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Abstract

We propose Minimal Gaugino Mediation as the simplest known solution

to the supersymmetric 
avor and CP problems. The framework predicts a

very minimal structure for the soft parameters at ultra-high energies: gaugino

masses are uni�ed and non-vanishing whereas all other soft supersymmetry

breaking parameters vanish. We show that this boundary condition naturally

arises from a small extra dimension and present a complete model which

includes a new extra-dimensional solution to the � problem. We brie
y discuss

the predicted superpartner spectrum as a function of the two parameters of

the model. The commonly ignored renormalization group evolution above the

GUT scale is crucial to the viability of Minimal Gaugino Mediation but does

not introduce new model dependence.
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I. INTRODUCTION

Hidden sectors are an essential ingredient of simple and natural models of supersymmetry

(SUSY) breaking. The unifying idea is that SUSY is assumed to be broken in the hidden

sector and then communicated to the minimal supersymmetric standard model (MSSM)

by messenger interactions which are 
avor blind. This structure results in 
avor-universal

scalar masses and solves the SUSY 
avor problem.

In the context of extra dimensions with branes such hidden sectors are very natural.

If { for example { the MSSM and the SUSY breaking sector are con�ned to two di�erent

parallel 3-branes embedded in extra dimensions, then the separation in the extra dimensions

forbids direct local couplings between the \visible" MSSM �elds and the hidden sector.

However, �elds on separated branes can still communicate by exchanging bulk messenger

�elds. Couplings which arise from such non-local bulk mode exchange are suppressed. For

a messenger of massM and brane separation L the suppression factor is e�ML, which is the

Yukawa propagator of the messenger �eld exchanged between the two branes.

This suggest a very simple scenario for communicating SUSY breaking to the MSSM

which guarantees 
avor-universal scalar masses. If all light bulk �elds have 
avor blind

couplings then the soft SUSY breaking parameters generated by exchange of these mes-

sengers preserve 
avor. Heavy bulk modes may violate 
avor maximally but the resulting

non-universal contributions to the scalar masses are exponentially suppressed [1].

The two obvious candidates for bulk �elds which can communicate SUSY breaking to

the Standard Model �elds in a 
avor-blind way are gravity and the Standard Model gauge

�elds. Gravity as a bulk messenger (\Anomaly Mediation" [1,2]) leads to a very simple

and predictive model which unfortunately predicts negative slepton masses and is therefore

ruled out in its simplest and most elegant form.1 The alternative, Standard Model gauge

�elds as messengers (\Gaugino Mediation"), has been proposed recently by D.E. Kaplan,

Kribs, and Schmaltz [4] as well as by Chacko, Luty, Nelson, and Ponton [5] and was found

to work perfectly. In Gaugino Mediation the MSSM matter �elds (quarks, leptons and

superpartners) live on a \matter brane", while SUSY breaks on a parallel \SUSY breaking

brane", and the MSSM gauge super�elds live in the bulk. Because the gaugino �elds are

bulk �elds they couple directly to the SUSY breaking and obtain soft masses. The MSSM

scalars are separated from SUSY breaking by the distance L and therefore obtain much

smaller masses from non-local loops with high momentum modes of the bulk gauge �elds

[6,4]. Thus at the compacti�cation scale the theory matches onto a four-dimensional theory

with gaugino masses and negligibly small scalar masses.

Vanishing scalar masses and non-vanishing gaugino masses at a high scale, as in no-

scale models [7], is very attractive because evolving the theory to low energies via the

1For models which cure Anomaly Mediation by introducing new �elds and interactions see [3].
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renormalization group equation generates 
avor-universal and positive soft scalar masses.

Consistent electroweak symmetry breaking also requires a � term of size comparable to the

gaugino masses. Thus a minimal version of Gaugino Mediation has only three high energy

parameters

�; M1=2; Mc : (1.1)

HereM1=2 is the common gaugino mass at the uni�cation scale, and Mc is the compacti�ca-

tion scale where the higher dimensional theory is matched onto the e�ective four-dimensional

theory. Since we wish to preserve the successful prediction of sin2 �w from gauge coupling

uni�cation in the MSSM we limitMc > MGUT .

In Section II of this paper we show that this scenario, which we call \Minimal Gaugino

Mediation" (M~gM), with only the parameters in Eq. (1.1) works very well phenomenologi-

cally. The minimal scenario which we advocate here di�ers from the more general models

in [4,5] in that we do not introduce soft supersymmetry breaking mass parameters in the

Higgs sector of the theory atMc. Radiative electroweak symmetry breaking works automat-

ically in M~gM and determines � by �tting to the Z mass. Therefore the entire superpartner

spectrum of M~gM can be computed via the renormalization group equations in terms of

only two free parameters: M1=2 and Mc. We will see that the running from Mc to MGUT

in the grand uni�ed theory is important for the masses of the lightest superpartners. We

�nd that the Bino is the LSP and a perfect cold dark matter candidate in a large region of

the models' parameter space. \Minimal Gaugino Mediation" also evades all existing collider

bounds without �ne-tuning.

In Section III we present a complete and economical model which gives rise to the

M~gM boundary condition. The model generates the hierarchy between the Planck scale and

the SUSY breaking scale with the extra-dimensional dynamical supersymmetry breaking

mechanism of Arkani-Hamed, Hall, Smith, and Weiner [8]. To solve the � problem without

introducing a B� problem we propose a new mechanism in which �ve-dimensional N = 1

supersymmetry relates � and the gaugino mass.

In Section IV we brie
y explain why M~gM has no SUSY CP problem, estimate the

neutralino relic density, and conclude.

II. SPARTICLE SPECTRUM IN M~gM

In this section we determine the predictions of M~gM for the spectrum of MSSM particles.

The input parameters of the model are listed in Eq. (1.1). We use the renormalization

group equations (RGEs) of the DR scheme to calculate the soft breaking parameters at

the electroweak scale. We �rst outline our procedure for the running and discuss general

features of the evolution. Then we present the spectrum of superparticles and describe how

the experimental limits translate into constraints on the parameter space of the model.
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At the compacti�cation scale MGUT
<� Mc

<� MP lanck=10 the mass parameters of M~gM

are

M1=2 � � 6= 0; m2 = A = B = 0 : (2.1)

We limit the range of compacti�cation scales from below by the GUT scale in order to

preserve the successful prediction of sin2 �w from four dimensional uni�cation in the MSSM.

Note that this requirement would still allow compacti�cation scales slightly below MGUT ;

however as we will discover below, Mc needs to be slightly larger than MGUT to avoid a

charged LSP. The upper limit on Mc is more model dependent. It arises from demanding

that 
avor violating soft masses are su�ciently small. Such masses are generated from

exchange of massive bulk �elds with 
avor-violating couplings, which are expected to be

present in any fundamental theory which explains the Yukawa couplings of the Standard

Model. Assuming that the lightest such states have masses of orderMP lanck the suppression

factor is of the order of exp(�MP lanck=Mc). Requiring that this exponential suppresses

o�-diagonal squark masses su�ciently gives Mc
<�MP lanck=10.

To connect the boundary condition of Eq. (2.1) to experiments at the weak scale we �rst

run fromMc to MGUT in the uni�ed theory and then run fromMGUT to the weak scale with

the RGEs of the MSSM. Gaugino domination, or the no-scale, boundary conditions have

been studied extensively in the literature, however only including renormalization below the

GUT scale [9{11]. Since the renormalization e�ects above the GUT scale are not discussed

very frequently in the literature we describe them in some detail �rst.

Naively, one might be tempted to argue against calculating renormalization e�ects above

the GUT scale because: i. the running above the GUT scale gives only very small masses

because log( Mc

MGUT
)� log(MGUT

Mweak
) and ii. the running of soft masses above the GUT scale is

model dependent because the theory above the GUT scale contains new unknown �elds and

couplings which enter the RGEs and give rise to unknown threshold e�ects. Both of these

arguments are invalid as is easy to see: Argument i. neglects group theory factors. For

example, the mass which is generated for the right-handed sleptons from running below the

GUT scale is very small because they only couple to hypercharge. Above the GUT scale,

sleptons are uni�ed into larger GUT representations and the associated larger multiplicity

factors more then compensate for the smaller log. The second argument would apply in

general theories with soft masses, but it does not apply to M~gM where (at one loop) all

generated soft masses are determined by gauge charges only. To understand this consider a

generic one-loop RG equation for scalar soft terms

d

dt
(soft) / g2M1=2 + (soft)f(g2;SUSY couplings) : (2.2)

Here the �rst term is determined entirely by the known gauge charges, whereas the second

term depends on unknown new �elds and couplings. However, in M~gM all soft terms for the

scalars are zero at Mc. Therefore, the soft masses appearing in the second term are small
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(loop-suppressed compared toM1=2), and it is a good approximation to drop the second term.

The only remaining model dependence is in the gauge interactions above the GUT scale.

The predictions depend on the choice of uni�ed gauge group, and we present predictions

for both SU(5) and SO(10). Furthermore, there is also a weak dependence on the running

of the uni�ed gauge coupling above the GUT scale. We perform our renormalization group

analysis assuming a minimal set of GUT representations (3 � (10 + �5) + 5 + �5 + 24 for the

case of SU(5) and 3� 16+10+45+16+�16 for SO(10)). However, even adding as much as

three additional adjoints to either theory would change the �nal scalar masses by at most a

few percent.2 Finally, note that GUT threshold corrections to the supersymmetry breaking

scalar masses vanish in DR so that using the RGEs gives the complete answer.

Even though we perform our renormalization group analysis numerically one can also

obtain extremely simple approximate formulae for the soft parameters at the GUT scale as

follows. At one loop the ratio
M1=2

g2
is RGE invariant. Thus, the running of M1=2 is trivial

as it traces the running of the gauge coupling, and we present our results using � and M1=2

evaluated at MGUT rather than at Mc. Assuming that the running of the couplings above

the GUT scale is not too fast all other soft terms at the GUT scale are then given by [13]

Atop = �2�
�
M1=2 tc

�
24

5
;
63

8

�
; (2.3)

B = �2�
�
M1=2 tc

�
12

5
;
9

2

�
; (2.4)

m2
�5

= 2�
�
M2

1=2 tc

�
12

5
;
9

2

�
; (2.5)

m2
10

= 2�
�
M2

1=2 tc

�
18

5
;
45

8

�
; (2.6)

where tc = log( Mc

MGUT
) ranges between 0 and 4. Note that we de�ned the trilinear soft scalar

coupling as Atop �Ytop. All parameters in the equations above are evaluated at the GUT scale.

The gauge coupling at the uni�cation scale is determined from the low-energy values of the

couplings and it corresponds to �GUT = 1=24:3. The �rst set of numbers in parenthesis

applies to SU(5), the second one to SO(10). With an abuse of notation for the case of

SO(10) we de�ned m2
�5
to denote the soft mass for the Higgses of the MSSM, while m2

10

denotes the common soft mass of the matter �elds.

As we will see shortly, M~gM with SU(5) uni�cation predicts moderate values of tan�

between 12 and 25 so that we can neglect the e�ect of the bottom Yukawa coupling on the

running of soft parameters. For SO(10) larger values of tan � arise for large compacti�cation

scales. Since we have only kept the top Yukawa in our RGEs we limit tc � 2 for SO(10).

Then the only signi�cant A term generated is Atop.

Below the GUT scale we integrate the one-loop RGEs [14] numerically. One loop-running

2A more detailed discussion of RGEs above the GUT scale can be found in [12].
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has adequate precision if one uses the one-loop improved Higgs potential [15,16]. The dom-

inant correction to the lightest Higgs mass comes from top quark loops below the stop mass

threshold. It can be accounted for by adding the term

3Y 4
top

16�2
log

m~tL
m~tR

m2
t

�
Hy
uHu

�2
: (2.7)

In addition, we incorporate the contributions to squark and slepton masses arising from

D-terms as described in Ref. [10].

After evolving all soft masses to the weak scale we impose the constraints which follow

from radiative electroweak symmetry breaking. This determines the weak scale values of

both � and tan �, and we are left with only two free parameters: M1=2(MGUT ) and the

compacti�cation scale Mc. The � parameter is multiplicatively renormalized, and it does

not enter any RGE at one loop. Therefore, we will quote its value at the weak scale.

log(M /M  )c GUT
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100

105

110

115

120
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130

FIG. 1. The dependence of the masses of the stau, the lightest neutralino and the lightest Higgs

on the compacti�cation scale for �xed M1=2 = 250 GeV. The neutralino mass (104 GeV) and the

Higgs mass (111 GeV) are almost independent of the compacti�cation scale and the GUT gauge

group. The rising solid line and the dashed line indicate the mass of the stau in SU(5) and SO(10),

respectively.

Figure 1 illustrates the signi�cance of the RG evolution above the GUT scale. Without

running above the GUT scale (Mc = MGUT ) the stau is the LSP; however for any com-

pacti�cation scale larger than only 1:5MGUT the stau is heavier than the lightest neutralino.

Note that the dependence of the stau mass on tc = log( Mc

MGUT
) is stronger in SO(10) than

in SU(5). This follows from the larger group theoretical factors in SO(10) which cause soft

masses above the GUT scale to be generated more e�ciently.

The allowed parameter space for SU(5) and SO(10) M~gMmodels is presented in Figure 2.

We �nd a lower bound on tc from requiring that the LSP be neutral. An upper bound on tc is

not shown on the �gure, but as discussed above, 
avor violating e�ects due to massive bulk

�elds limit tc <� 4. Since M1=2 is the only source for superpartner masses, the experimental
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FIG. 2. The allowed region of the parameter space for M~gM with SU(5) and SO(10) uni�ed

group. The curves at the bottom of the �gure correspond to LEP II limits on the masses of the

Higgs (straight line) and stau (concave). Demanding that relic LSPs contribute the cosmologically

preferred amount of cold dark matter and do not over-close the universe singles out the region of

parameter space between the lines labeled 
h2 = 0:1 and 0:3.

lower limits on superpartner masses and the Higgs mass translate into lower limits on M1=2.

In particular, we �nd that the LEP II limits [17] on the Higgs mass (mho � 106 GeV)3

and the right handed slepton masses (m~� � 75 GeV and m~e � 95 GeV) imply M1=2
>� 180

GeV. Furthermore, we �nd that the � parameter in our model is given by � = 3=2M1=2

to an accuracy of better than 2% for all values of tc. This implies a lower bound � >� 270

GeV with an associated mild tuning of the Z mass. The �gure also shows contours of the

relic abundance of the lightest neutralino corresponding to 
�h
2 = 0:1; 0:3. The LSP relic

abundance calculation is particularly simple in our model, we discuss it brie
y in Section

IV.

Figure 3 shows the M~gM spectrum as a function of the gaugino mass for the example

case of an SU(5) GUT with log( Mc

MGUT
) = 2. The qualitative features of the spectrum are

generic and do not depend on the choice of grand uni�ed group or compacti�cation scale.

The masses of all superpartners and Higgs �elds, except for the lightest Higgs, rise linearly

with M1=2. As in minimal supergravity the LSP is a Bino-like neutralino. The right-handed

stau is the next-to-LSP. As usual, colored superpartners are heaviest, followed by charginos,

neutralinos and Higgses with masses of order �. The mass of the lightest Higgs particle

increases only logarithmically with M1=2 through the one-loop improvement of the Higgs

3The Standard Model Higgs bound rather than the much weaker SUSY Higgs bound applies in

the entire allowed parameter space because � is su�ciently large so that the heavier Higgs �elds

decouple and the production cross section becomes Standard-Model-like.
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M1/2

log(M /M  )= 2c GUT M1/2

log(M /M  )c GUT

200 300 400 500 600

250

500

750

1000

1250

1500

0 1 2 3 4
100

200

300

400

500

600

FIG. 3. Left graph: particle masses as functions of M1=2 for �xed compacti�cation scale. The

lines correspond to (from lightest to heaviest at M1=2 = 600 GeV) the lightest Higgs, lightest

neutralino, right-handed stau, second lightest neutralino, heavy chargino, pseudoscalar Higgs,

left-handed stop, and gluino. Right graph: contours of constant tan�. The contours correspond

to tan� of 12, 15, 20, and 25 from left to right. The solid lines are for SU(5), the dashed ones for

SO(10).

potential as described in Eq. (2.7).

Figure 3 also shows contours of constant tan � in the M1=2 � tc plane. Note that in the

allowed region tan � is almost independent of M1=2, but it increases with tc.

Since M~gM has only 2 free parameters, measuring the masses of only two particles is in

principle su�cient to determine the input parameters and predict the entire superpartner

spectrum. In practice, presumably the Higgs will be the �rst new particle to be discovered.

This is because the MSSM Higgs mass bound of 130 GeV applies also to the M~gM Higgs

which could therefore be discovered (or ruled out) at Run II of the Tevatron [18], and might

even be seen at LEP 205. The mass of the Higgs would give an estimate of M1=2. Should

M1=2 be close to 200 GeV, there is a chance that LEP or the Tevatron will discover the �rst

superpartners. For low enough compacti�cation scales LEP would �nd the right-handed

stau and/or selectron. Independent of the compacti�cation scale the Tevatron could then

observe charginos in the tri-lepton channel [19]. For larger M1=2 we would have to wait for

the LHC.

It is exciting that observation of the �rst superpartner immediately also leads to a �rst

test of the model. This is because the discovery would allow a mass measurement of both the

discovered superpartner as well as the LSP mass from the distribution of the missing energy.

One could then use the measured masses of the Higgs and Bino to obtain two independent

determinations of M1=2 and therefore test the model. Once we know a mass of any of the

sleptons we can extract the remaining free parameter { tc. Note that discovery of just a few

of the lightest superpartners would already allow a determination of the GUT gauge group!
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III. M~gM, AN EXPLICIT MODEL

In this section we describe a simple model which breaks supersymmetry and yields only

gaugino masses at the compacti�cation scale. Our model is complete: it generates expo-

nentially small supersymmetry breaking which is mediated to the gauginos via a higher

dimensional operator, and � is naturally of the same order as the gaugino masses. The

model combines the idea of \gaugino mediation" with the supersymmetry breaking mecha-

nism proposed in [8].

To begin we recall the higher dimensional set-up of [4]. The MSSM matter and Higgs

�elds live on a 3+1 dimensional brane embedded in one extra dimension. Supersymmetry is

broken dynamically on a parallel brane which is a distance L apart from the matter brane

(Fig. 4). The MSSM gauge �elds and gauginos live in the bulk of the extra dimension. We

take this extra dimension to be circular, with radius R. In order to preserve the quantitative

prediction of sin2 �w from gauge coupling uni�cation in the four dimensional MSSM, we

demand that the compacti�cation scale be higher than the GUT scale, R�1 �Mc �MGUT .4

J

brane

M1

c

MSSM matter

2/µ

J

SUSY breaking
               brane

φφ c

FIG. 4. A brane con�guration which leads to the Minimal Gaugino Mediation boundary con-

dition. Pictured is the extra dimension from left to right with periodic boundary conditions. We

also show the exponentially decaying vacuum expectation values of � and �c which are responsible

for generating hierarchically small supersymmetry breaking and the � term.

In our model, supersymmetry breaking manifests itself in a vacuum expectation value

for the F-component, XF , of a chiral super�eld X on the SUSY breaking brane. The MSSM

gaugino �elds can couple to X directly, giving a gaugino mass

4A similar constraint on the compacti�cation scale also follows from demanding that the extra-

dimensional theory remains perturbative up to the �ve dimensional Planck scaleM , g2GUT =
g2
5

2�R <
24�5=2

2�RM . Using 2�RM3 =M2
P lanck this becomes RMP lanck < 750.
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Z
dx5�(x5 � L)

Z
d2�

XWW

M2
! XF

VM2
�� : (3.1)

Here, the factor of the extra-dimensional volume (V = 2�R for a circle) arises from the

wave function normalizations of the four-dimensional gaugino �elds �. All other soft su-

persymmetry breaking parameters in the MSSM, such as soft scalar masses XyXQyQ, are

suppressed at short distances by extra-dimensional locality [4]. The low-energy values of

these parameters are generated from the renormalization group equations as discussed in

the previous section.

It is useful to discuss the exact form of the short-distance suppressions in more detail.

In general, there are two possible sources for such terms: direct contact terms suppressed

by the cut-o� M or non-local terms from loops of the light bulk gauge �elds. The contact

terms are not present in the e�ective theory below M to all orders in the local expansion

in inverse powers of M because they connect �elds at di�erent positions. However, this

does not preclude the appearance of terms with coe�cients e�LM which do not have an

expansion in local operators. These operators are expected to be 
avor violating and are

therefore strongly constrained experimentally [20]. The most stringent constraint comes

from CP violation in the K system and gives roughly e�LM <� 10�4 or LM >� 8. Therefore,

the allowed range for the compacti�cation scale is MGUT
<�Mc

<�MP lanck=10.

The other source of short-distance scalar masses { loops of bulk gauge �elds { leads to

�nite contributions to the masses which are suppressed by additional powers of the separation

L relative to the gaugino mass (3.1). However, they are 
avor universal because they arise

from gauge interactions. As discussed in detail in [4] these contributions are negligible

compared to the much larger contributions from the renormalization group evolution.

In the following Subsections we turn to discussing the mechanism of supersymmetry

breaking and the origin of the � term in the model. Our mechanism for breaking supersym-

metry and stabilizing the radius of the extra dimension is taken directly from the elegant

paper of Arkani-Hamed et. al. [8]. In the following, we summarize their discussion and

apply it to our model. Our solution to the � problem is new.

A. Supersymmetry breaking

Following [8], we keep track of four-dimensional N = 1 supersymmetry by employing

four-dimensional N = 1 superspace notation and treating the x5 coordinate as a label. The

action for a massive �ve-dimensional hypermultiplet (�;�c) then reads

Z
d4xdx5

�Z
d4�(�y� + �cy�c) +

Z
d2��c(m+ @5)�

�
: (3.2)

The advantage of this formalism is that it is straightforward to write down N = 1 super-

symmetric couplings of � to boundary �elds. The supersymmetry breaking model of [8]

consists of the bulk �eld � with superpotential couplings to a source J and a �eld X which
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are localized on di�erent branes. J is localized on the matter brane at x5 = 0, while X on

the SUSY-breaking brane at x5 = LZ
dx5

�
��(x5)

p
MJ�c + �(x5 � L)

p
MX�

�
: (3.3)

Here we have suppressed coupling constants but inserted factors of the fundamental mass

scale M to keep track of mass dimensions. The vacuum equations for the scalar �eld are

then

�F = �(x5 � L)
p
MX + (m� @5)�c = 0; (3.4)

�c
F = ��(x5)

p
MJ + (m+ @5)� = 0 : (3.5)

On a circle x5 2 [0; 2�R) the equation for � has the unique solution

� =
p
MJ

e�mx5

1 � e�m2�R
: (3.6)

Thus the source J \shines" a vacuum expectation value for the bulk scalar � which decays

exponentially with increasing x5 (see Fig. 4). Supersymmetry is broken because X obtains

a non-vanishing F -component

XF =
p
M�(L) =MJ

e�mL

1� e�m2�R
�MJ e�mL : (3.7)

Assuming a source J �M and a mass m �M one �nds XF �M2 e�ML.

Note that this model is a higher dimensional generalization of a simple O'Raifeartaigh

model. The source J forces a non-zero expectation value for the �eld �, that is in con
ict

with the X equation of motion which requires � = 0. The role of the extra dimension is to

modulate the resulting supersymmetry breaking by the factor e�ML. Coupling the �eld X

to the gauge �elds as in Eq. (3.1) then results in non-vanishing gaugino masses

M1=2 =
XF

2�RM2
� J

2�RM
e�ML : (3.8)

As in ordinary O'Raifeartaigh models, the scalar expectation value of X is undetermined

classically. A non-vanishing expectation value can be seen to act as a source for �c from Eq.

(3.4). In order to simplify the analysis we assume that the X-expectation value is zero. This

may either be enforced by additional tree-level superpotential terms on the supersymmetry

breaking brane such as �(x5�L)[XY +Y 2Z], or it could be a result of quantum corrections

lifting the 
at direction.

B. The � term

To generate a � term of the correct size we utilize the �c component of the super�eld

(�;�c). To break supersymmetry we used an expectation value for � which was \shining"
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clockwise from the source J on the matter brane towards the supersymmetry breaking brane.

For generating � we \shine" an expectation value for �c by adding the superpotential

Z
dx5

 
��(x5 � L)

p
MJ c� + �(x5)

�p
M

�cHuHd

!
: (3.9)

The new terms modify the equations of motion

�F = ��(x5 � L)
p
MJ c + (m� @5)�

c = 0; (3.10)

�c
F = ��(x5)

p
MJ + (m+ @5)� = 0 ; (3.11)

where we have assumed that the vacuum expectation values of X and HuHd are negligible

compared to J; J c � M . As mentioned in the previous Subsection this can be enforced by

adding suitable brane potentials.

We see that the � equation is unchanged, while the new source J c also \shines" an

expectation value for �c

�c =
p
MJ c

em(x5�L)�m2�R �(x5�L)

1 � e�m2�R
: (3.12)

Note that since we have placed the source on the supersymmetry breaking brane �c is

\shined" in the opposite direction from �, as depicted in Fig. 4. The generated � term is

equal to

� =
�p
M
�c(0) = �J c

e�mL

1� e�m2�R
� �J c e�mL : (3.13)

Comparing this to the gaugino mass Eq. (3.8) we �nd that we need to set � � 1=(2�RM) �
1=100.

Note that � has the exact same exponential suppression factor e�mL as m1=2. This follows

from the fact that � and �c reside in the same �ve dimensional supersymmetry multiplet.

In other words, �ve dimensional supersymmetry relates the exponential suppression factors

appearing in � and M1=2. It is disappointing that because of the volume suppression in

the gaugino masses we still need to choose a small coupling � to get � � M1=2. However,

� is a superpotential coupling and as such can be small naturally. Note that the spatial

separation of the supersymmetry breaking XF from the location of the Higgs �elds does not

allow a B� term at the high scale. We therefore do not have the usual problem B � 16��

which haunts most other approaches to the � problem. Finally, we emphasize that this new

extra-dimensional solution to the � problem does have broader applicability.

C. Radius stabilization

In the discussion above we have assumed that the radius R of the extra dimension and the

distance L between the branes are �xed. In a complete theory both parameters correspond
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to �elds. We now discuss a simple supersymmetry-preserving mechanism to stabilize both

R and L. Our mechanism is a trivial modi�cation of [8]. In its simplest form it requires a

single additional massive bulk hypermultiplet (	;	c) with couplings to brane �elds

Z
dx5

�
��(x5)

p
M [I	c + Ic	] + �(x5 � L)

p
M [A(	� �

p
M) +Ac(	c ��c

p
M )]

�
:

(3.14)

Assuming that the brane �elds A;Ac have no vacuum expectation values5 one �nds the

following equations of motion

	F = ��(x5)
p
MIc + (m	 � @5) 

c = 0; (3.15)

	c
F = ��(x5)

p
MI + (m	 + @5) = 0; (3.16)

AF =  (L)� �
p
M = 0 ; Ac

F =  c(L)� �c
p
M = 0; (3.17)

which have unique supersymmetry preserving solutions for R and L. For example for sym-

metric values of the parameters � = �c and I = Ic we �nd

L = �R =
1

m	

arcsinh
�
I

2�

�
: (3.18)

Thus, for I and � of orderM a radius of the desired size is generated by choosing a relatively

small mass for the bulk scalar m	 �M=30.

IV. DISCUSSION

Minimal Gaugino Mediation is a very compelling and predictive theoretical framework

which solves all supersymmetric naturalness problems without �ne-tuning.

M~gM solves the supersymmetric 
avor problem: At the high scale Mc the scalar masses

and A-terms vanish, and therefore the only 
avor violation in renormalizable couplings

resides in the Yukawa couplings. Gaugino loops generate universal positive scalar masses at

low energies. Small non-universalities in the masses arise from the Yukawa interactions, but

these contributions do not lead to new 
avor violation because they are aligned with the

Yukawa matrices. An exception to this is the running of the scalar masses above the GUT

scale where 
avor is broken by uni�ed interactions [13,21]. Since the right-handed sleptons

are light in M~gM event rates for lepton 
avor violating processes such as �! e
 might be

near the experimental bounds.

5In the absence of supersymmetry breaking these expectation values are 
at directions. It is

straightforward to enforce the vanishing expectation values, for example by adding a brane super-

potential �(x5 � L)[AB +B2C] for A and similarly for Ac.
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M~gM solves the supersymmetric CP problem: This is easy to understand by realizing

that at the compacti�cation scale (where m2 = A = B = 0) the phases inM1=2 and � can be

removed by phase rede�nitions of the gaugino �elds and the Higgs super�elds, respectively.

Therefore, the theory has no new phases beyond the phases in the Yukawa couplings and

no supersymmetric CP violation. This does not solve the strong CP problem however.

M~gM is very predictive and therefore testable: The model has only two free parameters

which implies that there are many relations between the masses of the superpartners and

Higgses which can be tested experimentally.

M~gM has a great cold dark matter candidate: The LSP of M~gM is almost a pure Bino

for most of the parameter space. This makes the calculation of the relic neutralino (Bino)

density relatively easy, because in this scenario neutralino annihilations are dominated by the

t-channel exchange of the right-handed sleptons. If one ignores the small (but interesting)

region of parameter space where the stau and neutralino are degenerate to within 5% (and

where co-annihilations are important [22]) the relic neutralino abundance is given by [23]


�h
2 �

(m2
~lR
+m2

�)
4

(1:4 TeV )2m2
�(m

4
~lR
+m4

�)
�

m2
~lR

(480 GeV )2
: (4.1)

This formula is accurate to about 20% over the whole parameter space plotted in Figure 2

except for where neutralinos and staus are almost degenerate (a narrow band surrounding

the \stau LSP" excluded regions). For M~gM Eq. (4.1) yields abundances which generically

are cosmologically safe and often lie within the cosmologically interesting regime 0:1 <


�h
2 < 0:3 as is evident from Figure 2.

M~gM is theoretically well motivated: Separation of SUSY breaking and the MSSMmatter

�elds onto two di�erent branes naturally gives rise to the Gaugino Mediation boundary

condition. If the Higgs �elds also live on the MSSM matter brane then all supersymmetry

breaking soft Higgs mass parameters vanish, giving M~gM. The model is very economical and

uni�es. We believe that the model is su�ciently \conservative", successful in solving all the

problems of supersymmetry, and elegant that it has a real chance of describing Nature.
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