quadrupoles and use a single corrector coil to steer through the resulting
�eld-free region. The quadrupoles are then restored to their design values and the beam is steered to
recover the BPM readings obtained with the magnets o� [11]. This technique was proposed to ad-
dress the primary systematic limitation discussed in this paper, namely, the shift of the quadrupole
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magnetic centers with excitation; however, there are concerns regarding the di�culties associated
with controlling the beam with the quadrupoles turned o�, and limitations that arise from the
remnant �elds in the quads.

7. K{Modulation

Finally, another approach that is worth mentioning is the strength modulation technique. In
K-modulation, the strength of a quadrupole is varied harmonically at a frequency which is low
compared to the betatron and synchrotron frequencies of a storage ring; this generates oscillations in
the closed orbit at the same frequency. Because K-modulation causes narrow band orbit oscillations,
it is possible to use lock-in ampli�ers and other techniques to vastly improve the signal-to-noise
performance of the measurement [12]. This technique has been used in a number of storage rings
where it is not possible to make large changes to the quadrupole strengths because of the e�ect on
the ring tunes; however, the technique is not as applicable to transport lines which have beam pulses
at relatively low rates.

III. STATISTICAL RESOLUTION LIMIT

Before discussing the systematic limitations, it is worth calculating the statistical resolution of
the algorithms. The statistical resolution is usually limited by the BPM resolution, the number of
BPMs available for data acquisition, the degree of quadrupole variation the accelerator will tolerate,
the amount of data which can be managed by the processing algorithm, and the amount of time
available for the measurement. In this section, we will calculate the resolution of the NLC alignment
algorithm; a similar analysis was performed for the DFS and the Two-Beam Alignment techniques
in Ref. [13].
Consider a system in which the strength of a single quadrupole is varied and a number of down-

stream BPMs are read for several beam pulses. If a quadrupole with a nominal integrated strength
of Kq (dimensions m�1) is changed in steps of dKq over a series of steps indexed by j, such that
the integrated strength on any given step is Kq + jdKq, then the change in the reading of the ith
downstream BPM on step j is given by:

dx(i; j) = x0jdKqR12(i) ; (1)

where R(i) is the linear transport matrix from the quad to the ith BPM and x0 is the o�set between
the beam centroid and the magnetic center of the quad. If the resolution of the beam position
monitors is given by �BPM, and m beam pulses are read out at each setting of the quadrupole, the
statistical resolution with which x0 may be �tted is given by:

�2x =
�2
BPM

m
P

i

P
j j

2(dKq)2R2

12
(i)

: (2)

In a periodic transport line, we can simplify Equation 2 by replacing
P

iR
2

12
(i) with nR2, where

R2 is the sum of R2

12
(i) over one-half of a betatron wavelength, and n is the number of betatron

half-wavelengths which are used. In addition, let us de�ne jm as the value of j with the maximum
absolute value, and the maximum change in quadrupole strength �Kq � jmdKq. In this case,
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�2x =
�2
BPM

nm(�Kq)2R2

P
j(

j

jm
)2

: (3)

In practice, the value of R2 is determined by the requirements of the nominal beamline optics and
is not generally a parameter which may be tuned to optimize the beam based alignment procedure;
the maximum quadrupole strength excursions, �Kq, are set by the maximum distortion of the beam
size tolerable by the downstream optics; n is determined by the length of the beamline or the length
over which the model is well known, since errors in the model tend to accumulate over the length of
the beamline; m is determined by the data acquisition and analysis system and the maximum time
allowed for alignment; and �BPM is a function of the BPM electronics and pickup design.
Note that Equation 3 does not take into account jitter in the position or angle of the incoming

beam at the upstream face of the quadrupole which is being varied; if this jitter is large relative to
the BPM resolution, it must be �tted using the upstream BPMs and projected onto the downstream
ones through the varied quadrupole, which causes a reduction in the precision of the �t of x0. If
we assume that the beamline is symmetric about the varied quadrupole and that the number of
upstream BPMs used to �t the incoming trajectory is equal to the number of downstream BPMs
used to �t the kick at the varied quadrupole, the �t error becomes

�2x =
�2
BPM

nm

2
4 1

njR1

+
2

�K2

qR2

P
j(

j

jm
)2

3
5 ; (4)

where R1 is the sum over half a betatron wavelength of R2

11
from the varied quadrupole to the

upstream BPMs and nj is the number of distinct j values used (i.e., mnj is the total number of
beam pulses used in the �t). The �rst term arises from the error in beam position at the quadrupole
while the second term is a combination of the �t error from Equation 3 and the e�ect of angle jitter
at the quadrupole magnet. For a periodic transport line, R1 is of order unity, while 1=(dK

2

q j
2R2) is

generally much larger and thus the second term dominates.
Note that, whatever the source, the statistical error is simply proportional to the BPM resolution

and it decreases with additional data. Assuming that the second term in Equation 4 dominates, we
can examine the combination of quadrupole steps and averaging that will minimize the error. Figure
1 shows the value of (

P
j(j=jm)

2)�0:5 as a function of the total number of strength steps used in the
�t. Note that, for a given value of �Kq, monotonic scans will have a larger statistical error than
scans which are symmetric about the operating point of the magnet, and that for both monotonic
and symmetric scans the statistical error falls more slowly than the square root of the reciprocal
of the number of steps. Since the data acquisition time and the �tting time are both proportional
to the product of the number of steps and the number of pulses per step, the most e�cient data
acquisition model is to use the largest value of �Kq which the beamline will tolerate, the smallest
number of strength steps, and the largest number of pulses per step which can be accommodated.
Finally, the analysis described here assumes a fairly accurate model of the beamline optics. This

is usually a good assumption over a few betatron wavelengths and, as discussed below, the e�ect
of these modeling errors will decrease with iteration of the alignment algorithm. However, it would
also be possible to use the `model independent analysis' techniques discussed Ref. [14] to attain the
desired resolution without any dependence on the optics model if so desired.
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IV. SYSTEMATIC RESOLUTION LIMIT

Now let us consider the systematic limitations. As mentioned, the quadrupole variation beam-
based alignment algorithms are nulling techniques and thus systematic errors which distort the �tted
magnitude of the de
ection will be reduced by iterating the procedure; this includes all of the optics
modeling errors. One systematic error which is not addressed by iteration of the algorithms is the
shift in the magnetic center of the quad while its strength is varied. Consider a quadrupole at which
the o�set between the beam and the quad center at the nominal strength is xD, and for which the
magnetic center moves a distance xj at step j of the quad varying operation; xj � 0 for j = 0. The
absolute de
ection at a downstream BPM on step j is given by:

x(i; j) = (xD + xj)(Kq + jdKq)R12(i); (5)

while the de
ection at step j relative to the de
ection at nominal strength, x(i; j)� x(i; 0), is given
by:

dx(i; j) = R12(i) [(xD + xj)jdKq + xjKq] : (6)

If we �t the measured de
ections in Equation 6 to a model which ignores motion of the magnetic
center, i.e., xj is assumed to be zero for all values of j, the resulting measured center position will
di�er from the true position by:

xM � xD =

P
j j

2xjP
j j

2
+

Kq

dKq

P
j jxjP
j j

2
: (7)

Equation 7 indicates the sensitivity to the motion of the quadrupole center is ampli�ed by the
fractional quadrupole variation: Kq=dKq. In general, the error in the �t is minimized by scanning
the quadrupole strength as close to zero as possible. As an extreme example, consider the special
case in which a quadrupole is reduced in a single step from its design strength to zero strength. In
this case, dKq = Kq, j = f0;�1g, and Equation 7 indicates that xM � xD = 0, regardless of the
value or evolution of xj. This is similar to the scheme proposed in the ballistic alignment method,
although there are other problems, such as controlling the beam size, when the quadrupole strengths
become very small.

A. Fitting the center motion

At this point, we consider the possibility of �tting the motion of the magnetic center as well as
the misalignment. For small variations in the magnetic strength, the motion of the magnetic center
is likely to be linear in the quadrupole strength. In this case, we can replace xj with j _x, and rewrite
Equation 6:

dx(i; j) = R12(i)
h
j(xDdKq + _xKq) + j2 _xdKq

i
: (8)

Equation 8 shows that dx varies linearly during the scan due to a nonzero xD, but varies both
linearly and quadratically during the scan due to a nonzero _x. It is this quadratic behavior which
breaks the degeneracy between xD and _x and permits �tting to a model in which both xD and _x are
parameters to be determined.
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A two parameter least-squares �t such as the one described above results in a �t resolution for the
beam-to-quad o�set at the design magnet strength given by:

�2x =
�2
BPM

nmR2K2

q

K2
P

j j
4 + 2KP

j j
3 +

P
j j

2

K4

�P
j j

4
P

j j
2 �

�P
j j

3

�
2
� ; (9)

where parameters m, n, etc., are de�ned as in Equation 3, and K � dKq=Kq.
Unfortunately, this tends to be a very di�cult �t because we are looking to separate the quadratic

dependance from the larger linear variation. This makes the �t ill-conditioned and error prone. For
example, assuming three steps and K = 5%, this resolution is over an order of magnitude poorer
than the statistical error predicted in Equation 3. Furthermore, if we consider a system with both
linear and quadratic motion of the center with quad strength, we can replace xj with j _x+ j2�x. This
yields:

dx(i; j) = R12(i)
h
j(xDdKq + _xKq) + j2( _xdKq + �xKq) + j3�xdKq

i
: (10)

In this case, dx varies quadratically during the scan due to both _x and �x. Equation 10 implies that
if �x= _x > K, the quadratic motion will be dominated by �x. In this case, the two-parameter �t for
xD and _x will converge upon an incorrect value of _x, and hence an incorrect value of xD. Adding
additional parameters to the �t will not tend to help because the �t will remain ill-conditioned and
the resulting errors will be large.

B. Examples of center motion

At this point, we will discuss a few of the possible causes of the motion of the magnetic center. In
particular, we will consider errors that change the relative excitation of a pole or the position of a
pole; either of these will shift the magnetic center. To calculate the shift of the center, we assume
that the quadrupole is constructed from mechanically perfect pole pieces and each pole piece can be
considered an equipotential surface for the magnetic scalar potential. In addition, we assume that
the magnet length is much greater than the aperture and the �eld changes are perturbations to the
nominal �eld. In this case, we may use approximations developed by Halbach [15].
In general, the distance between the mechanical center of the quadrupole magnet and the neutral

axis (the longitudinal line along which jBj � 0 which is what is meant by `magnetic center' of a
quadrupole magnet) is a function of all the excited non-quadrupole multipole terms. If we assume
that the neutral axis is close to the mechanical center, we may make the approximation that the
shift in the magnetic center is given by the dipole excitation divided by the quadrupole gradient.
De�ning �q � (�1 � �2 + �3 � �4)=4, where �n is the scalar potential of each of the four poles,
we can calculate the distance between mechanical and magnetic centers due to unequal excitation
of the poles:

�y � (�1 + �2 � �3 � �4)
0:199

p
2

2�q

aq; (11)

where aq is the aperture radius of the quadrupole and the factor 0.199 comes from the tables in Ref.
[15].
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In a similar manner, we can calculate the shift in the magnetic center due to changes in the radial
position of the poles:

�y � (a1 + a2 � a3 � a4)
0:425

p
2

2
; (12)

where ai is the radial position of the ith pole.
There are a number of di�erent e�ects that could cause the pole excitation to vary as a function of

excitation: two such examples are leakage currents that depend on the coil temperature and thereby
excitation or di�erent permeabilities of the poles that change the excitation as the poles approaches
saturation. The �rst case is trival to estimate:

�y �
p
6

10

�
�I

I

�
rms

aq; (13)

where (�I=I) is the rms leakage current and we have assumed that the leakage currents are random,
with the current loss arising at the midpoint of each coil, and that the poles are powered in series.
This e�ect does not cause the center to shift with excitation if the currents are simply proportional to
the excitation, however, these small leakage currents are likely to arise from shorts whose resistance
will likely vary as the temperature of the coil changes with excitation of the magnet.
The second case is also straightforward to estimate: the change in excitation depends on the degree

to which the pole is saturated which is quanti�ed by the core e�ciency; this is the deviation of the
quadrupole gradient from that with in�nite permeability. Again, assuming random variation in the
pole permeability, the shift of the magnetic center would be roughly

�y �
p
2

5
(1� �)aq

�
��

�

�
rms

(14)

where � is the core e�ciency and (��=�) is the rms relative variation of the permeability from
pole-to-pole.
Next, situations that cause the radial position of the poles to move are also easy to envision: the

most obvious is mechanical deformation of the magnet which arises as the magnetic forces increase
with excitation. Two other cases are related to the magnet temperature: if the conductor resistance
or cooling di�ers from pole-to-pole, the poles will expand di�erent amounts as the excitation, and
thereby the coil temperatures, change; alternately, if the magnet is supported on its base, the vertical
position of the magnetic center will change as the temperature changes with excitation.
The �rst case depends upon the detailed mechanical design of the magnet and thus is di�cult to

estimate; the other two cases are simpler. If the coils have di�erent conductivity or di�erent cooling,
the di�erential expansion will be given by:

�y � CT

Lp

2
0:425(�Tp)rms

�
�I2

I2
+

2�I

I

�
; (15)

where CT is the coe�cient of thermal expansion for iron, Lp is the transverse length of the pole
piece from tip to 
ux-return yoke, �Tp is the rms di�erence in the coil temperature rise at nominal
operating current, and �I=I is the fractional change in current required for the quadrupole-variation
procedure.
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Next, assuming that the magnets are in thermal equilibrium and the magnets are supported on
their base, the vertical position of the magnetic center would change by roughly:

�y � CT

Lm

2
�Tf

�
�I2

I2
+

2�I

I

�
; (16)

where Lm is the overall transverse size of the magnet, �Tf is the average temperature rise at nominal
operating current, and other parameters are as above. This could be a large e�ect; however, the
magnet will not usually reach thermal equilibrium in the time required for the alignment and thus
the full e�ect will not be realized.
In all of the previous cases, the motion of the magnetic center will be a nonlinear function of the

excitation, which makes the �tting procedures described earlier quite di�cult. As mentioned, adding
additional �t parameters will make the �t even more ill-conditioned. We will use these expressions
to estimate the shift of the magnetic center in the NLC quadrupole magnets in the next section.

V. THE NEXT LINEAR COLLIDER MAIN LINAC

The Next Linear Collider main linac utilizes a FODO array in which the space between quadrupoles
is occupied with accelerator structures operating at a frequency of 11.424 GHz. Each structure is 1.8
meters in length, and three consecutive structures are installed on a common girder. The spacing
between quadrupoles is 6 meters at the low energy end of the linac, increasing to 12 and then to 18
meters; this permits 1, 2, or 3 girders of RF structures per quadrupole. The betatron phase advance
is roughly 90� per cell although, in the �rst 35% of the accelerator, the betatron phase advance per
cell is gradually reduced from upstream to downstream.
The linac contains approximately 750 quadrupoles, each of which has a stripline beam position

monitor captured in its bore, and approximately 5,000 RF structures [16,17]. The quadrupoles have
an aperture radius of 6.35 mm, corresponding to a 0.5 inch full bore, and a maximum pole-tip �eld
of 9 kG. In addition, the present magnet design calls for solid cores rather than laminations. This
choice has been made to improve the structural integrity of the magnet and increase its inductance,
which will lengthen the �eld decay time and ease the machine protection system requirements. The
horizontal betatron functions in the Next Linear Collider main linac are shown in Figure 2. The
linac operates in a pulsed mode, with 1 train of bunches accelerated per linac pulse and 120 linac
pulses per second.
With the exception of dipoles for fast feedback (120 Hz) and high-bandwidth kickers for shaping the

trains of bunches, the NLC main linac contains no steering correctors. The steering of the accelerator
is accomplished by remote-controlled translation stages which can position each quadrupole, as well
as each end of the rf girders, in both vertical and horizontal. The operational concept for the main
linac calls for continually positioning the magnets and rf girders such that the RMS beam o�set
from the center of the quadrupoles and girders is minimized. In order to accomplish this, it is
necessary to measure the o�set between the BPM electrical centers and the quadrupole magnetic
centers with micron accuracy, however, the o�set of a stripline-type BPM mounted in the bore of a
quadrupole is expected to be 100 � 200 microns RMS [3]. In order to achieve the desired main linac
performance, it will therefore be necessary to measure the BPM o�sets of the main linac quadrupoles
via beam-based techniques to the level of 1 � 2 microns.
In the following sections, we will estimate the statistical resolution for the NLC alignment algorithm

and then consider the systematic resolution limit. To estimate the systematic limitations, we will �rst
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evaluate the simple analytic expressions, derived in the previous section, to obtain an approximation
for the variation of the magnetic center. Then, we will use the measured variation in gradient data
from the Final Focus Test Beam (FFTB) [18] to model the NLC magnets and simulate the e�ect on
the beam-based alignment procedures.

A. Statistical Resolution in the NLC Main Linac

Equation 3 permits us to estimate the statistical resolution achievable in the NLC main linac. The
expected BPM resolution is 1 micron, which has been achieved at the NLC design bunch charge
(1 � 1010 electrons/positrons) by an existing system [3]; we assume that, during the beam based
alignment operation, each bunch train is reduced to a single bunch with this intensity. For speed of
operation, we limit data acquisition to 144 pulses per magnet strength step, which at full machine
rate can be acquired in 1.2 seconds. The number of strength steps is chosen to be 5; we will consider
cases in which the quad is varied symmetrically about its operating point (j 2 f�2;�1; 0; 1; 2g)
and cases in which the quads is varied asymmetrically from its operating point (j 2 f0; 1; 2; 3; 4g
or j 2 f0;�1;�2;�3;�4g); the latter option is likely to be required for quads which are operating
near their maximum or minimum strength.
As mentioned in the previous section, the phase advance per cell is tapered in the �rst two regions

of the NLC main linac. As a result, the value of R2 varies monotonically from the beginning to the
end of these regions. In addition, the value of R2 for `in-plane' measurements (measuring the o�set
of a horizontally-focusing quadrupole in the horizontal plane) is larger than the value for `out-plane'
measurements (measuring the o�set of a horizontally-focusing magnet in the vertical plane). These
two constants, here labeled by R2 inand R2 out, are tabulated at the beginning and end of each main
linac region in Table I. Note that in the analysis that follows we compute only the resolution for
horizontally-focusing quadrupoles; since the phase advance in the vertical is only slightly di�erent
from that in the horizontal, the two are expected to be nearly equivalent.
The remaining free parameter in Equation 3 is the number of betatron half-wavelengths over which

BPM data is acquired. It is known that, in the NLC main linac, the response functions for beam
transport are given by the linear quadrupole optics for short distances, but become dominated by
wake�eld ampli�cation over long distances. To avoid the wake�eld e�ects, which make the modeling
more di�cult, we limit the number of half-wavelengths to 5.
Table II shows the maximum relative excursion in quadrupole strength, �Kq, which is required

to achieve 1 micron statistical resolution at various point in the linac under the conditions outlined
above. For `in-plane' resolution the maximum required quadrupole excursion does not exceed 0.54%,
while for `out-plane' resolution the maximum needed quadrupole excursion is 1.44%. Such small
changes in the main linac optics are believed to be well below the level at which the beam quality
is degraded. In practice, the alignment algorithm is likely to use maximum quadrupole strength
excursions many times those listed in order to ensure that the uncertainty in quadrupole strength is
small compared to the change in quadrupole strength; in addition, reducing the statistical error on
the measured BPM-to-quad o�set will allow the tolerances on other errors to be relaxed.
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B. Systematic Resolution Limit

As discussed in the previous section, there are many sources of error which could cause a shift in
the magnetic center. In this section, we will �rst estimate the magnetic center variation using the
expressions derived in the previous section and then make an estimate based on the measured �elds
in the FFTB quadrupole magnets. Finally, using this FFTB data, we will evaluate the performance
of the algorithm in more detailed simulations.
For the NLC quadrupoles the core e�ciency is roughly 90%, and the best expected variation

in the permeability in a lot of steel is roughly 0.1% . In this case, Equation 14 indicates that
�y � 0:2�m between the mechanical and magnetic centers of the quadrupole. Since saturation
becomes an important e�ect near the full excitation of the magnet, we expect that the full 0.2 �m
o�set will only be realized by magnets operated near their maximum attainable strength.
The NLC quadrupole magnets are designed to have a temperature rise of 20�C in each of the

four coils at the nominal operating current, and the magnets are roughly 25 cm square. The value
of CT for steel varies from 1:1 � 10�5 to 1:8 � 10�5 [19]; using the latter value to attain a worst-
case estimate, equation 16 shows that this corresponds to �y � 20�m between zero current and
full excitation. Similarly, comparison between Equations 15 and 16 shows that the e�ect of di�er-
ential expansion will be smaller than the e�ect of overall expansion of the magnet by a factor of
[0:425(�Tp)rmsLp] = [�TfLm]. If we limit the RMS coil temperature di�erence to 20% of the average
temperature rise, and assuming that Lp=Lm � 0:25, we �nd that the magnetic center motion due to
this e�ect is �y � 0:5�m between zero current and full excitation. Both of these e�ects are propor-
tional to �I=I, and we have assumed that the magnet achieves thermal equilibrium at each current
in the estimates above. For perturbative quadrupole variations (�I=I < 0:1) which are expected
to require approximately 20 seconds per magnet step, we expect the actual change in quadrupole
magnetic center due to thermal e�ects to be small.
Based on the estimates above, we see that the primary e�ect of concern to the NLC is unequal

permeability of the magnet pole-pieces. While this e�ect produces only a 0.2 �m o�set of the
magnetic center, Equation 7 indicates that such shifts result in a �tting error which is larger than
the o�set shift by a factor of Kq=dKq. Therefore systematic �tting errors of 2 to 4 �m are not
inconceivable from this source.

1. FFTB Measurements

These estimates of the motion indicate a potential limitation for the NLC. At this point, we will use
some recent measurements to con�rm the values above. Unfortunately, we do not have measurements
of the individual pole-tip �elds; however, if we assume that the measured quadrupoles are `perfect'
and therefore the pole potentials �i are equal, then the �i are linearly proportional to the pole-tip
magnetic �eld, the gradient, and the integrated gradient of the magnet. We can then assemble
imperfect quadrupoles by combining pole-pieces from di�erent `perfect' quadrupoles.
For the purposes of this study, we have taken the iron dominated `standard quadrupole' from

the FFTB to represent our perfect quadrupoles. The standard quadrupole is assembled from four
solid-core iron pole-pieces, has an e�ective length of 46.1 cm, an aperture radius of 1.15 cm, and a
peak pole-tip �eld of 0.97 Tesla. A total of 29 standard quadrupoles were constructed for the FFTB
project by the Budker Institute of Nuclear Physics (BINP) in Russia. Magnetic measurements of
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the standard quads indicated that all of the magnets were matched in gradient at the level of 0.1%
RMS variation over the full range of excitation currents (15 to 240 amperes), and that all harmonics
were below the 0.1% level at 70% of the aperture. The FFTB standard quads represent a recent set
of state of the art iron-dominated quadrupoles, which can provide insight into the behavior of such
magnets for the NLC.
Our algorithm for estimating the systematic errors in quadrupole variation measurements was the

following: each `imperfect' model quad was generated by selecting at random four FFTB quadrupoles
to represent the four pole-pieces of the imperfect quad; we �t the measured integrated gradient versus
current from each FFTB magnet with a polynomial of order �ve and these polynomials were then
used to estimate the pole-tip �elds for each model magnet; we then computed the values of xj in
Equation 7 as a function of excitation current using Equation 11, and subtracted the value of �y at
the operating point such as to force xj=0 � 0; �nally we used Equation 7 to compute xM � xD for
the generated magnet.
This algorithm was executed to generate 1000 `imperfect' magnets and computed the RMS of the

quantity xM � xD. Finally, we took into account the fact that each FFTB quad is constructed of 4
imperfectly-matched pole pieces by doubling the RMS of xM � xD, and we used this �nal quantity
as our �gure of merit for the magnets. In doubling the RMS, we have assumed that the matching
of pole-pieces within an FFTB quad is approximately as good as the matching of the quads to one
another. The RMS motion of the magnetic center in our 1000 model quadrupoles is plotted as a
function of excitation in Figure 3.
Figures 4 and 5 show the expected RMS alignment error as a function of magnet excitation,

normalized to the magnet's maximum excitation strength. Figure 4 assumes that the maximum
variation in quad strength is 1% of the operating strength, while in Figure 5 the maximum variation
is 10%. In each case 5 steps of the quad strength are used, and we compare symmetric scans with
asymmetric `up' and `down' scans, in which the quad is stepped monotonically away from its design
strength. While the NLC design calls for measuring the quadrupole to BPM center o�set with an
RMS error of 1 to 2 microns, Figures 4 and 5 indicate that the achieved error will be 2 to 14 microns,
substantially larger. Note that the RMS systematic error as a function of design excitation is nearly
the same for 1% maximum variation as for 10%. For such small total variations, the second term
on the right hand side (RHS) of Equation 7 is dominant, and xj is dominated by the linear motion
of the quadrupole center as a function of excitation. Therefore, as Kq=dKq is reduced for increased
values of dKq, the xj values are increased, and to lowest order the second RHS term in Equation 7
remains constant.
Figure 6 shows the precision which is achievable if a 5 step quad scan is performed in which the

maximum variation is allowed to increase. We consider quads which have a nominal operating point
that is 70%, 80%, or 90% of the maximum strength of the FFTB magnets. Figure 6 shows that
we can achieve micron accuracy of the �t if we permit the magnets to be reduced in strength by
up to 90% of their design strength. In this case the quadrupole variation procedure approximates
reducing the quad strength to zero, which improves the robustness of the procedure. It remains to be
determined whether other factors such as the resulting downstream beam size will prohibit such large
variations in quad strength, or whether other systematic errors will arise in such non-perturbative
measurements which will eliminate the gains described above.
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In the case in which both xD and _x are simultaneously �tted, Equation 9 relates the �t resolution
to the parameters of the scan and the data acquisition system. Equation 9 can be rewritten as
follows:

�x = �BPMF1F2; where (17)
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Figure 7 shows the value of F2 as a function of the maximum quadrupole strength excursion
�K � jmK for symmetric and monotonic quad scans utilizing 5 steps per scan. Values in Table I
were used to evaluate F1 for the NLC main linac, yielding `in-plane' values of F1 from 6:1� 10�3 to
7:4 � 10�3, while `out-plane' values vary from 1:4 � 10�2 to 1:9 � 10�2, assuming values of m and
n identical to those in Section VA. In order to achieve a resolution of 1 micron in the `in-plane'
measurements, a maximum quad variation of 7% for symmetric scans or 17% for scans monotonically
away from zero strength is required; for `out-plane' measurements, the required variation is 11% or
28% for the same types of scans. These values are more than an order of magnitude larger than
the strength excursions required to �t xD in the one-parameter model described in Equation 3. We
conclude that the error ellipse for the two-parameter �t is extremely elongated.
The resolutions quoted above are only valid if the quadratic motion of the quad center, �x, is small

compared to the linear motion. As mentioned before, if �x= _x > K, the quadratic de
ection measured
on downstream BPMs will be dominated by �x, which will ultimately result in an incorrect �tted
value of xD. Figure 8 shows the RMS value of �x= _x for 1000 magnets generated as described above,
assuming a symmetric scan of 5 steps from 10% below the design strength to 10% above the design
strength. Note that �x= _x is typically larger than 0.05, which is the value of dKq=Kq, and in fact rises
to almost 0.4. This indicates that the two-parameter �t cannot be used. Figure 9 shows the RMS
systematic error in �tting xD which occurs in such a two-parameter �t using the magnet modeling
described above and a symmetric scan with maximum excursion of 10%. Comparison of Figures 9
and 5 indicates that the systematic error will be smaller if the center motion is ignored than if an
attempt is made to include it in the �t.

VI. CONCLUSIONS

Beam based alignment of quadrupoles is becoming a key commissioning procedure for high perfor-
mance accelerators. The standard algorithms for beam based alignment are limited by a combination
of statistical and systematic errors. The statistical limit can be estimated analytically from the pa-
rameters of the quadrupole scan, the lattice, the BPM system, and the amount of data which is to
be acquired. For a given amount of BPM data, the optimum resolution is obtained by a symmetric
scan of the quad about its operating point in which the number of steps of the quad strength is
minimized and the size of the strength steps is maximized.
The most serious systematic error is variation of the quadrupole magnetic center which occurs when

the strength is changed. The systematic error can be estimated analytically if the motion of the
center on each step can be determined. The e�ect becomes quite important because the sensitivity to
the motion of the quadrupole center is ampli�ed by the inverse of the fractional quadrupole variation
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dKq=Kq which one would like to keep small to limit the perturbation to the focusing lattice. The
error can be minimized by varying the quadrupole strength monotonically towards zero and by
approaching zero strength as closely as the beamline will permit. If the motion of the magnetic
center is linearly proportional to the strength, it is in principle possible to �t for the linear motion
and the beam-to-quad o�set at the design strength, though the errors tend to be large because the
�t is ill-conditioned. Furthermore, this multi-parameter �t may not be possible if the motion of the
magnetic center is a nonlinear function of strength.
In applying the statistical and systematic limits to the case of the NLC main linac, we found that

it was easy to achieve sub-micron statistical resolution with reasonable choices for the parameters,
but the systematic errors due to the magnetic center shift could be several times larger. In order
to reduce the systematic errors to the level of the statistical, it would be necessary to vary the
magnet strength monotonically towards zero and increase the strength step size signi�cantly. Such
a procedure cannot be considered a perturbative measurement and may be limited by the resulting
large changes in linac beam dynamics. In addition, for the FFTB quadrupole model, it appears
that the nonlinear motion of the magnetic center with the excitation was too large to permit a
simultaneous �t of the linear motion and the beam-to-quad o�set at the design strength.
In the event that both the non-perturbative quad scan and the two parameter �t prove imprac-

tical, there are several additional engineering solutions which might permit quadrupoles in future
accelerators to be aligned with the high precision and accuracy discussed above. These include con-
structing quads from laminations rather than as solid-core magnets or improving the permeability
matching between magnet pole-pieces, designing the magnets to operate well below saturation levels,
and limiting the temperature variation in the magnets. Alternately, one could consider developing a
program to �ducialize the BPMs to the quadrupole magnets with high accuracy prior to installation
or developing in situ �ducialization techniques which do not rely on beam measurements. These
later techniques would require substantial development to ensure that the �ducialization tolerances
can be met. In addition, an expanded program of measurements of the magnetic center motion as
a function of excitation strength will be needed to verify the expected errors and to determine the
viability of any of these approaches.
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FIG. 3. RMS quadrupole magnetic-mechanical center o�set vs. excitation using the FFTB magnet model.
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FIG. 4. (Color) RMS alignment �t error due to permeability mismatch in NLC main linac quads as a function of design

excitation, for maximum strength excursions of 1% of the design strength. In each case 5 values of the quad strength are used.

Scans which are symmetric about the operating point (blue, solid), monotonically towards zero strength (red, dot-dash), and

monotonically away from zero strength (green, dashed) are shown.
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FIG. 5. (Color) RMS alignment �t error due to permeability mismatch in NLC main linac quads as a function of design

excitation, for maximum strength excursions of 10% of the design strength. The three curves are de�ned identically with the

previous Figure. Note the similarity in amplitude and overall shape for 1% and 10% maximum excursion.
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FIG. 6. (Color) RMS alignment �t error due to permeability mismatch as a function of maximum strength excursion. In

this case 5 values of the quad strength are used, and the quad is stepped monotonically towards zero strength. Curves shown

are for a design strength which is 70% (blue, solid), 80% (red, dot-dash), or 90% (green, dashed) of the maximum strength of

the quad.
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FIG. 9. RMS �t error on xD when xD and _x are �tted, but �x is ignored, for the solid-core quad modeled in the text. Case

shown is a symmetric 5 step scan in which the maximum excursion is 10% of the operating strength.

TABLE I. Values of R2 in, R2 out, and Kq at the beginning and end of each main linac region.

Region R2 in, m
2

R2 in, m
2 Kq , m

�1

1, Start 536 63 0.2424

1, End 908 249 0.1683

2, Start 2335 232 0.1263

2, End 2742 622 0.0965

3, Start 5006 824 0.0737

3, End 5002 831 0.0737
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TABLE II. Maximum fractional quad strength excursions, jmaxdKq=Kq , required to achieve 1 micron statistical resolution

of quadrupole misalignments. Fractional strengths are given in percentage of the design strength required. Both symmetric

scans about the quadrupole design strength (`Symm') and asymmetric scans in which the quad is scanned monotonically away

from its design strength (`Asym') are considered.

`In-Plane' `Out-Plane'
Region

Symm, % Asym, % Symm, % Asym, %

1, Start 0.42 0.49 1.23 1.42

1, End 0.47 0.54 0.89 1.03

2, Start 0.40 0.46 1.25 1.44

2, End 0.46 0.54 0.98 1.13

3, Start 0.45 0.52 1.11 1.29

3, End 0.45 0.52 1.11 1.28
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