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Abstract 

These lectures treat some of the common collective beam instability effects 
encountered in accelerators. In choosing the material for these lectures, it is 
attempted to introduce this subject with a more practical approach, instead of 
a more theoretical approach starting with first principles. After introducing the 
terminologies, emphasis will be placed on how to apply the lecture material to 
perform calculations and to make estimates of various instability effects. 

In the first half of the lectures, after briefly introducing the concepts of 
impedance and wake field, we will discuss a selected list of formulas for the 
impedances of various accelerator components. Detailed derivations are omitted, 
allowing time for the students to think through the process of how to apply the 
knowledge learned. The list of impedances to be covered include: space charge, 
resistive wall, resonator, wall roughness, and small perturbation on the vacuum 
chamber wall. 

Assuming impedances are known, the second half of the lectures addresses 
the question of how to calculate the power of beam heating, the growth rates, 
and the thresholds for a list of selected beam instability effects. Again with min- 
imal detailed derivations, our aim is to introduce a collection of formulas, and 
apply them to linear as well as circular accelerators. The list of beam instability 
effects to be covered include: loss factor, beam break-up, BNS damping, bunch 
lengthening, resistive wall instability, head-tail instability, longitudinal head-tail 
instability, Landau damping, microwave instability, and mode coupling insta- 
bility. 
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1 Wakefields 

When a charged particle beam traverses a discontinuity in the conducting vac- 

uum chamber, an electromagnetic wakefield is generated, as sketched in Fig.1. 

An intense beam will generate a strong wakefield. When the wakefield is strong 

enough, the beam becomes unstable. 

Figure 1: Wakefield driven by a beam when there is a discontinuity in the 

vacuum chamber. (a) before the drive beam traverses the vacuum chamber 

discontinuity, (b) d uring the traversal, (c) after the traversal. 

Let the drive beam have charge q and travels down the beam pipe along its 

axis. Consider a test charge e following the drive beam. Let both the drive beam 

and the test charge move with speed u M c, holding the spacing z between them 

fixed. Let 8 and g be the electric and magnetic parts of the wakefield seen by 

the test charge. The test charge experiences the wake force p = e(I? f v’ x 2). 



Integrating F’ over the traversal results in the wake potential 

3’= JW dsfl (1) 
--oQ 

3 is a function of the spacing between the test charge and the drive beam z. It 

also depends on (r, e), the transverse coordinates of the test charge. F’urther- 

more, it satisfies the Panofsky- Wentel theorem, 

(2) 

Here 11 denotes longitudinal and I denotes transverse components. 

One can also consider a drive beam which travels down the axis of the beam 

pipe with an mth moment 1,. (m = 0, 1,2 correspond to monopole, dipole and 

quadrupole moments. When m = 0, one has IO = q.) In case the discontinuity 

is axially symmetric, one can write 

7 
Fj-(r, 8, z) = -eI,W,(z) mr m- ’ (i cos me - t? sin me) 

FI~(T, e, Z) = -eI,W~(z) P cos me (3) 

Here a prime denotes d/dz. Wm(z) is called the transverse wake function and 

WA(z) the longitudinal wake function. 

We omit its derivation, but Eq.(3) is quite amazing. An efficient applica- 

tion of the Maxwell equations has yielded a wealth of information built-in in 

Eq.(3). The fact that 3 is proportional to e and I,,, is straightforward. On 

the other hand, without even specifying the geometry of the vacuum chamber 

discontinuity, or the chamber wall’s resistivity, one sees that the m, T, and 8 de- 

pendences of the wake potentials have been explicitly solved. The only unknown 



in Eq.(3) is the wake function Wm(z), which depends only on Z. Furthermore, 

the transverse and the longitudinal wake potentials involve the same funtion 

Wm(z). 
Homework 

One consequence of the Maxwell equations is the Panofsky-Wenzel 

theorem. Show that the Panofsky-Wenzel theorem is built-in in Eq.(3). 

In Cartesian coordinates, for each of the mth moment, the drive beam has 

two components-one normal and another skewed. Table below lists the two 

moments (first the normal moment and then the skewed moment) and the as- 

sociated transverse and longitudinal wake potentials seen by a test charge e 

with transverse coordinates x, y that follows, at a distance It( behind, a beam 

which possesses an mth moment. The question being asked is what kick is be- 

ing received by the test charge e as the beam and the test charge complete the 

traversal of the chamber discontinuity. We have the convention that z < 0 if 

the test charge trails the drive beam. A bracket ( ) means averaging over the 

transverse distribution of the drive beam; P and 6 are the unit vectors in the x- 



and y-directions. 
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(4) 

Eq.(4) contains rich information about the wake effects and should be stud- 

ied with attention. Note that the leading longitudinal wake potential is driven 

by the monopole (m = 0) moment of the drive beam, while the leading trans- 

verse wake potential is driven by the dipole moment (m = 1) of the beam. 

However, when the geometry is not axially symmetric, one must not forget that 

a monopole beam moment can also drive transverse wake potential 

Dimensionalities of the wake functions are [Wm] = [as-1m-2m-t1], [WA] = 

[Rs-1m-2”]. Th e most important transverse wake function is that for m = 1, 

[WI] = [CKrrn-‘1. The most important longitudinal wake function has m = 0, 

[WA] = [i-w’]. 

Properties of wake functions 
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a Wm(z) = 0, WA(z) = 0 for z > 0 (causality). 

0 Wm(z) IO, WA(z) 2 0 for 2 + o- 

l Wm(0) = 0 (in most cases, except space charge). 

l W&(O) = ;W;(O-) (f un d amental theorem of beam loading). 

0 ITA 2 IW~(z)l for all z. 

l s:cu W&(z)dz 2 0. 

In general, Wm(z) is a sine-like function, while WA(z) is a cosine-like func- 

tion, as sketched below. 

fundwntial theorem 
/ol beamloading 

2 Impedances 

Impedances are just Fourier transforms of wake functions: 

Zj$) = J O” dz 
-e 

--oo v 
--i~~l~~~(z) 

Z~(w) = -$ J $e-““‘~“W,(z) (5) 



Time dependence of epiwt is assumed. 

Dimensionalities are [Zk] = [Rm-2”], [Z,$] = [Qm-2n+1]. The most im- 

portant transverse impedance is that for m. = 1, [Z/-l = [am-‘1. The most 

important longitudinal impedance has m = 0, [Zi] = [a]. 

Properties of impedances 

0 ZQW) = “Z&(w) (P anofsky-Wenzel theorem in frequency domain). 
c 

ZL’(w) = Z/Q-w) 0 (reality of wake functions). 
z&*(w) = -Z&(-w) 

’ 

I 
Jr dw ImZh(w) = 0 

. sFdw 1mz!(w) = 0 (Wm(0) = 0, in most cases). 

ReZi(0) = 0 

ReZ,,(w) = 1 PV m &’ lmZL(w’) lr 0 J --cm w' - w 
ImZi(w) = -1 PV J m dw’ 

ReZA (w’ ) 
n- 

(causality, Hilbert transiym) 
WI-W 

The same expressions apply to 2,. L PV means taking the principal 

value of the integral. 

ReZ,!(w) 2 0 for all w 
l 

ReZ,$(w) 10 if w > 0, 5 0 if w < 0 

These are approximate expressions relating transverse and longitudinal 

impedances, b = pipe radius. They are exact for resistive round pipe. 



3 Calculation of Impedances 

To calculate the impedance for a given vacuum chamber discontinuity, one needs 

to solve for the electromagnetic fields produced in the vacuum chamber by a 

given beam current. Over the years, a large arsenal of techniques have been 

developed to calculate the impedances. 

The first method is to solve Maxwell equations analytically with appropriate 

boundary conditions. This method applies only to the simplest cases. We omit 

the derivations and give only the results for some examples. 

Space charge See Fig.2 for the wakefield patterns in the transverse plane. 

The z-dependence is a b-function 6(z). With a beam of radius a in a perfectly 

conducting round pipe of radius b and length L, 

Impedances Wake functions 

zi = . %g$ (l+,ln;) bt’A=f$ (1+2lni)6’(z) - (6) 

where Zc = ds M 377 Cl is the free-space impedance, EO and ~0 are the 

free-space dielectric constant and magnetic permeability. Because of the factor 

l/y2, space charge effects are most significant for low-to-medium energy proton 

or heavy ion accelerators. 

The space charge impedance is purely imaginary, and is proportional to iw. 

Its w-dependence is as if it is a pure inductance. However, its sign is as if it is a 

capacitance. By convention, we call the space charge impedance “capacitive”. 
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Figure 2: Space charge wakefields in the x-y plane which contains the ring- 

shaped, infinitely thin, cos m&distribution drive beam. 

Resistive wall Another case solvable analytically is for a round resistive pipe 

with radius b, conductivity CT,, and length L. Defining the skin depth (change 

0.066 to 0.086 for aluminum, and to 0.43 for stainless steel) 

&kin = 

d 

~~~~~~ I Sskin [mm] = dG for copper, room temp. (7) 

one finds 

Impedances 

zi = 1 - sgn(w)i L 

l+~o, 7TDc6skinbarn+’ 

Wake functions 
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The impedance is proportional to (1 - i), i.e. one might say that it is half 

resistive and half inductive. 

Displaced beam in a resistive pipe If the beam is not centered, but is 

displaced a distance ~0 in the beam pipe, the impedances can still be found 

analytically, 

Eq.(9) is useful when the beam is close to the chamber wall, such as in the case 

of a metallic collimator. On the other hand, in those cases, one should also 

include contribution from the wall surface roughness (see later). 

Field matching method For more complicated cases, solutions are often to 

be found numerically. For example, in structures which can be subdivided into a 

few simple subregions (e.g., Fig.3 for the case of a pill-box cavity), a field match- 

ing method can be applied. Solution in each subregion is expanded in terms of 

the eigen functions of the respective subregion with yet-to-be-determined coef- 

ficients. Field matching on the subregion interfaces and boundary conditions 

on the vacuum chamber walls leads to an infinite system of linear equations for 

these coefficients, which usually can be truncated to a finite size. 

Pill-box cavity The pill-box cavity is a complicated object. Its accurate 

impedances are to be found numerically. However, approximate impedances of 

a pill-box cavity can be found by combining the following: 



Figure 3: Pill-box cavity and field matching method. 

(i) Resonant impedances: A pill-box cavity can trap some modes, each giving 

rise to a sharp, narrow-band impedance. The resonant frequencies are deter- 

mined approximately (d = h + b) by (ignoring pipe radius b, up to frequency 

w - c/b) 

4mp _ XL ) P2.rr2 
C2 d2 g= (10) 

where n,p, m are the radial, longitudinal, and azimuthal mode indices, z,, is 

the nth zero of Bessel function J,. The shunt impedance R, and the Q-value 

of the modes satisy 

RS 1 1 20 8C sin2 w x (1+60,) p even 

5 = OnP x&z J;” (xon ) rswonp cos2 SWonp 
WC p odd 

& [ 1 20 2c2 sin2 w x (1 +bcp) p even 

-Q lnp = Ji2(qn) vd2wf,, 
(11) 

co62 Qwl,, 
WC p odd 

(ii) Low-frequency broad-band impedance: In addition to trapped modes, a 

pill-box cavity also gives rise to a broad-band impedance. At low frequencies 

w < c/b, and for a small pill-box (g, h < b) this part of impedance behaves as 



an inductance, 

Impedances I Wake functions 

i 
zi = -i$(Sh-g) glh 

-i$$$(lnT+b) h << g 

Z,l= 
-&(gh-&) glh 

-iw(lny+i) h << g 

w,= -$(&- $) 6’(z) g I h 
0 

-*(ln F+;) 6’(z) h < g 

glh 
J _ 2Zoch’ +bS (In p+fr) 6(z) h < g 

(12) 

(iii) High-frequency broad-band impedance: Diffraction theory can be used 

to calculate the impedances at high frequencies, w > c/b, yielding 

Impedances 

211 = [l + w(w)~]Zo 
m (1 + &o),3/2b2m+1 

zi = “z;t;. 
C 

Wake functions 

2zocfi 112 
(1+6,0)r2b2n+1 “’ 

zoc&5 112 
wA = (1 + ,fjm0)~2b2n~+l Izt- 

(13) 

The impedance Zi oc 1 + i, i.e. half resistive and half capacitive. 

Broad band resonator model If one is interested only in the short range 

wake, a cavity whose dimensions are comparable to the pipe radius b can be 

approximated by a broad band resonator (see Eq.( 18) for resonator model in 

general). The impedances per cavity are approximated by 

R(O) 
s ~600, Qzl, w,.-i for21 

$1 
s M 6OCl x $, Q M 1, w,. M i for 2; (14) 

If one further contends by finding only an order-of-magnitude estimate, one can 

take the impedance values at w - w,. (or equivalently the wake function values 



at ]z( - b), and obtains, very roughly, per cavity, 

Impedances Wake functions 

2+$-&y wm-Z& (15) 

In particular, Z/ - 30 R and .Z+ N 30 Cd/b. Note that .Zi per cavity is indepen- 

dent of the cavity size or the pipe radius b as long as they are comparable. The 

longitudinal wake function can be rewritten in another convenient form as WA 

[V/PC] - 0.9/b [cm]. Eq.(15) is useful for linacs with its accelerating cavities of 

dimensions - b. 

Periodic pill-box array For an array of pill-boxes, each with gap length g, 

box spacing L, and beam pipe radius b, the high-frequency impedance per box 

is (k = w/c) 

(16) 

1 when g/L << 1 
a = 

0.4648 when g/L = 1, infinitely thin irises 

The real part of Z/ goes like - IcA3i2 for large k, while the imaginary part goes 

like - k-l. This is in contrast with a single pill-box, whose impedance (both 

real and imaginary parts, see Eq.(13)) at high frequencies behave like - wm1j2. 

In addition to Eq.(16) and the trapped modes, there is a resonator-type 

impedance generated by the pill-box array. If the boxes are small, they con- 

tribute to a single-frequency impedance mode at ko = we/c = dm (6 is 

cavity depth), 



Impedances Wake functions 

a%-wo)+n6(w+wo)+&+-& . 1 Wl(Z) 2&c 
- = - 

L rb4ko 
sin koz 

2c z/ 2; --- 
L b=w L 

w8z) - ‘Oc coskoz 
L .rrb2 

(17) 

The corresponding resonator has (i)(R!‘)/Q) = Zo/(nb2ko). 

Time domain calculations Another way to calculate the impedances nu- 

merically is to do it in the time domain. By evolving the Maxwell equations on 

a mesh, wakefields driven by a rigid ultra-short gaussian beam are calculated 

as functions of time. Integrating the wakefields seen by a test charge that trails 

the drive beam produces the wake functions. Fourier transforming the wake 

functions then gives the impedances. Fig.4 is an example of such a calculation 

using the program MAFIA. 

Resonator model Sometimes it is useful to model an impedance by an equiv- 

alent circuit. In this approach, a complicated object is modeled as a transmis- 

sion line or as an RLC-circuit. The most notable example is the resonator 

model ( RLm”) is the shunt impedance, Q is the quality factor, wT is the resonant 

frequency), 

Impedances Wake functions 

zi = 
R(“) 

1 + iQ (w?;w - w/wT) wm(z < ‘) = 
R!% w 

QG,. 
r p/c . sm y (18) 

z+“z~ 
W 

0: = w,/(2Q), aT = dm 
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Figure 4: The longitudinal and transverse wake potentials of a 3-cell structure 

obtained by a time domain calculation. The drive beam has u, = lmm. The 

offset of the drive beam and the test charge is 1 mm. 

Stripline beam-position monitor Another example of an equivalent circuit 

impedance is that for strip-line BPMs (two strip lines of length L, subtending 

angle per strip 40, forming transmission lines of characteristic impedance Z,). 

Impedances I Wake functions 

zj =2z&g2[ 2sin2+-isinv] w;=2zc c g 
( > 

2[s(z) - S(z+2L)] 

Zf = Zj &-J (2) ‘sin2 8 WI=* sin2 4 [H(z) -H(z + 2L)] 

Slowly varying wall boundaries If the vacuum chamber wall varies along 

the accelerator slowly, a perturbation technique can be used to calculate the 

impedances. Specify the wall variation by h(z) (1-D axisymmetric bump), or 



h(z, 0) (2-D bump). At low frequencies k = w/c < (bump length or width)-‘, 

Ihl < b, and lVh/ < 1, the impedance is purely inductive, 

Eq.(20) can be used to calculate the impedance of a tapered discontinuity. 

Note that the impedance is quadratic in the height of the small obstacle. The 

impedance is the same whether the wall bulges into or out of the pipe region. 

Homework 

Calculate the broad-band low-frequency impedance 26 (w) for the 

beam pipe discontinutiy as shown below. 

10cm 

Small obstacles A special class of calculation applies when there is a small 

obstacle on the vacuum chamber wall. Using a theory developed by Bethe, one 

obtains, for low frequencies (4 is the azimuthal angle of the obstable relative to 



the direction of the wake force being considered), a purely inductive impedance 

Impedances Wake functions 

Zjj = -iE2L 
c 4r2b2 

w; = -zoc& b’(z) (21) 

z,l= .Z@ -2- cosq5 
+b4 

w, = -zoc g-4 cos4qz) 

The parameter CY is related to the electric polarizability and magnetic suscepti- 

bility of the obstacle in the Bethe theory, and is a parameter (dimensionality = 

L3) determined by the geometry of the obstacle. For examples, 

Cl= 

’ 2a3 - 

113d4pn(4a/d) - l] 
3a 

W3(0.1814 - 0.03449 

W3(0.1334 - 0.0500;) 

7ra3 

2xh3 

. 3[ln(2h/a) l] - 

circular hole of radius a 
elliptical hole with major radius a along 

the pipe and minor radius d < a 

rectangular slot of length L and width w < L 

rounded-end slot of length L and width w << L 

half spherical protrusion of radius a 

circular protrusion with height a < h 

(22) 

The first four results apply when the pipe wall thickness is much smaller than 

the size of the small obstacle. If that is not the case, the value of (I: would be 

reduced by a multiplicative factor of about 0.6. 

Trapped modes A small indent of the vacuum chamber wall out of the 

beam pipe region can contribute a sharp impedance, corresponding to a weakly 

trapped mode whose field pattern extends over a large distance over the indent. 

Consider a ring-shaped indent of cross-section area A in an axi-symmetric beam 

pipe. The impedance resonant frequency is located slightly below the TMei pipe 



cut-off frequency we1 = xolc/b by an amount 

dl Awol = wal- 
2 (23) 

where xal = 2.405 is the first root of Bessel function .70(z). When the wall 

has a slight resistivity, the mode damps with damping rate -ycr = WO16,ki,/(2b), 

where 6skin is the skin depth. The trapped mode disappears when 701 > Awcr 

Otherwise, it leads to a sharp longitudinal impedance with the shunt impedance 

ROl = 
4Zoxo1A3 

r&nb5Jf(x01) ’ 
J1(x()1) = 0.519 (24) 

Homework 

Does the ring-shaped indentation in the following figure allow a 

trapped mode? Consider a copper beam pipe. 

1 mm 

+I+ + 1 m-n 

t t 
5cm ------- 

4 u 

Figure 5: A possibility of trapped mode. 

Rough metallic surface The result for slowly varying surface and the result 

for small obstacles can also be used to estimate the low-frequency inductive 

impedance of a rough metallic surface provided the surface characteristics are 

known. A long pipe with rough wall surface behaves like a periodic array of small 

pill-boxes, and a resonator-type contribution like (17) will also be present. 



4 Parasitic Heating 

The energy change (parasitic loss) of a bunch of charge q and normalized line 

density x(t), traversing a structure with longitudinal impedance Zi is given by 

A& = -,IIq2 (25) 

where ~11 is the loss factor, in units of V/PC, 

J(fJ) = 1 ~ J Om dw ReZ/ (w) Ix(w)12 (26) 

where CT = uz/,Bc is the rms beam bunch length in sec. For a gaussian bunch, 

x = //q(&&), i(w) zz e--wz+ 

Only the real part of the impedance contributes to the parasitic loss. Induc- 

tive impedances and the space charge impedance do not introduce a net power 

loss to the beam. Energy loss by particles at the head of the bunch is recovered 

by particles in the tail of the bunch (see e.g., Eq.(35) later). 

One can also write the loss factor in terms of the wake function. For a 

gaussian bunch, 

)ill = 1 
s 

’ dz _ w,‘(z) pz/4azc2 
2&u p-Q3 c 

Resistive wall A resistive wall impedance gives 

d’(u) -2Z.Z 
L 

r(z) = 1.225 (28) 

Pill-box cavity For a bunch traversing a pill-box cavity, ~11 is given by a 

sum over cavity modes up to the cut-off frequency, plus a contribution from the 

diffraction model impedance. Each of the cavity modes contributes a resonator 



impedance, and each resonator impedance contributes 

high-Q resonator 

low-Q resonator, short bunch W,(T < 1 

RS 
4fiQ~~5~ 

low-Q resonator, long bunch w,u > 1 

The contribution from the high frequency diffraction impedance is 

KII 

(29) 

(30) 

For a single bunch in a circular accelerator, the integral in Eq.(26) is replaced 

by an infinite sum, 

d’(u) = 2 5 Zj(pw0) IqPwo)12 
p=--00 

(31) 

For short bunches in large machines (we << l/u), the sum can be replaced by an 

integral, and the difference between single passes and multiple passes disappears 

as it should. 



Homework 

Consider a storage ring with smooth resistive pipe. Let circumfer- 

ence C = 100 m, b = 5 cm, N = 10” protons (ignore synchrotron 

radiation), uz = 1 cm, uc = 3.5 x 107fl-1m-1 (aluminum). Let 

there be one single cavity structure in the ring with g = 10 cm, 

which has 6 trapped HOMs with R/Q = 6On each. (1) Estimate 

the parasitic heating power due to resistive wall. (2) Estimate the 

parasitic heating power due to the cavity HOMs below cut-off. (3) 

Estimate the parasitic heating power due to the cavity above cut- 

off. (4) How are the above heating powers distributed around the 

accelerator? What if the pipe is made of stainless steel? (5) Do we 

need water cooling for the pipe? Do we need water cooling for the 

rf cavity due to the parasitic heating? 



Hints 

(2) Since w,,t--off z c/b, the trapped modes most likely will 

have WR < c/u,. This means we should use the short bunch 

formula in Eq.(29). Let the 6 trapped modes have wn = 

(1,5/6,4/6,3/6,2/6,1/6)c/b, add up the heating due to the 6 

modes. This heating is trapped by the cavity. 

(3) Use diffraction model. This power propagates down the two 

directions from the cavity. 

(4) First estimate the attenuation length of the untrapped modes 

in (3). Let this power dissipation be given by e-‘p’, then very 

roughly, /3 c c/(4rbu,&ki,). Is the untrapped wave absorbed near 

the cavity, or does it propagate around the ring more or less evenly? 

(5) Without water cooling, the heated area will have to cool by 

black body radiation. The black body radiation per meter is given 

by dQ/dt = -(2rb)7r2kiT4/(15fi3c2). Therefore, in equilibrium, 

dQparasitic heating /dt = (2rb)n2ki[T4 - To4]/(15h3c2) where TO 

is the room temperature. Estimate the equilibrium temperature T 

at the cavity and on the beam pipe around the ring to see if water 

cooling is needed. 

5 Collective Effects in High Energy Linacs 

Enixgy variation along the bunch length As a beam bunch travels down 

the linac, the longitudinal wake induces an energy variation along the length of 



the bunch (consult Eq.(4) for the wake force), 

-AE(z) = Ne2 
J 

O” dz’X(z’) wgz - 2’) 
z 

Ne2 m XZ- 
J 27T --m 

aId eiwzlc Zjj (w) i(u) (32) 

This variation can be compensated for by properly phasing the bunch center 

relative to crest of the acceleration rf. The total energy change of the beam is 

given by 

A&=N 
s 

O” dz AE(z) X(t) (33) 
--8 

which is just the A& in Eq.(25). A rough order-of-magnitude estimate of the 

head-tail energy split is 

Ne2 
-AE - TW; (34) 

provided one has an estimate of the magnitude of Wh 

For longitudinally gaussian bunch of charge Ne, rms length gZ, and trans- 

verse radius a, travelling in cylindrical, perfectly conducting beam pipe of radius 

b, the space charge wakeinduced energy variation along the bunch is 

The total loss of the beam is zero, as mentioned before, because the space charge 

impedance is purely imaginary. 

For a resistive wall, 

f(Q) = -I4 3/2e-u2/4 
L 
(1-1,4 - 13i4)sgn(u) - I1/4 + I--3/4 

1 



where If1j4 and Ifsi are modified Bessel functions evaluated at u2/4. See 

Fig.6. 

-6 -4 -2 0 2 4 6 
” 5 ZIO, 

Figure 6: Function f(u) in Eq.(36) 

Homework 

Estimate the wake-induced energy variation for the SLAG linac. 

Let N = 5 x lOlo, and L = 3000 m. Model the SLAC linac cavities 

as an array of pill-boxes whose dimensions are comparable to the 

pipe radius b = 1 cm. What is the head-tail AE/E-split of the 

beam when the beam reaches 50 GeV at the end of the linac if we 

do not compensate for this energy variation by properly phasing 

the rf? 

Use Eq.(34), with a rough estimate of WL per cavity given by 

Eq.(15). The total number of cavities is about L/b. 
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Transverse beam break-up The equation of motion is (consult Eq.(4) for 

the wake force) 

$ E(s)$z(z, s) 
> 

+ E(s)k2(s)z(z, s) = $ /= A(d)Wl(t’ - t)z(z’, s)dz’ 
z 

Given the wake function WI(Z) of the entire linac (of length L), the longitudinal 

bunch distribution X(z), the energy acceleration E(s) and betatron focussing 

k(s), Eq.(37) is to be solved for the betatron motion z(z, s) as a function of s 

for a particle located at position z relative to the bunch center. 

For uniform X = l/L (e is total length of bunch), WI(Z) = Wiz, and when 

the variations of E and k are adiabatic, the asymptotic solution is 

final amplitude 
initial amplitude 

x dzsexp (yn’13) (n > 1) (38) 

where 

71(z) = ? (z-i)2~” E(s&) 
The bunch head has z = e/2 and thus n = 0. The exponential growth in Eq.(38) 

illustrates the beam break-up instability. This problem is usually cured by the 

BNS damping. 

Homework 

Estimate how potentially serious is the beam break-up instability 

problem for the SLAC linac (no BNS damping). Let E(s)[GeV] = 

1.2+0.017s[m], k(s) = 0.06/m, N = 5 x lOlo, C = 2 mm, b = 1 cm, 

and L = 3000 m. 



Use Eq.(15) for lV1 per cavity. Our model then corresponds to 

taking IV; - (WI/b) x (L/b). C onsider the particle at the tail of 

the bunch by taking t = -e/2. 

BNS damping BNS damping is accomplished by having the particles at the 

tail of the bunch being focussed more strongly than particles at the head of the 

bunch. The stronger focusing balances out the defocusing effect of the transverse 

wake. The net result is that the wake-induced emittance growth is minimized. 

The condition for this to occur is called the autophasing condition. In case of 

uniform acceleration and uniform betatron focusing, it reads 

An order-of-magnitude estimate of the needed BNS focusing is given by 

_ - -Ne2W(e) lnEf AIC 
Ic- 4k2LEf Ei 

where Wl(C)/L is the transverse wake function per unit length seen by a particle 

at the tail of the bunch. 

Homework 

Estimate the BNS focusing needed for the SLAC linac. 

Hint 

Using Eq.(15) to obtain WI(e) - (l/b2) x (L/b) x (e/b), we obtain 

Ak/k - (Ne2!?/4k2Efb4) ln(Ef/Ei). 

Multibunch transverse dynamics Consider a beam with nn equally-popu- 

lated, equally-spaced bunches, each with charge Ne. Motion of each bunch is 



affected by the transverse wake left behind by the previous bunches (or the 

same bunch in previous turns). The analysis is similar to that of the BBU effect 

within a single bunch. The difference is that here Wr is dominated by one or 

a few resonators having large shunt impedances. In case of a single isolated 

resonator, the amplitude blowup factor of the last bunch takes a form - efi 

where 

Rsw, J 
L 

q=ngNe2- 
ds 

Q 0 E(s)k(s) l+ l (41) 

The condition for tolerable emittance growth due to multi-bunch transverse 

wake is roughly given by 7 5 1. 

6 Robinson Instability 

Instability mechanisms in a linac are comparatively simple because of the ab- 

sence of synchrotron oscillation. In a circular accelerator, synchrotron oscillation 

plays a critical role. (Fortunately, the role is often a stabilizing one.) The most 

basic collective instability in a circular accelerator is the Robinson instability. 

Single-bunch, point-charge beam Consider a beam with a single bunch 

executing synchrotron motion in a circular accelerator. First let the bunch be 

represented as a point charge Ne without any internal structure. Given the 

impedance Z!(w) of the accelerator, the stability of this beam is analyzed by 

assuming the beam is executing a collective motion as z(t) - eWiRt. The key 

quantity to be calculated is the collective mode frequency fl. It is a complex 

quantity directly related to the impedance. The real part of 0 is the perturbed 



synchrotron oscillation frequency of the collective beam motion, while the imag- 

inary part gives its growth rate (or damping rate if negative). The result of the 

growth rate is 

7-l = Im(n-wS)= $$$& g (PWO + ws)Re@!(pwo + ~1 (42) 
P- m 

where n is the momentum slippage factor, we is the revolution angular frequency, 

TO = 27r/we is the revolution period, w, is the unperturbed synchrotron oscilla- 

tion frequency. Note that it is the real part of the impedance that contributes to 

the instability growth rate. A space charge impedance causes a mode frequncy 

shift, but not an instability. 

Eq.(42) applies to any impedance. The largest impedance to be considered is 

the resonator impedance of the fundamental cavity mode, which has Wn M hwo 

(h = integer is the harmonic number). The only significant contributions to the 

growth rate come from two terms in the summation, namely p = xth, 

7-l Fz ~~~2~o [ReZ/ (hwo + ws) - ReZ/ (hwo - w3)] (43) 
0 3 

Beam stability requires 7-i < 0. That is, the real part of the impedance 

must be lower at frequency hwo + w, than at frequency hwo - w, if n > 0 (above 

transition), and the other way around if n < 0 (below transition). This condition 

implies the Robinson criterion that, above transition, the resonant frequency Wn 

of the fundamental cavity mode should be slightly detuned downwards from an 

exact integral multiple of wc. Below transition, stability requires wn be slightly 

higher than hwe. In the figure below, (a) is stable above transition, while (b) is 

stable below transition. 
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After properly tuning the fundamental rf cavity mode, one should consider 

the contributions from the higher rf modes, paying attention to accidentally 

landing the frequencies pwo for some integer p on the wrong side of some higher 

order impedance peak. Sometimes it becomes necessary to damp the higher 

order modes of the rf to avoid excessive instability growth rates. 

Multi-bunch beam Eq. (42) is restricted because (i) it applies to a beam with 

only one bunch, and (ii) the beam bunch is a point-charge. Consider a beam with 

ng evenly-spaced, equally-populated bunches. This time also consider bunches 

with finite length to allow internal structure of the mode patterns within each 

bunch. There are now a large number of collective modes in our problem, and 

the mode frequency R depends on the mode being considered. A mode is now 

specified by two mode indices p and C, where p = 0, 1,2, . . . . (nn - 1) is the 

multi-bunch mode number, and f? is the internal bunch structure mode number 

(C = 1 dipole, e = 2 quadrupole, etc.). The growth rate is found to be 

1 - = Im( 02(e+) - ew, ) = 2nn Ne2nc2 O” Re&(w’) 
&P) ET;w,Z2 eC w’ (44) 

p=--ca 
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where N is the number of particles per bunch, w’ = pnBwo + TWO + Cw,. In 

deriving Eq.(44), it has been assumed that the unperturbed bunch distribution 

is described by a “waterbag model”. The full extent of the bunch length is 22. 

The lowest bunch structure mode has e = 1 (dipole). For short bunches with 

w/i/c << 1, and for nn = 1, Eq.(44) reduces to Eq.(42). On the other hand, 

Eq.(44) also applies to higher order modes e > 1 and arbitrary bunch length i. 

In particular, the fundamental rf mode contributes to a Robinson growth rate 

for the Lth beam mode, 

nBNe2vhwo 

2ET$w, 

x [Re Zi (hwo + hs) - ReZ! (hwo - aus)] (45) 

It follows that the Robinson stability criterion for the e = 1 mode also stabilizes 

the C > 1 modes. The higher order Robinson growth rates, however, drop off 

rapidly with increasing C if the bunch length is much less than the rf wavelength. 

Note that h is necessarily an integral multiple of nn, thus only the 11 = 0 

multi-bunch mode is affected by the fundamental rf mode, and the growth rate 

is directly proportional to nn. Other multi-bunch modes (p # 0) must be 

considered when studying the effects of the higher order rf modes. 

7 Transverse Robinson Instability 

Robinson instability has a transverse counterpart. Basically the same physical 

mechanism applies when we consider the transverse beam motion driven by the 

transverse impedance. Letting y cx exp( -iQt), the instability growth rate is 



found to be 

Ne2c 
00 

7-l = I@ - wp) = - 2ETo2Wp =g ReZf (zw + wp) (46) 
P m 

where Zf is the total impedance around the accelerator circumference. Only 

the real part of the impedance contributes to the instability growth rate. The 

space charge impedance does not cause instability of the Robinson type. 

A transverse Robinson instability occurs when ReZf (w) contains sharp res- 

onant peaks. If a resonant frequency WR is close to hwe for some integer h, 

then 

T-l M _ Ne2c 

2ET;wp 
[ReZf (hw + Apwo) - ReZk (hwc - Apwo)] (47) 

where Ap is the non-integer part of the betatron tune up = WB/WO and we have 

chosen -l/2 < Ap < l/2. A positive AD means VP is above an integer; a 

negative AD means up is below an integer. For stability, wn should be slightly 

above hwo if Ap > 0 and below hwo if Ap < 0. The stability criterion of the 

transverse Robinson instability does not depend on whether the accelerator is 

operated above or below transition. Instead, it depends on whether the betatron 

tune is above or below an integer. 

Homework 

Find the transverse Robinson instability growth rate for the case 

N = loll, Rs = 40 MR/m2, Q = 2000, E = 1 GeV (elec- 

tron beam), w. = 9.4 x lo6 s-l, vp = 6.05, h = 518, and 

(WR - huo)/wo = %h/2fiQ (the worst case). 

Like its longitudinal counterpart, to control the transverse Robinson insta- 

bility, it is often necessary to de& the transverse higher order modes of the rf 



cavities by either passively or actively removing their field energies. Unlike its 

longitudinal counterpart, the transverse Robinson instability does not have the 

strong damping provided by the fundamental rf cavity mode (assumed properly 

tuned), which makes it more of a serious concern. 

In case of a broad-band impedance (short-ranged wake field), the summation 

over p can be approximated by an integral over p. It then follows from Eq.(46) 

and the fact that ReZf is an odd function of w that 7-l = 0. Broad-band 

impedances therefore do not cause transverse Robinson instability, a situation 

similar to the longitudinal case. However, as will be explained later, a broad- 

band impedance does cause an instability when the betatron frequency of a 

particle is not a constant, as assumed so far, but depends on its relative energy 

deviation 6 = AEIE. 

Resistive wall instability Eq.(46) also gives the instability growth 

for an accelerator with a resistive vacuum chamber. Substituting Eq.(8) 

Eq.(46), we obtain 

rate 

into 

(48) 

when IApl < 1, the p = 0 term dominates in the summation for f(Ap) 

The function f(Ap) is positive (so that 7-l < 0 and the beam is stable) if 

0 < Ap < l/2, and negative if -l/2 < Ap < 0. This means one should choose 

the betatron tune above an integer to assure stability against the resistive wall 

instability. However, because the resistive wall instability is usually rather weak 



(Very large storage rings are an exception because they have small wc, and 

according to Eq.(48), can potentially have large growth rates.), a small spread 

of betatron tune of the particles in the beam will stabilize the beam even if the 

betatron tune is below an integer (see Landau damping later). 

Homework 

Estimate the transverse resistive wall instability growth rate for the 

case N = loll, b = 5 cm, E = 1 GeV (electron beam), ‘/p = 5.9 

(below an integer, therefore the beam is unstable), we = 9.4 x 

lo6 s-l, and 0 = 3 x 1017 s-l. 

8 Strong Head-Tail Instability 

The strong head-tail instability (also called transverse mode coupling instability 

or transverse turbulence instability) is the circular accelerator’s counterpart of 

the dipole beam breakup in a linac. The difference from the linac case is that now 

the beam particles execute synchrotron oscillations, thus constantly changing 

their relative longitudinal positions with a slow synchrotron frequency w,. 

In the discussion of transverse Robinson instability, it was stated that a 

broad-band impedance (short ranged wake) does not cause an instability. How- 

ever, this is only true when one ignores coupling between the “azimuthal modes” 

of the beam motion. The dimensionless parameter that describes the strength 

of the mode coupling is given by 

(49) 

where WI < 0 is the short-range wake function (integrated over the accelerator 



circumference C), assumed to be constant over the bunch length. 

For low beam intensities, Y’ < 1, mode coupling is negligible and adjacent 

azimuthal modes have their frequencies well separated by w,. The beam is stable 

for short-ranged wake, as we discussed in the context of Robinson instability. 

As beam intensity increases, however, mode coupling becomes significant. As 

the mode frequencies shift by amounts comparable to wS, adjacent azimuthal 

mode frequencies may merge into each other, and the beam becomes unstable 

even with a short-range wake. This is called the strong head-tail instability. 

The threshold of this instability occurs at 

Tth = 2 (50) 

The reason it is called strong head-tail instability is that once the threshold is 

exceeded, the instability tends to grow very fast. 

Homework 

The strong head-tail instability is one of the cleanest instabilities 

to observe in electron storage rings. The instability threshold ob- 

served at PEP occurred when Nth = 6.4 x 101’, wp/wc = 18.19, 

w,/wc = 0.044, E = 14.5 GeV, and ws = 0.86 x lo6 s-l. By 

relating these parameters to Tth = 2, estimate the wake function 

WI and the transverse impedance Zf for PEP. Take a beam pipe 

radius b = 5 cm. Once Zf is found, relate it to give an estmate of 

Zi/n. 

Hint 

To estimate Zf once WI is found, use Zf w -bWl/c. 



9 Head-Tail Instability 

In our analysis of the strong head-tail instability, we assumed that the betatron 

and the synchrotron motions are decoupled. In doing so, we have ignored an 

important instability known as the head-tail instability. 

The betatron oscillation frequency of a particle depends on 6 = AE/E of 

the particle through the chromaticity parameter E, 

wp(4 = wp(l + 63 (51) 

As we will see, in order to avoid head-tail instability, c must have a definite 

sign. The main reason for introducing sextupoles in circular accelerators is in 

fact to control <. 

Because of a nonzero chromaticity, the betatron phase of a particle is modu- 

lated by the longitudinal position z of the particle. The modulation is slow and 

weak, but is sufficient to drive the head-tail instability. The magnitude of this 

phase modulation is specified by the head-tail phase, 

CM@ 
x=- (52) 

“I 

with fE the extent of the bunch length. For example, an electron accelerator 

with q = 0.003, 5 = 0.2, i = 3 cm, and wp = 1.4 x lo7 s-l, would have 

x M 21r x 0.016. 

The strong head-tail instability is a threshold effect. It occurs when the beam 

current exceeds a certain critical value. Once the threshold is exceeded, the 

instabilty is very strong. In contrast, the head-tail instability is not a threshold 

effect. It is unstable even for weak beam currents, although the growth rate is 



slow. Note however that the same transverse impedance (typically broad-band) 

drives both the head-tail and the strong head-tail instabilities. 

Taking into account of the chromaticity effect, the transverse instability 

growth rate for the &h mode (e = 0 for monopole, d = 1 for dipole, etc.) is 

found to be 

(53) 

where w’ = pwo +wp + ew, Note how the head-tail phase appears in shifting the 

beam spectrum which is then convoluted with the impedance when summing 

over p. Eq.(53) is a rather general result. For example, When e = 0, x = 0, 

and i = 0, it reduces to Eq.(46). However, it did assume an “air-bag model” 

for the unperturbed longitudinal beam distribution, although the impedance is 

left aribitrary. 

When x < 1, Eq.(53) g’ Ives the head-tail instability growth rate, to first 

order in x, 

1 Ne2c m 
-z +I nETowp X 

J 
du ReZf(w) Je 

0 
($) J; (q) (54) 

where we have considered a broad-band impedance, so that the summation in 

p can be replaced by an integral. 

For the case of a constant wake function (WI(Z) is independent of z, WI < 0), 

Eq. (54) gives 

1 Ne2cWl 2 
7(e) = - ETowB x 7r2(4@ - 1) (55) 

According to Eq.(55), the e = 0 mode is unstable when f/n < 0, while the 

e >_ 1 modes are unstable when e/q > 0. We conclude from this that the only 



value of E that assures a stable beam is E = 0. However, the C = 0 growth rate 

is the strongest. The presence of some stabilizing mechanisms (such as Landau 

damping, or radiation damping in the case of circular electron accelerators) 

therefore leads us to choose slightly positive values for [ for operation above 

transition (r] > 0), and slightly negative E below transition (7 < 0). 

The head-tail growth rate provides another way to measure the transverse 

impedance of an accelerator. To do so, [ is made slightly positive (above transi- 

tion), a beam centroid motion is excited by a kicker, and its subsequent damped 

motion is observed. Before applying Eqs(54) or (55), make sure that [ << 1. 

Usually, radiation damping is much weaker than the head-tail damping. Oth- 

erwise the contribution from radiation damping has to be subtracted out from 

the measured damping rate. 
Homework 

It was observed in the electron storage ring SPEAR I that the 

head-tail damping time is 1 ms under the conditions I = 20 mA, 

E = 1.5 GeV, 6 = 0.67, i = 13 cm, r] = 0.037, C = 240 m, 

b = 5 cm. Estimate the magnitudes of WI, Zt, and Zi/n. 

10 Landau Damping 

So far, we have ignored the important effect of Landau damping. Landau 

damping occurs when there is a sufficient spread in particles’ natural oscillation 

frequencies. Table below gives the natural frequencies needed by the Landau 

damping mechanism in order to damp the respective instabilities. 



Bunched beam Unbunched beam 

/ Longitudnal / synchrotron frequency ws revolution frequency wc 

1 Transverse 1 betatron frequency wp betatron frequency wp 1 

Consider an unbunched beam executing longitudinal or transverse oscilla- 

tion. Let the frequency spectrum p(w) be normalized to unity (w is the fre- 

quency relevant to the Landau damping mechanism, and is given in the table 

above), and be centered around w with spread S < ij. The strength of Landau 

damping depends on p(w). 

Transverse microwave instability Consider an unbunched beam executing 

a transverse oscillation with dipole perturbation 0: e--iRt+in(slR) where n is the 

mode number. Whether the beam is stable is determined by the following steps: 

(i) Given the impedance, one first calculates the complex mode frequency 

shift -its imaginary part is the instability growth rate -in the absence of Landau 

damping, designated with a subscript 0 (compare with Eq.(46)), 

2 
(Aw)~ G ($2 - 7wo - a)0 = - 2;;2z iZ,l(G + nwo) (56) 

0 P 

where w is the center of the betatron frequency spectrum. 

(ii) Given the spectral distribution p(w), one calculates the unperturbed beam 

transfer function, which is a dimensionless function of s2, 

BTF = f(u) + is(u) (57) 

where (PV means taking principal value) 

21 = (wp+nwo-fi)/S 



f(u) = s PV 
I 

&J-$$ 

(iii) With L an d au damping, the complex mode frequency a, for a mode 

which is at the edge of stability, is determined by the dispersion relation 

(Awl0 1 --=- 
S BTF (59) 

To obtain boundary of stability: (a) trace the locus of the r.h.s. of Eq.(59) on a 

complex plane as u is scanned from --oo to 00. This trace divides the complex 

plane into two regions, one contains the origin, the other doesn’t. (b) Plot the 

1.h.s. of Eq.(59) as a single point on the same complex plane. (c) If this point 

lies in the region which contains the origin, the beam is stable; otherwise it 

is unstable. Fig.7 shows the stability region produced in step (b) for several 

spectral distributions. When the beam lies in the unstable region, the beam is 

said to have a transverse microwave instability. 

A simplified stability boundary, as sketched in Fig,7(h), leads to the Keil- 

Schnell criterion, 

(60) 

where S+ is the half width at half maximum of the frequency spectrum. Roughly 

speaking, when the instability growth rate or mode frequency shift (calculated 

in the absence of Landau damping) exceeds the beam frequency spread, one 

loses the protection of Landau damping, and the beam is most likely unstable. 

Bunched beam 
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Figure 7: Stability diagram for transverse microwave instability for various beam 

spectra. Shaded regions are unstable. 
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Figure 8: Stability diagram for longitudinal microwave instability for various 

beam spectra. Shaded regions are unstable. 

‘rhe simplified stability criterion Eq.( 60) applies to unbunched beams, but it 

can be applied to a bunched beam if one replaces the beam density N/C by the 



peak local density of the bunched beam. This is called the Boussard criterion. 

For a bunched beam whose length is smaller than the pipe radius b, the 

simplified criterion against transverse microwave instability reads 

l&y < 20 
7rE/~\wpAi5~Az+ 

3Ne2wob F-31) 

Relating the longitudinal to the transverse impedance, it gives 

2-j 
I I 
- <zo 

rE/qlwpbArQ AZI 

6Ne2c 
‘i =zo 

rEwpws bAz; 
2 

6Ne2 c2 (62) 
n 

Longitudinal microwave instabilities Similar steps apply to the longitudi- 

nal microwave instability of an unbunched beam. The complex mode frequency 

shift in the absence of Landau damping is now given by 

(AU): = (R - nwo); = i (63) 

Landau damping comes from a spread in we, spectrum p(we) with spread S 

around center ~0. The dispersion relation is 

(Aw>?i 1 
m= F(u) + iG(u) 

u = (n30 - SZ)/(nS) 

F(u) = nS2 PV 
J 

dwo P’(WO) 
nwo-R 

G(u) = nS’p’(CI/n) 

(64) 

Stability boundaries for various spectra are shown Fig.8. When the beam 

lies in the unstable region, the corresponding instability is called the longitudinal 

microwave instability. Note that Eqs.(63) and (64) are quadratic on the 1.h.s. 



These are qualitatively different from Eqs(56) and (59), and are the reason for 

the qualitative difference between Figs.7 and 8. 

The Keil-Schell stability criterion is 

l(Aw)zl < 0.68 n2Si (65) 

If St (the spread in revolution frequency we) comes from energy spread, S+ = 

wo )vlA6;, then the condition reads 

I” I 20 (nzo) IVW 
7L 

< 0.68 ZomAs? Y (66) 

bunched beam 

For a bunched beam, applying the Boussard criterion, Eq.(66) becomes 

< 0.66 Z,,!$A6f At+ = 0.66 Zo lV;;e2 AZ; (67) 1 

11 Potential-Well Distortion 

The longitudinal wake field distorts the focusing field supplied by the rf, and 

thus distorts the equilibrium shape of a beam bunch. The mechanism is a static 

one; no part of the beam bunch is executing collective oscillation. The degree 

of the distortion increases with the beam intensity. This phenomenon is called 

the potential well distortion. 

Without the wake field, the equilibrium distribution of an electron beam 

in a storage ring is bi-gaussian in the longitudinal phase space (z, 6), where 

6 = AE/E. It turns out that the wake field does not disturb the 6 part of the 
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stationary distribution, and only the z-distribution gets distorted, i.e. 

(68) 

where A(z) satisfies a transcendental equation, called the Haissinski equation, 

z cm 

X(z) = X(0) exp 

[ 

-$ + -!!X- 
20 ?p; EC J J 

dz” dz’X(z’)W;(z” -2’) (69) 
0 Zll 1 

where w, is the unperturbed synchrotron frequency, C is the storage ring cir- 

cumference. 

In the limit of zero beam intensity, the solution reduces to the bi-gaussian 

form, where the unperturbed rms bunch length is (T,O = VW&/W,. For high beam 

intensities, X(z) deforms from gaussian. Once W{(z) is known and fly specified, 

the distorted distribution X(z) can be solved numerically using Eq.(69). Fig.9 

shows the result of one such attempt for the electron damping ring for the SLAC 

Linear Collider. The calculated bunch shapes agree well with the measured 

results shown as open circles. 

One feature of Fig.9 is that the distribution leans forward (z > 0) as the 

beam intensity increases. This effect comes from the parasitic loss of the beam 

bunch, and is a consequence of the real part of the impedance. Since the SLC 

damping ring is operated above transition, the bunch moves forward so that the 

parasitic energy loss can be compensated by the rf voltage. 

Another feature of Fig.9 is that the bunch length increases as the beam in- 

tensity increases. The bunch shape distortion comes mainly from the imaginary 

part of the impedance. That the bunch lengthens is because the imaginary part 

of the impedance is mostly inductive. 
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Figure 9: Potential-well distortion of bunch shape for various beam intensities 

for the SLC damping ring. The horizontal axis is z = -z/o,a. The vertical 

scale is y = 47rNeX(z)/V~f(0)uz0. 

Find impedance from bunch shape It is possible to extract the impedance 

Z!(w) from a detailed measurement of X(z) using a streak camera. Assuming 

X(z) is determined by potential well distortion alone. Any collective oscillations 

(e.g. due to microwave instability) are either not present, or averaged out in 

data averaging with multiple scans. 

The procedure to extract Z//(W) from X( ) z is as follows. (i) Calculate the 

quantity 

> 



I 

(ii) The impedance is then given by 

@(w) = 32 
c F(w) P-0) 

where p(w) = s-“, dz e- iwzlcF(z) and i(w) = s-“, dz e--iwZlcX(z). 

One disadvantage of this method is that it requires very accurate information 

on X(z). One advantage is that it allows extraction of the entire impedance, both 

the real and the imaginary parts, as functions of w. 

12 Bunch Lengthening 

Potential well distortion is one mechanism for bunch lengthening, especially 

when the impedance is primarily inductive (see e.g., Fig.9). This bunch length- 

ening mechanism does not perturb the energy distribution of the beam, and the 

distortion in bunch shape is static. 

However, there is another mechanism, which involves dynamics and disturbs 

the beam’s energy distribution. This is sometimes called twbdent bunch length- 

ening. Its mechanism nominally (but not always) involves the coupling among 

the azimuthal modes of beam motion, and becomes important only when the 

collective mode frequencies shift by amounts comparable to the synchrotron 

frequency w,. The same mechanism was responsible for the transverse mode 

coupling instability, except now we are in the longitudinal dimension. 

The analysis of turbulent bunch lengthening is rather involved. If we ig- 

nore the potential-well distortion effect, we end up with solving the eigen-value 



problem for the mode frequencies 51, 

det($1-44) =0 (71) 

where I is a unit matrix and M is a matrix with elements 

This result assumes the unperturbed beam has a water-bag distribution in the 

longitudinal phase space. It also assume a broad-band impedance. 

Note that fi = 0 is always a solution; this is the mode that describes the 

static potential-well distortion. 

As an illustration, we apply the result to the diffractive model, Eq.(13), 

rewritten as 

Z/(W) = R01z(l’2[l +sgn(w)il (73) 

where Rc is a real positive constant. Then, 

Meet = ebeer - e ceelr (74) 

fr (e+::> (-lye-W2 if e - e’ even 
Cep = 

r (“‘-:‘i) r (e+ezS) r (*) ’ (-l)(e-e’-i)f2 if e _ el odd 

where we have defined a dimensionless parameter 

(75) 

The eigenvalues Q/ w, calculated numerically as functions of Y’ for the lowest 

few modes are shown in Fig.10. At ‘r = 0, the mode frequencies are simply 

multiples of w,. As T increases, the mode frequencies shift. As r reaches the 



critical value rth z 1.45, the k! = 1 and L = 2 mode-frequency lines merge, 

and when T > Tth, they become imaginary and the beam is unstable. The 

parameter Tth thus defines the instability threshold of the beam. 

Figure 10: Longitudinal mode frequencies Cl/w, versus Y for a water-bag beam 

with the diffraction model impedance. The solid curves give the real part of the 

mode frequencies; the dashed curve gives the imaginary part (magnitude only) 

of the C = 1 and e = 2 mode frequencies above threshold. There is always a 

static mode with Cl = 0. The spectra for e < 0 are mirror images with respect 

to the Sz = 0 line. Potential well distortion has been ignored. 

Once a longitudinal mode-coupling instability occurs, one of its consequences 

is that the bunch lengthens. It lengthens just enough so that ‘r stays at the 



Figure 11: Bunch length 2 and energy spread g as functions of beam intensity 

N. Below threshold Nth, i changes due to potential-well distortion, while 6 

stays constant. Above Nth, both P and i increase with N. If the impedance is 

given by the diffractive model, S and 6 are proportional to N2/3 in the region 

N > Nth. 

instability threshold, i.e., 

;=a(E$!$“” (76) 

The behavior of bunch length as a function of beam intensity looks like 

Fig. 11. The curve above the bunch lengthening threshold has 2 c( N2j3. Below 

the threshold, we have shown a slight potential-well bunch shortening. The 

change of bunch distribution due to potential-well distortion and that due to 

mode coupling instability are distinctly different. In the former case, the energy 

distribution of the beam (we consider an electron beam) is unaffected. In the 

latter case, the synchrotron oscillation translates the changes in 2 rapidly into 

proljortional changes in 8. 



Turbulence due to radial mode coupling The above analysis ignores the 

important potential-well distortion effect. When included, instabilities can re- 

sult from not only the coupling among azimuthal modes, but also from coupling 

among radial modes. This leads to a qualitatively different instability behavior. 

In particular, it might lower the instability threshold, and the mode frequencies 

do not have to shift as much as N w, to reach the threshold. The growth rate, 

however, tends to be slower in this mechanism because it is quadratic in the 

beam intensity. 

13 Longitudinal Head-Tail Instability 

We discussed a head-tail instability and a strong head-tail instability. Both 

are transverse effects. There is also a head-tail instability in the longitudinal 

dimension, first observed at CERN-SPS. The “longitudinal head-tail phase” 

comes from a dependence of the slippage factor 77 on 6. 

Let 71 = ~0 + 716. Assuming a water-bag model, the longitidinal head-tail 

instability growth rate for the eth mode is found to be, to first order in 71, 

1 4e2q1Ne2c -= 
de) J 

O” dw ReZj (w) 
37rqoEC --m o2 [aJe(a)Je+l(o) + Cl- e)Jt?(c)] (77) 

wherec=wi/2cande=1,2,3.... 

Physically this instability occurs because of the following. Consider a bunch 

executing a longitudinal dipole oscillation (e = 1). Due to 71 # 0, the bunch 

length 2i is a little longer when the bunch has 6 < 0 and a little shorter when 

the bunch has 6 > 0 (assuming ~110 < 0). The bunch loses more energy when 



it is shorter. This means then that the beam bses more energy when it has 

~5 > 0 and loses less energy when 6 < 0. This leads to damping when r]rqc < 0. 

Instability occurs when qrqo > 0. 

This phenomenon may be important for the isochronous rings (considered 

for synchrotron radiation sources or muon colliders) when ~0 M 0. 

14 Further Readings 

These notes give a collection of formulas which might come handy in actual 

calculations. A good fraction of the notes can be found in the Handbook of Ac- 

celerator Physics and Engineering, ed. A. Chao and M. Tigner, World Scientific 

(1999), particularly from articles by W. Ng, T. Suzuki, B. Zotter, K. Thomp 

son, K. Yokoya, T. Weiland, R. Gluckstern, S. Kurrenoy, P. Wilson, and A. 

Piwinski. For discussions emphasizing the physics principles, one may consult 

Physics of Collective Beam Instabilities in High Energy Accelerators, A. Chao, 

Wiley (1993). For a much more extensive discussion on impedances, one may 

consult Impedances and Wakes in High-Energy Particle Accelerators, B. Zotter 

and S. Kheifets, World Scientific (1997). 


