
SLAC{PUB{8353

January 25, 2000

CORE and the Haldane Conjecture �

Marvin Weinstein

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

ABSTRACT

In an earlier paper[1] I showed that the Contractor Renormalization group (CORE)

method could be used to map a theory of free quarks, and quarks interacting with glu-

ons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed

using CORE methods to study these theories. Since generalizations of HAF's ex-

hibit all sorts of subtle behavior which, from a continuum point of view, are related

to topological properties of the theory, it is important to know that CORE can be

used to extract this physics. In this paper I show that simple Contractor Renor-

malization group (CORE) computations provide a �rst principles understanding of

the famous Haldane conjecture. Explicit range-2 computations for the spin-1=2 and

spin-1 Heisenberg antiferromagnet reveal the di�erences between these theories and

show that the mass gap in the spin-1 theory is intimately related to the structure of

a more general theory with Hamiltonian H =
P

i[~s(i) � ~s(i + 1) � � (~s(i) � ~s(i + 1))2]

which has a valence bond ground state when � = �1=3. I then argue that the case

of a general spin-S HAF works similarly. More speci�cally, for integer S the renor-

malized Hamiltonian is described by a polynomial in the operators ~s(i) �~s(i+1) with

coe�cients which lie near the values for which the Hamiltonian would be of the type

introduced by A�eck, Lieb, Kennedy and Tasaki (AKLT)[6], all of which have valence

bond ground states.
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1 Introduction

In a preceding paper[1] I used the Contractor Renormalization Group (CORE) for-

malism to establish the equivalence of a theory of free quarks, or a theory of quarks

interacting with gluons, to a generalized frustrated antiferromagnet. I plan to use the

CORE formalism to study the physics of these theories and so it is necessary to un-

derstand whether or not CORE can systematically deal with subtle phenomena which

appear when one generalizes the basic Heisenberg antiferromagnet. This paper is de-

voted to the question of what happens when the spin-1=2 Heisenberg antiferromagnet

(HAF) Hamiltonian,

HHAF =
X
j

~sj � ~sj+1; (1)

is modi�ed by replacing the spin-1=2 degree of freedom associated with each lattice

site with a spin-S.
A conjecture due to F.D.M. Haldane, Ref. [2] says that for a spin-S HAF the

spectrum of HHAF is massless whenever S is a half-integer and exhibits a mass-gap

when S is an integer. While there is a good deal of numerical evidence indicating that

this conjecture is true and theoretical arguments for its validity based upon relating

the long wavelength physics of the �nite S lattice system to a continuum Wess-

Zumino-Witten model, I know no simple �rst principles argument which explains the

origin of this gap. This paper presents a straightforward CORE computation which

provides a non-trivial, nonperturbative insight into why the Haldane conjecture is

true.

To clarify the di�erences between the spin-1=2 and spin-1 HAF I present range-2

CORE computations for each case. These computations show that important di�er-

ences appear with the �rst CORE transformation and subsequent iterations of the

CORE transformations allows one to directly extract the physics of each theory.

1.1 Summarizing The Main Results

In the spin-1=2 theory the simplest non-trivial CORE computation shows that the

form of the Hamiltonian,HHAF remains unchanged as one carries out successive renor-

malization group transformations. From this one is able to compute the groundstate

energy density and show the mass gap vanishes. The same technique applied to the

spin-1 theory leads to a renormalized Hamiltonian which has the more general form

H =
X
j

~sj � ~sj � �
X
j

(~sj � ~sj)2: (2)

and shows that for the relevant range of � this Hamiltonian describes a theory with

a mass gap. The result that the mass gap is non-zero for �1 < � < 1 is a non-trivial

result since Eq. 35 de�nes a class of theories about which, until now, very little was

known. One reason that this result is important to the general program discussed in

my earlier paper[1], is that terms of the form (~s � ~s)2 appear when one uses CORE to

map the free fermion theory in 3 + 1 dimensions into a generalized HAF.
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2 Generalized Heisenberg Antiferromagnets

2.1 Basic Algorithm

CORE has two parts. The �rst is a theorem which de�nes the Hamiltonian ana-

log of Wilson's exact renormalization group transformation; the second is a set of

approximation procedures which render nonperturbative calculation of the renormal-

ized Hamiltonian doable. A detailed review of the general method can be found in

Ref. [1] and a detailed presentation of the CORE formalism can be found in Ref. [3].

In this section I limit myself to a review of the basic concepts for the special case of

a general Heisenberg antiferromagnet.

CORE replaces the Lagrangian notion of integrating out degrees of freedom by

that of throwing away Hilbert space states, or alternatively retaining only a subset

of the full Hilbert space de�ned as the image of a projection operator, P , acting on

the original space, H. In other words, Hret = PH. In what follows, for both the

spin-1=2 and spin-1 case, this set of retained states will be de�ned by diagonalizing

the Hamiltonian restricted to either a two or three site block and de�ning P as the

operator which projects onto the subspace spanned by a small number of its lowest

energy eigenstates.

The formula relating the original Hamiltonian, H, to a renormalized Hamiltonian

having the same low energy physics is

Hren = lim
t!1

[[T (t)2]]�1=2 [[T (t)HT (t)]] [[T (t)2]]�1=2; (3)

where T (t) = e�tH and where [[O]] = POP for any operator O which acts on H. It

is not generally possible to evaluate Eq. 3 exactly, however it is possible to nonper-

turbatively approximate the in�nite lattice version of Hren to any desired accuracy.

This is because Hren, as de�ned in Eq. 3, is an extensive operator and has the general

form

Hren =
X
j

1X
r=1

hconn(j; r) (4)

where each term, hconn(j; r), stands for a set of range-r connected operators based at

site j, all of which can be evaluated to high accuracy using �nite size lattices.

CORE is useful because it is typically not necessary to calculate all of the terms

in Hren. Often one can obtain highly accurate results by approximating Hren by its

range-2 or range-3 terms. I will show that all one has to do to identify the major

di�erence between the case of the spin-1=2 HAF and its spin-1 counterpart is do a

simple range-2 CORE computation.

In general the range-1 connected term in the renormalized Hamiltonian is de�ned

to be the matrix obtained by evaluating the jth block Hamiltonian in the set of

retained eigenstates,

hconn(j; 1) = [[Hblock(j)]]: (5)
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The range-2 part of the renormalized Hamiltonian is evaluated as follows: �rst, re-

strict the full Hamiltonian to two adjacent (i.e., connected) blocks and de�ne the two-

block retained states as tensor products of the single block retained states; next, use

these states to de�ne a projection operator and evaluate Eq. 3, where H = H(j; j+1)

is the Hamiltonian restricted to blocks Bj and Bj+1 to obtain

H2�block(j; j + 1) = lim
t!1

[[T (t)2]]�1=2 [[T (t)HT (t)]] [[T (t)2]]�1=2; (6)

�nally, construct the connected range-2 contribution to the renormalized Hamilto-

nian by subtracting the two ways of embedding the one-block computation into the

connected two-block computation as follows,

hconn(j; 2) = H2�block(j; j + 1)� hconn(j; 1)� hconn(j + 1; 1): (7)

It might appear to be di�cult to take the t!1 limit of Eq. 6, however it is easy

to show that this limit can be evaluated as a product of the form

H2�block(j; j + 1) = RHdiagR
y (8)

where R is an orthogonal transformation and Hdiag is a diagonal matrix. Hdiag is

constructed by expanding the image under R of each of the tensor product states

in a complete set of eigenstates of the two-block problem and putting the energy of

the lowest lying eigenstate appearing in the expansion of each rotated state on the

diagonal. R is constructed to guarantee that for each rotated state the lowest energy

eigenstate of the two-block problem which appears in its expansion in a complete set

of eigenstates is distinct from that appearing in the expansion of the other rotated

states. As we will see in a moment, given the symmetries of the problem, constructing

R is straightforward for both the spin-1=2 and spin-1 HAF.

2.2 The Spin-1=2 Case

The one-dimensional spin-1=2 HAF is de�ned by the Hamiltonian

H =
1X

j=�1

~sj � ~sj+1 (9)

where the matrices ~sj are, up to a factor of 1=2, the 2 � 2-Pauli � matrices. I al-

ready noted that the simplest non-trivial truncation procedure for this theory requires

working with three site blocks. To see why a two site blocking procedure won't work

just diagonalize the two site Hamiltonian

Hblock = ~s1 � ~s2 =
1

2
(~s1 + ~s2)

2 � 3

4
;

=
1

2
S2
TOT(1; 2)�

3

4
; (10)
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where the notation S2
TOT(1; 2) is used to represent the total spin operator for sites 1

and 2. Since the two site Hamiltonian Hblock is just S
2
TOT minus a constant and the

two spin-1=2 states can make either a total spin zero or spin one state, Eq. 10 shows

that of the four states in the two site Hilbert space, there is one spin zero state of

energy E0 = �3=4 and three degenerate spin one states with energy E1 = 1=4. The

fact that the spin-0 state has the lowest energy means that an algorithm based upon

keeping a subset of the lowest lying eigenstates of Hblock requires either that we keep

the single spin-0 state, or that we keep all four eigenstates of Hblock. Obviously the

�rst choice, truncating to one state per block, produces a renormalized Hamiltonian

which is a one-by-one matrix, which will only allow us to compute the energy density

of the ground state. Equally obviously, keeping all of the states per two site block

doesn't de�ne a truncation at all.

Fortunately, working with three site blocks is as simple as working with two site

blocks but it allows for a more interesting computation. In this case the Hamiltonian

has the form

Hblock = ~s1 � ~s2 + ~s2 � ~s3 (11)

= ~s2 � (~s1 + ~s3) (12)

=
1

2

�
S2
TOT(1; 2; 3)� S2

TOT(1; 3)�
3

4

�
(13)

Note that one can make a two spin-1=2 and one spin-3=2 multiplet out of the prod-

uct of three spin-1=2 states which can be distinguished from one another by the

eigenvalue of S2
TOT(1; 3). The three possibilities are one spin-1=2 representation for

which S2
TOT(1; 3) = 2 and S2

TOT(1; 2; 3) = 3=4, one spin-1=2 representation for which

S2
TOT(1; 3) = 0 and S2

TOT(1; 2; 3) = 3=4 and �nally, one spin-3=2 representation for

which S2
TOT(1; 3) = 2 and S2

TOT(1; 2; 3) = 15=4. Substituting these values into Eq. 11
shows that the lowest lying eigenstates are the two degenerate spin-1=2 states for

which S2
TOT(1; 3) = 2 and these have energy E0 = �1. Keeping this spin-1=2 repre-

sentation and using it to generate the space of retained states leads to a non-trivial

truncation procedure. In this case the dimension of the space of retained states is

2NB , where NB stands for the number of blocks on the thinned lattice. (Of course, if

one starts with an in�nite lattice NB =1 and so, even after truncation, the space of

the retained states remains in�nite dimensional.)

If we label the two spin-1=2 states which we keep in block Bj as j"ji and j#ji,
then the projection operator is

Pj = j"jih"jj+ j#jij#ji
P =

Y
j

Pj (14)

By de�nition the connected range-1 Hamiltonian is Pj Hblock(j)Pj which, because the

two retained states are degenerate, is simply a multiple of the identity matrix; i.e.,

hconn(j; 1) = �1: (15)
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and so, to this range, the renormalized Hamiltonian is

Hren =
X
j

hconn(j; 1) = �Vthin 1; (16)

i.e., every state in the space of retained states is an eigenstate of the renormalized

Hamiltonian with eigenvalue �Vthin, where Vthin is the volume of the thinned lattice.

Note that Vthin = V=3 and so the contribution to the energy density of the original

theory is �1=3. Clearly, since all retained states are eigenstates of the range-1 part

of the renormalized Hamiltonian, this term plays no role in the dynamics of the

renormalized theory. To get a nontrivial renormalized Hamiltonian it is necessary to

calculate hconn(j; 2).

The �rst step in computing hconn(j; 2) is to expand the retained states for the

two-block problem in terms of the exact eigenstates of the two-block Hamiltonian.

A brute force way to do this is to exactly diagonalize the full two-block, or six-site,

Hamiltonian, �nd its eigenvalues and eigenstates and then carry out the expansion.

This is not an intelligent use of computing resources, one can achieve the desired goal

with less work since the spin-1=2 HAF has so much symmetry.

The three site truncation procedure is based upon keeping the two states of the

lowest lying spin-1=2 representation of SU(2) for each three site block. Thus, if we are

working with blocks fBj; Bj+1g, then the four-dimensional space of retained states is

spanned by the four tensor product states

j"jij"j+1i; j"jij#j+1i; j#jij"j+1i; j#jij#j+1i : (17)

As stated earlier, to �nd the matrix R it is necessary to �nd a set of orthonormal

combinations of these states which contract onto unique eigenstates of the six-site

problem. While in general this requires expanding the tensor product states in terms

of eigenstates of the six-site problem, the symmetries of this problem make �nding R
an exercise in group-theory because the six-site Hamiltonian has the same SU(2) sym-

metry of the full problem and its eigenstates also fall into irreducible representations

of SU(2).
The argument goes as follows. The space of retained states is generated from a

tensor product of two spin-1=2 representations and it can be uniquely decomposed

into a direct sum of one spin-0 and one spin-1 representation. Furthermore, the three

spin-1 states can be uniquely identi�ed by their total Sz eigenvalues, 1; 0;�1. The

linear combinations corresponding to these jS; Szi eigenstates are

j0; 0i = � 1p
2
(j"jij#j+1i � j#jij"j+1i)

j1; 1i = j"jij"j+1i
j1; 0i =

1p
2
(j"jij#j+1i+ j#jij"j+1i)

j1;�1i = j#jij#j+1i
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Since SU(2) is an exact symmetry of the six-site problem only eigenstates of H6sites

having the same S and Sz can appear in the expansion of each one of these states;

thus it follows directly from Eq. 18 that all one need to �nd hconn(j; 2) is to �nd

the energy of the lowest lying spin-0 and lowest lying spin-1 multiplet for H6�sites.

This observation, coupled with the fact that the spin-0 states is odd under left-

right interchange, whereas the spin-1 state is even, reduces the general problem of

diagonalizing a 64� 64-matrix to that of diagonalizing a couple of 3� 3-matrices. As

the states in the spin-1 multiplet are degenerate the result of this calculation is an

Hdiag of the form

Hdiag =

0
BBB@
�0 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCCA (18)

Using Eq. 18 it is simple to compute RyHdiagR acting on the original tensor product

states. Fortunately, one can avoid doing even this amount of work. Due to the SU(2)
symmetry of the theory RyHdiagR must have the form

RyHdiagR = �01+ �1~sj � ~sj+1 (19)

To relate �0 and �1 to �0 and �1 use the usual trick and rewrite RyHdiagR as

RyHdiagR = �01+ �1~sj � ~sj+1
= �0 1+

�1

2

�
(~sj +~sj+1)

2 � 3

2

�
: (20)

Since (~sj + ~sj+1)
2 equals 0 for a spin-0 state and 2 for a spin-1 state, it follows

�0 = �0 �
3�1

4

�1 = �0 +
�1

4
(21)

Solving for �0 and �1 in terms of �0 and �1

�0 =
3�1 + �0

4
�1 = �1 � �0: (22)

A straightforward computation of the energies of the lowest spin-0 and spin-1 eigen-

states of H6�sites gives

�0 = �2:493577
�1 = �2:001995
�0 = �2:124891
�1 = 0:491582 (23)

7



To obtain hconn(j; 2) it is necessary to subtract hconn(j; 1) and hconn(j + 1; 1) from

RyHdiagR as follows

hconn(j; 2) = RyHdiagR� hconn(j; 1)� hconn(j + 1; 1)

= (�0 + 2)1+ �1~sj � ~sj+1: (24)

Finally, given hconn(j; 2), the range-2 renormalized Hamiltonian is

Hren =
X
j

(hconn(j; 1) + hconn(j; 2))

=
X
j

((�0 + 1) 1+ �1~sj �~sj+1)

= Vthin (�0 + 1) 1+ �1

X
j

~sj �~sj+1 (25)

For an in�nite lattice, the fact that the term V (�0 + 1) 1 only contributes a

constant to the energy density of all states and plays no dynamical role means that

the energy density of the thinned lattice is (�0+1) plus �1 times the energy density of

the theory we started with. Since each site of the thinned lattice corresponds to three

sites on the original lattice we have, according to the simple range-2 renormalization

group approximation, that the energy density of the spin-1=2 HAF, E , satis�es the
following equation

E =
(�0 + 1)

3
+
�1

3
E : (26)

or

E =
�0 + 1

3 (1� �1=3)
: (27)

Substituting the values of �0 and �1 obtained from the two-block computation we �nd

Eren:grp: = �0:4484 , which is to be compared to the exact result Eexact = �0:4431.
Thus the error in this CORE result, obtained from an exceptionally simple �rst

principles calculation, is a factor of two better than that obtained from the leading

term in Anderson's[4] spin-wave approximation which assumes that the spin s is a

large number and then continues the answer to s = 1=2.

Since the CORE equation says that the mass-gap of the renormalized theory

should be the same as that of the original theory, the fact that �1 < 1 means that

this gap must vanish. Speci�cally, since (�0 + 1) 1 plays no role in the dynamics

of the renormalized theory the gap is determined by the range-2 term which is just

�1
P
~sj � ~sj+1. But this is just �1 times the original Hamiltonian and so it follows

that the mass gap of the theory must satisfy the equation

m = �1m: (28)

Since 0 < �1 < 1 this means m = 0.

This ends our demonstration of how CORE is applied to the spin-1=2 theory.
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2.3 The Spin-1 Case

Unlike the spin-1=2 HAF the spin-1 theory admits a non-trivial two site truncation

procedure; i.e., since the nine eigenstates of the two site problem fall into a spin-0,

spin-1 and spin-2 representation of SU(2) one can choose to truncate to the subspace

spanned by the spin-0 and spin-1 multiplets alone. Implementing this truncation

procedure leads to a renormalized theory which has four instead of three states per

site and a more general Hamiltonian; however, subsequent truncations based upon

the same algorithm preserve the form of the more general theory and give rise to

RG-ows which are simple to compute.

Before discussing the two site blocking procedure in detail I wish to argue that

the observation that it is important to keep both the lowest lying spin-0 and spin-1

states is robust in that while one can begin (as I did for the case of the spin-1=2
HAF) with a three site blocking procedure which keeps only the lowest lying SU(2)
representation, the dynamics of the renormalized Hamiltonian makes it impossible to

continue to do this in subsequent iterations. The fact is that after the �rst iteration

the renormalized Hamiltonian takes a generalized form which forces one to keep both

the lowest lying spin-0 and spin-1 representations; reducing us to the prescription of

the two site case.

The three site Hamiltonian of the spin-1 HAF is given by Eq. 11. The main

di�erence is that in the spin-1 case more values are allowed for S2
TOT(1; 2; 3) and

S2
TOT(1; 3). Direct substitution of these allowed values into Eq. 11 shows that the

lowest lying SU(2) multiplet for the three site Hamiltonian is the spin-1 representation

obtained by coupling the spins on sites 1 and 3 to a spin-2 state and then coupling

this state to the spin-1 on site 2 to get a state of total spin-1. Following the dictum of

keeping the lowest lying irreducible representation of SU(2) we obtain a truncation

procedure based upon three site blocks which has the same spin content per site as

in the original theory, paralleling the spin-1=2 calculation. There is one important

di�erence however, although the number of states per site remains the same, the

range-2 renormalized Hamiltonian takes the more general form

Hren =
X
j

C 1+ �~s(j) � ~s(j + 1)� � (~s(j) � ~s(j + 1))2: (29)

To derive this general form I begin by observing that, as in the spin-1=2 case,

the range-1 connected Hamiltonian must be a multiple of the unit matrix, since we

keep only a single representation of SU(2) per site. As before, this means that the

�rst non-trivial contribution to the renormalized Hamiltonian comes from the range-

2 terms. The �rst contribution to the connected range-2 Hamiltonian comes from

consideration of the two-block (or six-site) problem. Since the truncation retains one

spin-1 multiplet per block, the retained states of the two-block problem (obtained

by taking the tensor product of the retained spin-1 states for each block) fall into a

spin-0, spin-1 and spin-2 representation of SU(2). The general CORE rules tell us

that the renormalized range-2 Hamiltonian will have these states as eigenstates, with
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eigenvalues �0, �1 and �2, where these stand for the energies of the lowest lying spin-0,

spin-1 and spin-2 states of the six-site problem. Obviously one can use a brute force

approach to construct the transformation R and use it to derive the general form of

the connected range-2 term in the original tensor product basis but, by using a little

ingenuity, one can avoid this step completely.

The trick is to construct the projection operators P0(i; i + 1), P1(i; i + 1) and

P2(i; i + 1) for each pair of sites i and i + 1 of the renormalized theory; i.e.,

P0(i; i+ 1) =
1

12

�
S2
TOT(i; i + 1)� 2

� �
S2
TOT(i; i+ 1)� 6

�

P1(i; i+ 1) = �1

8
S2
TOT(i; i+ 1)

�
S2
TOT(i; i+ 1)� 6

�

P2(i; i+ 1) =
1

24
S2
TOT(i; i+ 1)

�
S2
TOT(i; i+ 1)� 2

�
(30)

where the operators ~si denote the spin operators acting on the retained states of the

renormalized theory for site i and where I have de�ned

S2
TOT (i; i+ 1) = (~si + ~si+1)

2
= 2~si � ~si+1 + 4: (31)

Without actually computing anything one can now write

lim
t!1

[[T (t)H T (t)]] = RyHdiag R
y = �0 P0 + �1 P1 + �2 P2 (32)

which, using Eq.30, can be immediately rewritten in the form given in Eq. 29.

We now see that after a single renormalization group transformation one has a

theory with the same spin content per site but with a more general Hamiltonian and

so, in order to carry out the next renormalization group step, it is necessary to restudy

the eigenvalue problem (for either two or three site blocks) for generic values of C,

� and �. Of course, since the only important question from the point of view of a

CORE computation is the ordering of eigenstates in the two or three block problem

we can, without loss of generality, set C = 0 and � = 1. Thus, as advertised in the

overview, we see that in order to study the generic problem it is necessary to start

from the Hamiltonian

Hren =
X
j

~s(j) � ~s(j + 1)� � (~s(j) � ~s(j + 1))2: (33)

(Note, the value � = 0 corresponds to the original spin-1 HAF.)

The result of diagonalizing the two site version of this Hamiltonian for �1 � � � 1

is shown in Fig.1 and the results for the three site problem in Fig.2, where I have

limited discussion to the range �1 � � � 1 for reasons which will become apparent.

Note that due to the di�erent numbers of eigenstates, etc., these plots look quite

di�erent from one another, however they share several important common features.

First, observe that the lowest lying spin-0 and spin-1 state become degenerate at

� = �1=3 and then cross one another. This level crossing means, as I said earlier,
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that any CORE computation which wishes to treat the region from �1 � � � 1

must keep both multiplets; i.e., in either the two or three site case, after the initial

renormalization group step we arrive at a generalized Hamiltonian which forces us to

adopt the two site prescription of keeping the lowest lying spin-0 and spin-1 states.

Second, it is worth noting that something very special happens at the point � = �1.
In the two site case we see that at this point the lowest lying multiplet is the three-

dimensional spin-1 representation of SU(2) and that the spin-0 and spin-2 states

become degenerate and form a single six-dimensional subspace which in fact coincides

with the six-dimensional representation of SU(3). The degeneracy patterns shown

here demonstrate that the Hamiltonian for � = �1 can be rewritten as

H�=�1 = ~Q(i) � ~Q(i+ 1) (34)

where the ~Qi's stand for the generators of SU(3). In this picture we see that the

spin-1 representation can be identi�ed as the triplet representation of SU(3) and the

degenerate multiplets of the two site problem can be understood to be the 3 and 6

representations of SU(3) obtained from the tensor product of two 3's. A brief look

at Fig.2 supports this picture. Here we see that at � = �1 the 27 states become one

one-dimensional multiplet, two eight-dimensional multiplets and one ten-dimensional

multiplet of degenerate states. This is, of course, completely consistent with what

would be obtained from the product of three fundamental triplet representations of

SU(3) with the Hamiltonian given in Eq. 34. This explains my earlier statement

that something interesting happens for � = �1 and shows that if one really wished

to properly handle this point, it would be necessary to either adopt a truncation

procedure which keeps more states, or one which goes beyond the range-2 cluster

contribution in order to make up for the violence one is doing to the SU(3) symmetry

of the problem. Clearly, treating the full SU(3) symmetry of the problem correctly

would require us to eschew a two site blocking procedure, since in this case the

only non-trivial truncation would be to a single state. If we adopted a three site

blocking procedure then we could adopt a non-trivial truncation based upon keeping

nine states, i.e., the lowest lying singlet and octet representations. Discussion of this

problem goes beyond the scope of this paper. However I mention it to explain why

one expects from the outset to have trouble using the four-state truncation algorithm

which I will discuss for values of � � �1.

2.4 The Calculation

Since I just �nished arguing that generically, after a single renormalization group

step, one will have to deal with a Hamiltonian of the form

H =
X
i

~s(i) � ~s(i+ 1)� � (~s(i) � ~s(i+ 1))2 (35)

I will describe the two-block CORE procedure for this generalized spin-1 HAF. As I

already indicated, since this Hamiltonian doesn't have a single-site term, the �rst step
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of the CORE computation is to solve the two site problem exactly and truncate to

the lowest spin-0 and spin-1 multiplets of the resulting nine state system (i.e., throw

away the spin-2 multiplet). With this choice of projection operator the renormalized

range-1 Hamiltonian is a diagonal 4� 4 matrix of the general form

hconn(j; 1) = Hdiag =

0
BBB@
�0(�) 0 0 0

0 �1(�) 0 0

0 0 �1(�) 0

0 0 0 �1(�)

1
CCCA (36)

To obtain the range-2 term of the renormalized Hamiltonian we have to solve

the two-block or four-site Hamiltonian exactly and use the information about the

exact eigenvalues and eigenstates to construct R and Hdiag. While in principle R is a

16� 16 matrix, in practice, as in the case of the spin-1=2 HAF, the SU(2) symmetry

of the problem greatly simpli�es the job of �nding R even though there aren't enough

symmetries to render the problem trivial. More precisely, the single-block states fall

into a spin-0 and spin-1 representation of SU(2) so, taking tensor products, we see

that the retained states for the two-block problem are two spin-0 representations,

three spin-1 representations and one spin-2 representation of this group. Clearly, if

we expand any one of the spin-2 states in eigenstates of the four-site problem only

states with the same quantum numbers can appear. Hence, since each of the spin-2

states is distinguished by its third component of spin, each of the spin-2 states will

contract onto a di�erent eigenstate of the two-block or four-site problem but they will

all have the same energy. This argument shows that the transformation R1 which

takes us from the original tensor product basis to the spin basis is all one has to do for

the spin-2 states. Since there are two independent spin-0 representations contained

in the tensor product of the single-block states we have to do a bit more work to fully

construct R. To understand exactly what has to be done, let j	1i and j	2i denote
the spin-0 states which can be formed from the 0 
 0 and 1 
 1 representations of

SU(2). These states can be expanded in terms of spin-0 eigenstates of the two-block

problem as

j	0i = a0j�0i+ a1j�1i+ a2j�2i+ : : :

j	1i = b0j�0i+ b1j�1i+ b2j�2i+ : : :

(37)

If, as will generally be the case, both a0 and b0 are non-vanishing, then both states

will contract onto j�0i. One can always avoid this however by de�ning rotated states

as follows

j�0i = cos(�) j	0i+ sin(�) j	1i
j�1i = � sin(�) j	0i+ cos(�) j	1i (38)

where cos(�) = a0=
q
a20 + b20 and sin(�) = b0=

q
a20 + b20. With this orthogonal change
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of basis we have

j�0i = �0j�0i+ �1j�1i+ �2j�2i+ �3j�3i+ : : :

j�1i = �1j�1i+ �2j�2i+ �3j�3i+ : : :

(39)

With this de�nition j�0i is the lowest lying eigenstate of the two-block Hamiltonian

which appears in the expansion of j�0i and j�1i is the lowest lying eigenstate which

appears in the expansion of j�1i; hence, if one applies e�tH to the rotated states one

sees that j�0i contracts onto j�0i and j�1i contracts onto j�1i.
The situation is exactly the same for the spin-1 states since the spin-1 state made

out of 1
 0� 0
 1 is even under a reection about the middle of the two site block,

whereas the spin-1 states made out of 1
 0+0
 1 and 1
 1 are odd under the same

reection. This means that the expansion of the even spin-1 state cannot contain any

eigenstates of the four-site problem in common with the expansion of the two odd

spin-1 states. Thus, only the two odd spin-1 states need to be rotated into one another

in order to guarantee that the lowest lying eigenstate appearing in the expansion of

each state is unique, just as in the spin-0 case.

With this behind us, in the rotated basis, Hdiag is a matrix whose diagonal entries

are the eigenvalues of the lowest-lying eigenstates which appear in the expansion of

the corresponding rotated state. Thus,

H2�block(j; j + 1) = RHdiagR
y

hconn(j; 2) = H2�block(j; j + 1)� hconn(j; 1)� hconn(j + 1; 1) (40)

Finally, given these results we have the renormalized Hamiltonian de�ned on the

thinner lattice

Hren =
X
j

(hconn(j; 1) + hconn(j; 2)) (41)

As with all renormalization group algorithms, one iterates this process until the

sequence of renormalized Hamiltonians either runs to a �xed point, or until one arrives

at a situation which can be handled by perturbation theory. The generic step of the

recursion follows the pattern just described, except that now the two site Hamiltonian

is de�ned to be

H2�site(j; j + 1) = hconn(j; 1) + hconn(j + 1; 1) + hconn(j; 2) (42)

instead of Eq. 35. As before one diagonalizes H2�site(j; j + 1) and retains the four

lowest lying eigenstates which, if one starts out with �1 < � < 1, will be a spin-0 and

spin-1 representation of SU(2). From these states one constructs the new diagonal

hconn(j). Next, one constructs the new range-2 interaction by using these four states

to construct the sixteen retained states for the two-block problem and expands them

in terms of a complete set of eigenstates for the two-block Hamiltonian. From these

expansions one determines R and Hdiag, from which one immediately constructs the
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new hconn(j; 2). The results of running such iterations for starting values of � = �1=3
and � = 2=3 are shown in Table 1 and Table 2 respectively.

The point � = �1=3 is one of the special points for which the theory based

upon the Hamiltonian, Eq. 33 is exactly solvable, so it is interesting to see how

the sequence of renormalization group transformations works for this case. Table 1

shows the results of the �rst and tenth iterations for the case � = �1=2. What is

tabulated for each iteration are the eigenvalues and total spins, S2 = S(S+1), for the

eigenstates of the renormalized two site Hamiltonian. As we see, initially the sixteen

states of the two site problem fall into irreducible representations of SU(2) and while

the states of each representation have the same energy, the di�erent representations

start out having distinct energies. This changes with increasing iterations until, as

we see in the column for iteration ten, the system acquires a degenerate spin-0 and

spin-1 multiplet and the remaining twelve states are all degenerate. This pattern

reproduces itself unchanged for all succeeding iterations.

To understand what is happening in a simple way it is useful to rewrite this

theory as a theory of spin-1=2 states. This can be easily done since each site of the

lattice has both a spin-0 and spin-1 representation living on it and the product of two

spin-1=2 representations contains exactly one spin-0 and one spin-1 representation, If

we identify these representations with the four states per site of the original theory

then we see that the Hilbert states of the original theory can be set in one-to-one

correspondence with the states of a spin-1=2 theory on a lattice with twice as many

sites. If we identify each two site block, B(2j; 2j + 1), with a single point of the

original � = �1=3 theory, then the range-two reection invariant Hamiltonian of the

original theory must be equivalent to a generic range-four Hamiltonian of the form

H =
X
j

[�1+ A~s(2j) � ~s(2j + 1) +B~s(2j + 1) � ~s(2(j + 1))

+ C~s(2j) � ~s(2(j + 1) + 1) +D~s(2j) � ~s(2(j + 1))

+ D~s(2j + 1) � ~s(2(j + 1) + 1))] (43)

Now, since for the case � = �1=3 the spin-0 and spin-1 states are degenerate it follows
that A = 0, but at the starting level B, C and D do not vanish. Clearly one could

obtain the exact values of these coe�cients from the values of the level splittings in

the �rst column of Table 1. The more interesting question is what values do these

coe�cients ow to as the number of iterations increase. Although one could do a

brute force calculation of these results it is clear from the eigenvalues appearing in

column two of Table 1 that the answer is that in this limit A = C = D = 0 and

B = :8359471 : : : and � = 3B=4. With this choice of parameters we see that of the

four spin-1=2 sites corresponding to the two site block of the original theory, only the

inner two spins are coupled to one another: i.e., the Hamiltonian for the block is just

H = 3B=41+B~s(2j+1) �~s(2(j+1)) = B=4+B(Stot(2j+1; 2(j+1))=2�3=4) (44)
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From this we see that if the two inner spins are coupled to a spin-0 state then the

two outer spins can be in any con�guration (in particular either spin-0 or spin-1)

producing four states of zero energy, which is what is seen. Furthermore, if the two

inner spins are coupled to spin-1 then one gets 4 � 3 = 12 degenerate states with

energy B, which is also what is seen. Turning to the full renormalized Hamiltonian

on the in�nite lattice we see that the Hamiltonian describes a fully dimerized spin-1=2

system in which there is no coupling between two spins in the same block and the

block-block couplings only exist between adjacent spins. It follows that the ground

state of the in�nite volume theory is one in which each pair of neighboring spins is

coupled to spin-0. Note that this is reminiscent of the exact solution of this model as

a valence bond solid [5]. The lowest lying excited states are those for which any one

pair of interacting spins couples to a spin-1 state and all the others couple to a spin-0

state. If one is not at the renormalization group �xed point where A = C = D = 0,

but a small distance away, where these couplings are small but non-vanishing, then

these degenerate states split into momentum bands. The interpretation of the �xed

point gap is just the gap to all of the states which have arbitrarily small momentum

in the in�nite volume theory.

If we consider Table 2 we see quite a di�erent picture, in that now the various

multiplets are non-degenerate in the �rst iteration. Nevertheless, we see that after

ten iterations the energy eigenvalues (to the accuracy shown) reproduce the same

�xed point pattern as seen in the case � = �1=3 up to an overall constant. The

only important di�erence between the case � = �1=3 and � = 2=3 is that the gap

for � = 2=3 is smaller. Fig. 3 shows the result of carrying out renormalization group

transformations for �1 < � < 1:8. Thus, the general picture emerging from this

computation is that the spin-1 HAF in the region between �1 < � < 1 is controlled

by the valence bond solid �xed point at � = �1=3 as one moves away from this

point the mass goes down and at some point both above and below � = 1=3 the

theory appears to become massless. Given the limitation of the CORE computation

to range two terms in the renormalized Hamiltonian it is not surprising the location

of the points where the theory actually becomes massless is not very accurate. The

dashed curve in Fig. 3 is not meant to be taken seriously, it is drawn in to guide the

eye and remind the reader that the points � = �1 are known to be massless theories;

one would hope that a computation going out to terms of range three or four would

come closer to this picture. In any event, it seems clear from the picture that the

point � = 0, which is the spin-1 HAF, lies close enough to the � = �1=3 theory that

one can be con�dent that it corresponds to a massive theory as conjectured. This of

course is what we set out to show.

A �nal point worth commenting upon is the fact that no CORE computations

were done for � � �1. The reason for this is that the truncation scheme used was to

keep only the lowest lying spin-0 and spin-1 states. One trouble with this is that the

program I used to compute the CORE transformation simply selected the four lowest

lying states, which for the nondegenerate system in which the spin-1 and spin-2 have

di�erent energies worked �ne. Unfortunately, this scheme breaks down at � too near
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�1 and one ends up selecting four states but not necessarily all from either the spin-0

or the spin-1 multiplet. In this case one gets spurious results. To do the full job

correctly would have required a more carefully written program. Another problem

which contributes to the lack of accuracy of the range-2 calculation in the vicinity of

� = �1 is that the theory develops an SU(3) symmetry at � = �1 and so a truncation
scheme which keeps only the spin-0 and spin-1 multiplets isn't capable of manifestly

preserving this symmetry. A scheme which did preserve the symmetry would need

to keep full SU(3) multiplets; i.e., the SU(3) singlet state, which corresponds to the

spin-0 state, and the full SU(3) octet state, which corresponds to the sum of the spin-

1 and spin-2 states. While CORE allows one to choose a truncation scheme which

doesn't manifestly preserve the symmetries of the original theory and still obtain

correct results, it does this at the expense of needing longer range couplings in the

renormalized Hamiltonian in order to obtain high-accuracy.

2.5 General S

In the preceding section I discussed the application of CORE to the spin-1=2 and spin-

1 HAF, where simple range-2 arguments su�ced to show that, in agreement with the

Haldane conjecture, the spin-1=2 HAF is a massless theory and that the spin-1 HAF

is massive. What I did not discuss is what this analysis has to say about the case of

the spin-S HAF when S is greater than one. While a full analysis of the generic case

would require doing a range-2 computation for all values of S > 1, which I do not

know how to do, examination of the key di�erence between these two computations

strongly suggests the physics which controls the general case.

To begin the discussion of the HAF for generic S consider the �rst CORE trans-

formation for an arbitrary S HAF when one uses a three site blocking procedure.

(The reason for using a three site algorithm is that I already showed that there is no

two site blocking procedure which works for the spin-1=2 HAF.) For generic S the

three site HAF Hamiltonian is given by Eq. 11 and the exact solution is as before,

only the values for STOT(1; 2; 3)
2 and STOT(1; 3)

2 change from case to case. It follows

immediately that the lowest lying representation for the three site problem is always

spin S and so, the state structure of the renormalized theory is the same as in the

original theory, but as for the spin-1 HAF, the Hamiltonian changes. As always, trun-

cating to the lowest lying representation yields a range-1 renormalized Hamiltonian

which is simply a multiple of the unit matrix and so, the only real dynamics comes

from computing the range-2 terms. In general, since the single-site retained states

form a spin-S representation, the two site retained states decompose into a sum of

representations going from S
0

= 0 : : : 2S. Therefore, the new Hamiltonian can be

written as a sum of terms

H =
X
j

2SX
S

0

=0

�S0PS
0 (j; j + 1) (45)

where PS
0 (j; j + 1) is the operator which projects the tensor product states onto the
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spin-S
0

representation and �S0 is the eigenvalue of the lowest lying spin-S
0

state ap-

pearing in the expansion of the projected tensor product state in terms of eigenstates

of the two-block problem. Again, following the previous discussion, this Hamiltonian

can always be rewritten as a polynomial in the operators ~s(j)�~s(j+1). The important

thing to notice at this point is that for integer S and �S0 = 0 for S
0

= 0 : : : S and

�S0 > 0, then the Hamiltonian is a theory of the form constructed by A�eck, Kennedy,

Lieb and Tasaki (AKLT)[6] in order to exhibit theories having a valence-bond solid

ground state. Thus, in the integer spin case any three site CORE transformation

immediately maps the integer spin HAF into a theory which has a massive valence-

bond solid theory nearby. While it would take doing a complete computation of the

CORE ows for this theory in order to prove that the spin-S HAF lies in the basin

of attraction of this theory, it is exactly what happened in the spin-1 case and it is

not unreasonable to conjecture that this is the case for general S.

The situation is quite di�erent for theories with half-integer S. In such cases any

three site renormalization group transformation will map the theory into a sum of

half-integral spin representations of SU(2) with Hamiltonians of the form given in

Eq. 45 and it is a theorem that an AKLT Hamiltonian for half-integral S can't have

a valence-bond solid ground state. Generically, this result will coincide with what is

found in a CORE computation, since for a half-integer spin a three site truncation

will always require that one keeps at least one irreducible representation per site

which will perforce have dimension two or greater and these CORE calculations will

generally iterate in a manner similar to the spin-1=2 theory; i.e., they will predict a

massless theory, which is consistent with the Haldane conjecture.

To summarize, while a full discussion of the generic case would require explicitly

computing the CORE transformations and proving that the integer spin theories all

lie in the basin of attraction of the theory to which the nearby AKLT model iterates,

general arguments constrain the general aspects of the calculations and su�ce to

show several important things: �rst, for all S > 1=2 the �rst CORE computation

generates a new Hamiltonian having the general structure of an AKLT model but with

more general values of �S0 and that these terms play an important role in subsequent

iterations; second, that for integer S the corresponding AKLT Hamiltonian has a

valence-bond solid ground state and is a massive theory; third, that for half-integer

S the corresponding AKLT model does not admit a valence-bond solid ground state

and the structure of the CORE ows is generically similar to the spin-1=2 case. While

I do not know a way to explicitly compute the CORE transformations for arbitrary

S, it seems safe to conjecture that the preceding discussion is how things would work

for any S.

3 Conclusion

In the preceding sections of this paper I exhibited explicit, �rst principles, CORE

computations for the spin-1=2 and spin-1 HAF which showed that even the simple
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range-2 approximation to a full CORE computation agreed with the predictions of

the Haldane conjecture. I then argued that these computations lead directly to a very

attractive picture of how things can be expected to work for general S. There are two

comments I would like to make about this argument. The �rst is that, as I stated at

the outset, the spin-1=2 and spin-1 results show that CORE is more than capable of

providing a simple explanation of phenomena which from other points of view appear

quite subtle. This, of course, buttresses the hope that CORE can fruitfully be applied

to the study of the complicated spin theories which are obtained from free fermion

theories and theories of fermions interacting with gauge-�elds. The second point I

would like to make is that this same chain of argument shows that although CORE

does have a strong dependence upon the ability to do numerical computations, it is

inherently di�erent from Monte Carlo computations in that the strong focus on the

short distance Hamiltonian physics and computation of renormalization group ows

allows one to directly extract a physical picture of what is going on.
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Table 1: CORE ow for case � = �1=3

Iteration 1 Iteration 10

Levels S
2

Levels S
2

0 0 0 0

0 2 0 2

0 2 0 2

0 2 0 2

0.89791173 6 0.83159471 6

0.89791173 6 0.83159471 6

0.89791173 6 0.83159471 6

0.89791173 6 0.83159471 6

0.89791173 6 0.83159471 6

0.94191045 2 0.83159471 2

0.94191045 2 0.83159471 2

0.94191045 2 0.83159471 2

1.1835034 2 0.83159471 2

1.1835034 2 0.83159471 2

1.1835034 2 0.83159471 2

1.8944584 0 0.83159471 0
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Table 2: CORE ow for case � = 2=3

Iteration 1 Iteration 10

Levels S
2

Levels S
2

-0.75395437 0 -1.6479538 0

1.1561163 2 -1.6479538 2

1.1561163 2 -1.6479538 2

1.1561163 2 -1.6479538 2

2.7471518 6 -1.1820317 6

2.7471518 6 -1.1820317 6

2.7471518 6 -1.1820317 6

2.7471518 6 -1.1820317 6

2.7471518 6 -1.1820317 6

3.520943 2 -1.1820317 2

3.520943 2 -1.1820317 2

3.520943 2 -1.1820317 2

4.6626764 0 -1.1820317 0

5.6297153 2 -1.1820317 2

5.6297153 2 -1.1820317 2

5.6297153 2 -1.1820317 2
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Figure 1: Energy levels for a two site block for the Hamiltonian given by Eq. 33 for

�1 � � � 1.
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Figure 2: Energy levels for a three site block for the Hamiltonian given by Eq. 33 for

�1 � � � 1.

22



0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1 1.5

β

valence-bond
solid

Figure 3: CORE predicted mass gap for �1 � � � 1.
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