
SLAC{PUB{8315

December 1999

New Directions in Quantum
Chromodynamics�

Stanley J. Brodsky
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94309

Abstract

I review the light-cone Fock state represention and its associated light-cone fac-
torization scheme as a method for encoding the 
avor, momentum, and helicity prop-
erties of hadrons in the form of universal process-independent and frame-independent
amplitudes. Discrete light-cone quantization (DLCQ) provides a matrix representa-
tion of the QCD Hamiltonian and a nonperturbative method for computing the quark
and gluon bound state wavefunctions. A number of applications of the light-cone for-
malism are discussed, including an exact light-cone Fock state representation of semi-
leptonic B decay amplitudes. Hard exclusive and di�ractive reactions are shown to be
sensitive to hadron distribution amplitudes, the valence Fock state hadronic wavefuc-
tions at small impact separation. Semi-exclusive reactions are shown to provide new

avor-dependent probes of distribution amplituds and new types of deep inelastic cur-
rents. \Self-resolving" di�ractive processes and Coulomb dissociation are discussed
as a direct measure of the light-cone wavefunctions of hadrons. Alternatively, one can
use Coulomb dissociation to resolve nuclei in terms of their nucleonic and mesonic
degrees of freedom. I also discuss several theoretical tools which eliminate theoretical
ambiguities in perturbative QCD predictions. For example, commensurate scale re-
lations are perturbative QCD predictions based on conformal symmetry which relate
observable to observable at �xed relative scale; such relations have no renormaliza-
tion scale or scheme ambiguity. I also discuss the utility of the �V coupling, de�ned
from the QCD heavy quark potential, as a useful physical expansion parameter for
perturbative QCD and grand uni�cation. New results on the analytic fermion masses
dependence of the �V coupling at two-loop order are presented.

Invited talk presented at

International Summer School on Particle Production Spanning MeV and TeV

Energies (Nijmegen 99)

Nijmegen, The Netherlands

8{20 August 1999

�Work supported by Department of Energy contract DE{AC03{76SF00515.



1 Introduction

In quantum chromdynamics, hadrons are identi�ed as relativistic color-singlet bound

states of con�ned quarks and gluons. A primary goal of high energy and nuclear

physics is to unravel the nonperturbative structure and dynamics of nucleons and

nuclei in terms of their fundamental quark and gluon degrees of freedom. QCD is a

relativistic quantum �eld theory, so that a fundamental description of hadrons must be

at the amplitude level. Part of the complexity of hadronic physics is related to the fact

that the eigensolutions of a relativistic theory 
uctuate not only in momentum space

and helicity, but also in particle number. For example, the heavy quark sea of the

proton is associated with higher particle number Fock states. Thus any wavefunction

description must allow for arbitrary 
uctuations in particle number.

Since the discovery of Bjorken scaling [1] of deep inelastic lepton-proton scattering

in 1969 [2], high energy experiment have provided an extraordinary amount of infor-

mation on the 
avor, momentum, and helicity distributions of the quark and gluon

in hadrons. This information is generally encoded in the leading twist factorized

quark and gluon distributions q�q ;�N (x;Q); g�g ;�N (x;Q): However, since such distribu-

tions are single-particle probabilities, they contain no information on the transverse

momentum distributions, multiparticle 
avor and helicity correlations, or quantum

mechanical phases, information critical to understanding higher twist processes or

exclusive processes such as form factors, elastic scattering, and the exclusive decays

of heavy hadrons. Although it is convenient for computational reasons to separate

hard, perturbatively calculable, and soft non-perturbative physics, the theory has

no such intrinsic division. The analysis of QCD processes at the amplitude level is

a challenging relativistic many-body problem, mixing issues involving con�nement,

chiral symmetry, non-perturbative and perturbative dynamics, and thus a theoretical

complexity far beyond traditional bound state problems.

Deep inelastic lepton-proton scattering has provided the traditional guide to hadron

structure. The focus in high energy physics has been on the logarithmic DGLAP evo-

lution of the structure functions and the associated jet structure as a test of pertur-

bative QCD. However, when the photon virtuality is small and of order of the quark

intrinsic transverse momentum, evolution from QCD radiative processes becomes

quenched, and the structure functions reveal fundamental features of the proton's
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composition. The deep inelastic scattering data in fact show that the nonperturba-

tive structure of nucleons is more complex than suggested by a three-quark bound

state. For example, if the sea quarks were generated solely by perturbative QCD

evolution via gluon splitting, the anti-quark distributions would be approximately

isospin symmetric. However, the u(x) and d(x) antiquark distributions of the proton

at Q2 � 10 GeV2 are found to be quite di�erent in shape [3] and thus must re
ect

dynamics intrinsic to the proton's structure. Evidence for a di�erence between the

s(x) and s(x) distributions has also been claimed [4]. There have also been surprises

associated with the chirality distributions �q = q"="�q#=" of the valence quarks which
show that a simple valence quark approximation to nucleon spin structure functions

is far from the actual dynamical situation [5].

It is helpful to categorize the parton distributions as \intrinsic"|pertaining to

the long-time scale composition of the target hadron, and \extrinsic",|re
ecting

the short-time substructure of the individual quarks and gluons themselves. Gluons

carry a signi�cant fraction of the proton's spin as well as its momentum. Since gluon

exchange between valence quarks contributes to the p � � mass splitting, it follows

that the gluon distributions cannot be solely accounted for by gluon bremsstrahlung

from individual quarks, the process responsible for DGLAP evolutions of the structure

functions. Similarly, in the case of heavy quarks, ss, cc, bb, the diagrams in which the

sea quarks are multiply connected to the valence quarks are intrinsic to the proton

structure itself [6]. The x distribution of intrinsic heavy quarks is peaked at large

x re
ecting the fact that higher Fock state wavefunctions containing heavy quarks

are maximal when the o�-shellness of the 
uctuation is minimized. The evidence for

intrinsic charm at large x in deep inelastic scattering is discussed by Harris et al.[7]

Thus neither gluons nor sea quarks are solely generated by DGLAP evolution, and

one cannot de�ne a resolution scale Q0 where the sea or gluon degrees of freedom can

be neglected.

In these lectures, I shall emphasize the utility of light-cone Hamiltonian quantiza-

tion and the light-cone Fock wavefunctions for representing hadrons in terms of their

quark and gluon degrees of freedom. The fundamental eigenvalue problem of QCD

takes the form of a Heisenberg equation:

H
QCD
LC j	Hi =M2

H j	Hi (1)
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where the theory is quantized at �xed light-cone \time" � = t+z=c [8]. This represen-

tation is the extension of Schr�odinger many-body theory to the relativistic domain.

The eigenvalues of the light-cone Hamiltonian H
QCD
LC is the square of the hadron

masses MH , the discrete spectrum as well as the bound states. Each eigenfunction

can be decomposed on the complete basis of eigensolutions jni of the free Hamiltonian
H0
LC = H

QCD
LC (g ! 0). The light-cone Fock projections of the eigensolution

 n=H(xi; ~k?i; �i) = hn(xi; k?i; �i)j	Hi ; i = 1 � � �n (2)

encode all of the information of the hadron in terms of the 
avor, helicity, and mo-

mentum content of its quark and gluon constituents. For example, the proton state

has the Fock expansion

j pi =
X
n

hn j pi jni

=  
(�)

3q=p(xi;
~k?i; �i) j uudi (3)

+ 
(�)

3qg=p(xi;
~k?i; �i) j uudgi+ � � �

representing the expansion of the exact QCD eigenstate on a non-interacting quark

and gluon basis. The probability amplitude for each such n-particle state of on-mass

shell quarks and gluons in a hadron is given by a light-cone Fock state wavefunction

 n=H(xi; ~k?i; �i), where the constituents have longitudinal light-cone momentum frac-

tions xi = k+i =p
+ = (k0i + kzi )=(p

0 + pz) ;
Pn

i=1 xi = 1, relative transverse momentum

~k?i ;
Pn

i=1
~k?i = ~0?, and helicities �i:

The light-cone Fock formalism is derived in the following way: one �rst constructs

the light-cone time evolution operator P� = P 0�P z and the invariant mass operator

HLC = P�P+ � P 2
?
in light-cone gauge A+ = 0 from the QCD Lagrangian. The

dependent �eld theoretic degrees of freedom are eliminated using the QCD equations

of motion. The total longitudinal momentum P+ = P 0+P z and transverse momenta

~P? are conserved, i.e. are independent of the interactions. The P� light-cone evolu-

tion operator is constructed from the independent �eld theoretic degrees of freedom.

The matrix elements of HLC on the complete orthonormal basis fjnig of the free the-
ory H0

LC = HLC(g = 0) can then be constructed. The matrix elements hn jHLC jmi
connect Fock states di�ering by 0, 1, or 2 quark or gluon quanta, and they include

the instantaneous quark and gluon contributions imposed by eliminating dependent

degrees of freedom in light-cone gauge.
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The LC wavefunctions  n=H(xi; ~k?i; �i) are universal, process independent, and

thus control all hadronic reactions. For example, the quark distributions measured

in hard inclusive reactions are

q�q=�p(x;�) =
X
n;qa

Z nY
j=1

dxjd
2k?j

X
�i

j (�)
n=H(xi;

~k?i; �i)j2 (4)

�Æ
 
1�

nX
i

xi

!
Æ(2)

 
nX
i

~k?i

!
Æ(x� xq)Æ�a;�q�(�

2 �M2
n)

where the sum is over all quarks qa which match the quantum numbers, light-cone

momentum fraction x and helicity of the probe quark. The e�ective lifetime of each

con�guration in the laboratory frame is 2Plab=(M2
n �M2

p ) where M2
n =

Pn
i=1(k

2
?i +

m2
i )=xi < �2 is the o�-shell invariant mass and � is a global ultraviolet regulator.

The light-cone momentum integrals are thus limited by requiring that the invariant

mass squared of the constituents of each Fock state is less than the resolution scale

�. This cuto� serves to de�ne a factorization scheme for separating hard and soft

regimes in both exclusive and inclusive hard scattering reactions.

A crucial feature of the light-cone formalism is the fact that the form of the

 
(�)

n=H(xi;
~k?i; �i) is invariant under longitudinal boosts; i.e., the light-cone wavefunc-

tions expressed in the relative coordinates xi and k?i are independent of the total

momentum P+, ~P? of the hadron. The ensemble f n=Hg of such light-cone Fock

wavefunctions is a key concept for hadronic physics, providing a conceptual basis for

representing physical hadrons (and also nuclei) in terms of their fundamental quark

and gluon degrees of freedom. Each Fock state interacts distinctly; e.g., Fock states

with small particle number and small impact separation have small color dipole mo-

ments and can traverse a nucleus with minimal interactions. This is the basis for the

predictions for \color transparency" [9].

Given the  
(�)

n=H ; one can construct any spacelike electromagnetic or electroweak

form factor from the diagonal overlap of the LC wavefunctions [10]. The natural for-

malism for describing the hadronic wavefunctions which enter exclusive and di�ractive

amplitudes is the light-cone expansion. Similarly, the matrix elements of the currents

that de�ne quark and gluon structure functions can be computed from the integrated

squares of the LC wavefunctions [11].

Factorization theorems for hard exclusive, semi-exclusive, and di�ractive processes

allow a rigorous separation of soft non-perturbative dynamics of the bound state
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hadrons from the hard dynamics of a perturbatively-calculable quark-gluon scattering

amplitude.

Roughly, the direct proofs of factorization in the light-cone scheme proceed as

follows: In hard inclusive reactions all intermediate states are divided according to

M2
n < �2 andM2

n < �2 domains. The lower region is associated with the quark and

gluon distributions de�ned from the absolute squares of the LC wavefunctions in the

light cone factorization scheme. In the high invariant mass regime, intrinsic transverse

momenta can be ignored, so that the structure of the process at leading power has the

form of hard scattering on collinear quark and gluon constituents, as in the parton

model. The attachment of gluons from the LC wavefunction to a propagator in the

hard subprocess is power-law suppressed in LC gauge, so that the minimal 2 ! 2

quark-gluon subprocesses dominate. The higher order loop corrections lead to the

DGLAP evolution equations.

It is important to note that the e�ective starting point for the PQCD evolution of

the structure functions cannot be taken as a constant Q2
0 since as x! 1 the invariant

mass Mn exceeds the resolution scale �. Thus in e�ect, evolution is quenched at

x ! 1. The anomaly contribution to singlet helicity structure function g1(x;Q) can

be explicitly identi�ed in the LC factorization scheme as due to the 
�g ! qq fusion

process. The anomaly contribution would be zero if the gluon is on shell. However, if

the o�-shellness of the state is larger than the quark pair mass, one obtains the usual

anomaly contribution [12].

In exclusive amplitudes, the LC wavefunctions are the interpolating functions

between the quark and gluon states and the hadronic states. In an exclusive ampli-

tude involving a hard scale Q2 all intermediate states can be divided according to

M2
n < �2 < Q2 and M2

n < �2 invariant mass domains. The high invariant mass

contributions to the amplitude has the structure of a hard scattering process TH in

which the hadrons are replaced by their respective (collinear) quarks and gluons. In

light-cone gauge only the minimal Fock states contribute to the leading power-law

fall-o� of the exclusive amplitude. The wavefunctions in the lower invariant mass

domain can be integrated up to the invariant mass cuto� � and replaced by the

gauge invariant distribution amplitudes, �H(xi;�). Final state and initial state cor-

rections from gluon attachments to lines connected to the color- singlet distribution

amplitudes cancel at leading twist.
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Thus the key non-perturbative input for exclusive processes is the gauge and frame

independent hadron distribution amplitude [11] de�ned as the integral of the valence

(lowest particle number) Fock wavefunction; e.g. for the pion

��(xi;�) �
Z
d2k?  

(�)
qq=�(xi;

~k?i; �) (5)

where the global cuto� � is identi�ed with the resolution Q. The distribution ampli-

tude controls leading-twist exclusive amplitudes at high momentum transfer, and it

can be related to the gauge-invariant Bethe-Salpeter wavefunction at equal light-cone

time � = x+. The logarithmic evolution of hadron distribution amplitudes �H(xi; Q)

can be derived from the perturbatively-computable tail of the valence light-cone wave-

function in the high transverse momentum regime [11]. Further details are provided

in the following sections.

The existence of an exact formalism provides a basis for systematic approxima-

tions and a control over neglected terms. For example, one can analyze exclusive

semi-leptonic B-decays which involve hard internal momentum transfer using a per-

turbative QCD formalism [13, 14] patterned after the analysis of form factors at

large momentum transfer [11]. The hard-scattering analysis proceeds by writing each

hadronic wavefunction as a sum of soft and hard contributions

 n =  soft
n (M2

n < �2) +  hard
n (M2

n > �2); (6)

where M2
n is the invariant mass of the partons in the n-particle Fock state and �

is the separation scale. The high internal momentum contributions to the wave-

function  hard
n can be calculated systematically from QCD perturbation theory by

iterating the gluon exchange kernel. Again, the contributions from high momentum

transfer exchange to the B-decay amplitude can then be written as a convolution

of a hard-scattering quark-gluon scattering amplitude TH with the distribution am-

plitudes �(xi;�), the valence wavefunctions obtained by integrating the constituent

momenta up to the separation scaleMn < � < Q. This is the basis for the perturba-

tive hard-scattering analyses [13, 15, 16, 14]. In the exact analysis, one can identify

the hard PQCD contribution as well as the soft contribution from the convolution of

the light-cone wavefunctions. Furthermore, the hard-scattering contribution can be

systematically improved.

It is thus important to not only compute the spectrum of hadrons and gluonic

states, but also to determine the wavefunction of each QCD bound state in terms of
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its fundamental quark and gluon degrees of freedom. If we could obtain such nonper-

turbative solutions of QCD, then we could compute the quark and gluon structure

functions and distribution amplitudes which control hard-scattering inclusive and

exclusive reactions as well as calculate the matrix elements of currents which under-

lie electroweak form factors and the weak decay amplitudes of the light and heavy

hadrons. The light-cone wavefunctions also determine the multi-parton correlations

which control the distribution of particles in the proton fragmentation region as well

as dynamical higher twist e�ects. Thus one can analyze not only the deep inelastic

structure functions but also the fragmentation of the spectator system. Knowledge

of hadron wavefunctions would also open a window to a deeper understanding of the

physics of QCD at the amplitude level, illuminating exotic e�ects of the theory such

as color transparency, intrinsic heavy quark e�ects, hidden color, di�ractive processes,

and the QCD van der Waals interactions.

Can we ever hope to compute the light-cone wavefunctions from �rst principles

in QCD? In the Discretized Light-Cone Quantization (DLCQ) method [17], periodic

boundary conditions are introduced in order to render the set of light-cone momenta

k+i ; k?i discrete. Solving QCD then becomes reduced to diagonalizing the mass opera-

tor of the theory. Virtually any 1+1 quantum �eld theory, including \reduced QCD"

(which has both quark and gluonic degrees of freedom) can be completely solved

using DLCQ [18, 19]. The method yields not only the bound-state and continuum

spectrum, but also the light-cone wavefunction for each eigensolution. The method

is particularly elegant in the case of supersymmetric theories [20]. The solutions for

the model 1+1 theories can provide an important theoretical laboratory for testing

approximations and QCD-based models. Recent progress in DLCQ has been obtained

for 3 + 1 theories utilizing Pauli-Villars ghost �elds to provide a covariant regular-

ization. Broken supersymmetry may be the key method for regulating non-Abelian

theories. Light-cone gauge A+ = 0 allows one to utilize only the physical degrees of

freedom of the gluon �eld. However, light-cone quantization in Feynman gauge has

a number of attractive features, including manifest covariance and a straightforward

passage to the Coulomb limit in the case of static quarks [21].

Light-cone wavefunctions thus are the natural quantities to encode hadron proper-

ties and to bridge the gap between empirical constraints and theoretical predictions for

the bound state solutions. We can thus envision a program to construct the hadronic
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light cone Fock wavefunctions  n(xi; k?i; �i) using not only data but constraints such

as:

(1) Since the state is far o� shell at large invariant mass M, one can derive

rigorous limits on the x ! 1, high k?, and high M2
n behavior of the wavefunctions

in the perturbative domain.

(2) Ladder relations connecting state of di�erent particle number follow from

the QCD equation of motion and lead to Regge behavior of the quark and gluon

distributions at x! 0. QED provides a constraint at NC ! 0:

(3) One can obtain guides to the exact behavior of LC wavefunctions in QCD

from analytic or DLCQ solutions to toy models such as \reduced" QCD(1 + 1):

(4) QCD sum rules, lattice gauge theory moments, and QCD inspired models such

as the bag model, chiral theories, provide important constraints.

(5) Since the LC formalism is valid at all scales, one can utilize empirical con-

straints such as the measurements of magnetic moments, axial couplings, form factors,

and distribution amplitudes.

(6) In the nonrelativistic limit, the light-cone and many-body Schr�odinger theory

formalisms must match.

In addition to the light-cone Fock expansion, a number of other useful theoretical

tools are available to eliminate theoretical ambiguities in QCD predictions:

(1) Conformal symmetry provides a template for QCD predictions, leading to

relations between observables which are present even in a theory which is not scale

invariant. For example, the natural representation of distribution amplitudes is in

terms of an expansion of orthonormal conformal functions multiplied by anomalous

dimensions determined by QCD evolution equations [22, 23]. Thus an important guide

in QCD analyses is to identify the underlying conformal relations of QCD which are

manifest if we drop quark masses and e�ects due to the running of the QCD couplings.

In fact, if QCD has an infrared �xed point (vanishing of the Gell Mann-Low function

at low momenta), the theory will closely resemble a scale-free conformally symmetric

theory in many applications.

(2) Commensurate scale relations [24] are perturbative QCD predictions which re-

late observable to observable at �xed relative scale, such as the \generalized Crewther

relation" [25], which connects the Bjorken and Gross-Llewellyn Smith deep inelastic

scattering sum rules to measurements of the e+e� annihilation cross section. The
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relations have no renormalization scale or scheme ambiguity. The coeÆcients in the

perturbative series for commensurate scale relations are identical to those of conformal

QCD; thus no infrared renormalons are present [26]. One can identify the required

conformal coeÆcients at any �nite order by expanding the coeÆcients of the usual

PQCD expansion around a formal infrared �xed point, as in the Banks-Zak method

[27]. All non-conformal e�ects are absorbed by �xing the ratio of the respective mo-

mentum transfer and energy scales. In the case of �xed-point theories, commensurate

scale relations relate both the ratio of couplings and the ratio of scales as the �xed

point is approached [26].

(3) �V Scheme. A natural scheme for de�ning the QCD coupling in exclusive and

other processes is the �V (Q
2) scheme de�ned from the potential of static heavy quarks.

Heavy-quark lattice gauge theory can provide highly precise values for the coupling.

All vacuum polarization corrections due to fermion pairs are then automatically and

analytically incorporated into the Gell Mann-Low function, thus avoiding the problem

of explicitly computing and resumming quark mass corrections related to the running

of the coupling. The use of a �nite e�ective charge such as �V as the expansion

parameter also provides a basis for regulating the infrared nonperturbative domain

of the QCD coupling.

(4) The Abelian Correspondence Principle. One can consider QCD predictions as

analytic functions of the number of colors NC and 
avors NF . In particular, one can

show at all orders of perturbation theory that PQCD predictions reduce to those of

an Abelian theory at NC ! 0 with b� = CF�s and cNF = NF=TCF held �xed [28].

There is thus a deep connection between QCD processes and their corresponding

QED analogs.

2 Discretized Light-Cone Quantization

Solving a quantum �eld theory such as QCD is clearly not easy. However, highly

nontrivial, one-space one-time relativistic quantum �eld theories which mimic many

of the features of QCD, have already been completely solved using light-cone Hamil-

tonian methods [8]. Virtually any (1+1) quantum �eld theory can be solved using the

method of Discretized Light-Cone-Quantization (DLCQ) [17, 29] where the matrix

elements
D
n jH�)

LC jm
E
, are made discrete in momentum space by imposing periodic
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or anti-periodic boundary conditions in x� = x0 � xz and ~x?. Upon diagonalization

of HLC , the eigenvalues provide the invariant mass of the bound states and eigen-

states of the continuum. In DLCQ, the Hamiltonian HLC , which can be constructed

from the Lagrangian using light-cone time quantization, is completely diagonalized,

in analogy to Heisenberg's solution of the eigenvalue problem in quantum mechan-

ics. The quantum �eld theory problem is rendered discrete by imposing periodic or

anti-periodic boundary conditions. The eigenvalues and eigensolutions of collinear

QCD then give the complete spectrum of hadrons, nuclei, and gluonium and their

respective light-cone wavefunctions. A beautiful example is \collinear" QCD: a vari-

ant of QCD(3 + 1) de�ned by dropping all of interaction terms in HQCD
LC involving

transverse momenta [18]. Even though this theory is e�ectively two-dimensional, the

transversely-polarized degrees of freedom of the gluon �eld are retained as two scalar

�elds. Antonuccio and Dalley [19] have used DLCQ to solve this theory. The diag-

onalization of HLC provides not only the complete bound and continuum spectrum

of the collinear theory, including the gluonium states, but it also yields the complete

ensemble of light-cone Fock state wavefunctions needed to construct quark and gluon

structure functions for each bound state. Although the collinear theory is a drastic

approximation to physical QCD(3 + 1), the phenomenology of its DLCQ solutions

demonstrate general gauge theory features, such as the peaking of the wavefunctions

at minimal invariant mass, color coherence and the helicity retention of leading par-

tons in the polarized structure functions at x ! 1. The solutions of the quantum

�eld theory can be obtained for arbitrary coupling strength, 
avors, and colors.

In practice it is essential to introduce an ultraviolet regulator in order to limit the

total range of hn jHLC jmi, such as the \global" cuto� in the invariant mass of the

free Fock state. One can also introduce a \local" cuto� to limit the change in invari-

ant mass jM2
n �M2

mj < �2
local which provides spectator-independent regularization

of the sub-divergences associated with mass and coupling renormalization. Recently,

Hiller, McCartor, and I have shown [30] that the Pauli-Villars method has advantages

for regulating light-cone quantized Hamiltonian theory. A spectrum of Pauli-Villars

ghost �elds satisfying three spectral conditions will regulate the interactions in the

ultraviolet, while at same time avoiding spectator-dependent renormalization and pre-

serving chiral symmetry. We have also shown that model theories in 3+! dimensions

can be successfully solved with such regularization.
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Although gauge theories are usually quantized on the light-cone in light-cone gauge

A+ = 0, it is also possible and interesting to quantize the theory in Feynman gauge

[21]. Covariant gauges are advantageous since they preserve the rotational symmetry

of the gauge interactions.

The natural renormalization scheme for the QCD coupling is �V (Q), the e�ective

charge de�ned from the scattering of two in�nitely-heavy quark test charges. This is

discussed in more detail below. The renormalization scale can then be determined

from the virtuality of the exchanged momentum, as in the BLM and commensurate

scale methods [31, 24, 25, 32]. Similar e�ective charges have been proposed by Watson

[33] and Czarnecki et al.[34]

In principle, we could also construct the wavefunctions of QCD(3+1) starting with

collinear QCD(1+1) solutions by systematic perturbation theory in �H, where �H

contains the terms which produce particles at non-zero k?, including the terms linear

and quadratic in the transverse momenta
�!
k ?i which are neglected in the Hamilton

H0 of collinear QCD. We can write the exact eigensolution of the full Hamiltonian as

 (3+1) =  (1+1) +
1

M2 �H + i�
�H  (1+1) ;

where

1

M2 �H + i�
=

1

M2 �H0 + i�
+

1

M2 �H + i�
�H

1

M2 �H0 + i�

can be represented as the continued iteration of the Lippmann Schwinger resolvant.

Note that the matrix (M2�H0)
�1 is known to any desired precision from the DLCQ

solution of collinear QCD.

3 Electroweak Matrix Elements and Light-Cone

Wavefunctions

Another remarkable advantage of the light-cone formalism is that exclusive semilep-

tonic B-decay amplitudes such as B ! A`� can be evaluated exactly [35]. The

timelike decay matrix elements require the computation of the diagonal matrix ele-

ment n ! n where parton number is conserved, and the o�-diagonal n + 1! n � 1
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Figure 1: Exact representation of electroweak decays and time-like form factors in

the light-cone Fock representation.

convolution where the current operator annihilates a qq0 pair in the initial B wave-

function. See Fig. 1. This term is a consequence of the fact that the time-like

decay q2 = (p` + p�)
2 > 0 requires a positive light-cone momentum fraction q+ > 0.

Conversely for space-like currents, one can choose q+ = 0, as in the Drell-Yan-West

representation of the space-like electromagnetic form factors. However, as can be seen

from the explicit analysis of the form factor in a perturbative model, the o�-diagonal

convolution can yield a nonzero q+=q+ limiting form as q+ ! 0. This extra term

appears speci�cally in the case of \bad" currents such as J� in which the coupling

to qq 
uctuations in the light-cone wavefunctions are favored. In e�ect, the q+ ! 0

limit generates Æ(x) contributions as residues of the n+1! n�1 contributions. The

necessity for such \zero mode" Æ(x) terms has been noted by Chang, Root and Yan

[36], Burkardt [37], and Ji and Choi [38].

The o�-diagonal n + 1 ! n � 1 contributions give a new perspective for the
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physics of B-decays. A semileptonic decay involves not only matrix elements where

a quark changes 
avor, but also a contribution where the leptonic pair is created

from the annihilation of a qq0 pair within the Fock states of the initial B wavefunc-

tion. The semileptonic decay thus can occur from the annihilation of a nonvalence

quark-antiquark pair in the initial hadron. This feature will carry over to exclusive

hadronic B-decays, such as B0 ! ��D+. In this case the pion can be produced from

the coalescence of a du pair emerging from the initial higher particle number Fock

wavefunction of the B. The D meson is then formed from the remaining quarks after

the internal exchange of a W boson.

In principle, a precise evaluation of the hadronic matrix elements needed for B-

decays and other exclusive electroweak decay amplitudes requires knowledge of all of

the light-cone Fock wavefunctions of the initial and �nal state hadrons. In the case

of model gauge theories such as QCD(1+1) [39] or collinear QCD [19] in one-space

and one-time dimensions, the complete evaluation of the light-cone wavefunction is

possible for each baryon or meson bound-state using the DLCQ method. It would be

interesting to use such solutions as a model for physical B-decays.

The existence of an exact formalism for electroweak matrix elements gives a basis

for systematic approximations and a control over neglected terms. For example, one

can analyze exclusive semileptonic B-decays which involve hard internal momentum

transfer using a perturbative QCD formalism patterned after the analysis of form

factors at large momentum transfer [11]. The hard-scattering analysis proceeds by

writing each hadronic wavefunction as a sum of soft and hard contributions

 n =  soft
n (M2

n < �2) +  hard
n (M2

n > �2); (7)

where M2
n is the invariant mass of the partons in the n-particle Fock state and � is

the separation scale. The high internal momentum contributions to the wavefunction

 hard
n can be calculated systematically from QCD perturbation theory by iterating the

gluon exchange kernel. The contributions from high momentum transfer exchange to

the B-decay amplitude can then be written as a convolution of a hard scattering

quark-gluon scattering amplitude TH with the distribution amplitudes �(xi;�), the

valence wavefunctions obtained by integrating the constituent momenta up to the

separation scale Mn < � < Q. This is the basis for the perturbative hard scattering

analyses [13, 15, 40, 16]. In the exact analysis, one can identify the hard PQCD
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contribution as well as the soft contribution from the convolution of the light-cone

wavefunctions. Furthermore, the hard scattering contribution can be systematically

improved. For example, o�-shell e�ects can be retained in the evaluation of TH by

utilizing the exact light-cone energy denominators.

Given the solution for the hadronic wavefunctions  (�)
n with M2

n < �2, one can

construct the wavefunction in the hard regime with M2
n > �2 using projection op-

erator techniques [11]. The construction can be done perturbatively in QCD since

only high invariant mass, far o�-shell matrix elements are involved. One can use this

method to derive the physical properties of the LC wavefunctions and their matrix el-

ements at high invariant mass. Since M2
n =

Pn
i=1

�
k2
?

+m2

x

�
i

, this method also allows

the derivation of the asymptotic behavior of light-cone wavefunctions at large k?,

which in turn leads to predictions for the fall-o� of form factors and other exclusive

matrix elements at large momentum transfer, such as the quark counting rules for

predicting the nominal power-law fall-o� of two-body scattering amplitudes at �xed

�cm [41]. The phenomenological successes of these rules can be understood within

QCD if the coupling �V (Q) freezes in a range of relatively small momentum transfer

[32].

4 Other Applications of Light-Cone Quantization

to QCD Phenomenology

Di�ractive vector meson photoproduction. The light-cone Fock wavefunction repre-

sentation of hadronic amplitudes allows a simple eikonal analysis of di�ractive high

energy processes, such as 
�(Q2)p! �p, in terms of the virtual photon and the vector

meson Fock state light-cone wavefunctions convoluted with the gp! gp near-forward

matrix element [42]. One can easily show that only small transverse size b? � 1=Q

of the vector meson distribution amplitude is involved. The hadronic interactions are

minimal, and thus the 
�(Q2)N ! �N reaction can occur coherently throughout a

nuclear target in reactions without absorption or shadowing. The 
�A! V A process

thus is a laboratory for testing QCD color transparency [9]. This is discussed further

in the next section.

Regge behavior of structure functions. The light-cone wavefunctions  n=H of a
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hadron are not independent of each other, but rather are coupled via the equations of

motion. Antonuccio, Dalley and I [43] have used the constraint of �nite \mechanical"

kinetic energy to derive \ladder relations" which interrelate the light-cone wavefunc-

tions of states di�ering by one or two gluons. We then use these relations to derive the

Regge behavior of both the polarized and unpolarized structure functions at x! 0,

extending Mueller's derivation of the BFKL hard QCD pomeron from the properties

of heavy quarkonium light-cone wavefunctions at large NC QCD [44].

Structure functions at large xbj. The behavior of structure functions where one

quark has the entire momentum requires the knowledge of LC wavefunctions with

x ! 1 for the struck quark and x ! 0 for the spectators. This is a highly o�-

shell con�guration, and thus one can rigorously derive quark-counting and helicity-

retention rules for the power-law behavior of the polarized and unpolarized quark and

gluon distributions in the x ! 1 endpoint domain. It is interesting to note that the

evolution of structure functions is minimal in this domain because the struck quark is

highly virtual as x! 1; i.e. the starting point Q2
0 for evolution cannot be held �xed,

but must be larger than a scale of order (m2 + k2
?
)=(1� x) [11, 41, 45].

Intrinsic gluon and heavy quarks. The main features of the heavy sea quark-pair

contributions of the Fock state expansion of light hadrons can also be derived from

perturbative QCD, sinceM2
n grows with m

2
Q. One identi�es two contributions to the

heavy quark sea, the \extrinsic" contributions which correspond to ordinary gluon

splitting, and the \intrinsic" sea which is multi-connected via gluons to the valence

quarks. The intrinsic sea is thus sensitive to the hadronic bound state structure [6].

The maximal contribution of the intrinsic heavy quark occurs at xQ ' m?Q=
P

im?

where m? =
q
m2 + k2

?
; i.e. at large xQ, since this minimizes the invariant mass

M2
n. The measurements of the charm structure function by the EMC experiment are

consistent with intrinsic charm at large x in the nucleon with a probability of order

0:6 � 0:3% [7]. Similarly, one can distinguish intrinsic gluons which are associated

with multi-quark interactions and extrinsic gluon contributions associated with quark

substructure [46]. One can also use this framework to isolate the physics of the

anomaly contribution to the Ellis-Ja�e sum rule.

Materialization of far-o�-shell con�gurations. In a high energy hadronic collisions,

the highly-virtual states of a hadron can be materialized into physical hadrons simply

by the soft interaction of any of the constituents [47]. Thus a proton state with
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intrinsic charm j uudcci can be materialized, producing a J= at large xF , by the

interaction of a light-quark in the target. The production occurs on the front-surface

of a target nucleus, implying an A2=3 J= production cross section at large xF ; which

is consistent with experiment, such as Fermilab experiments E772 and E866.

Rearrangement mechanism in heavy quarkonium decay. It is usually assumed

that a heavy quarkonium state such as the J= always decays to light hadrons via

the annihilation of its heavy quark constituents to gluons. However, as Karliner

and I [48] have recently shown, the transition J= ! �� can also occur by the

rearrangement of the cc from the J= into the j qqcci intrinsic charm Fock state of

the � or �. On the other hand, the overlap rearrangement integral in the decay

 0 ! �� will be suppressed since the intrinsic charm Fock state radial wavefunction

of the light hadrons will evidently not have nodes in its radial wavefunction. This

observation gives a natural explanation of the long-standing puzzle why the J= 

decays prominently to two-body pseudoscalar-vector �nal states, whereas the  0 does

not.

Asymmetry of intrinsic heavy quark sea. The higher Fock state of the proton

j uudssi should resemble a jK�i intermediate state, since this minimizes its invari-
ant mass M. In such a state, the strange quark has a higher mean momentum

fraction x than the s [49, 50, 51]. Similarly, the helicity intrinsic strange quark in

this con�guration will be anti-aligned with the helicity of the nucleon [49, 51]. This

Q$ Q asymmetry is a striking feature of the intrinsic heavy-quark sea.

Comover phenomena. Light-cone wavefunctions describe not only the partons

that interact in a hard subprocess but also the associated partons freed from the pro-

jectile. The projectile partons which are comoving (i.e., which have similar rapidity)

with �nal state quarks and gluons can interact strongly producing (a) leading particle

e�ects, such as those seen in open charm hadroproduction; (b) suppression of quarko-

nium [52] in favor of open heavy hadron production, as seen in the E772 experiment;

(c) changes in color con�gurations and selection rules in quarkonium hadroproduc-

tion, as has been emphasized by Hoyer and Peigne [53]. All of these e�ects violate

the usual ideas of factorization for inclusive reactions. Further, more than one parton

from the projectile can enter the hard subprocess, producing dynamical higher twist

contributions, as seen for example in Drell-Yan experiments [54, 55].

Jet hadronization in light-cone QCD. One of the goals of nonperturbative analysis
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in QCD is to compute jet hadronization from �rst principles. The DLCQ solutions

provide a possible method to accomplish this. By inverting the DLCQ solutions, we

can write the \bare" quark state of the free theory as j q0i = P jni hn j q0i where now
fjnig are the exact DLCQ eigenstates of HLC , and hn j q0i are the DLCQ projec-

tions of the eigensolutions. The expansion in automatically infrared and ultraviolet

regulated if we impose global cuto�s on the DLCQ basis: �2 < �M2
n < �2 where

�M2
n = M2

n � (�Mi)
2. It would be interesting to study jet hadronization at the

amplitude level for the existing DLCQ solutions to QCD (1+1) and collinear QCD.

Hidden Color. The deuteron form factor at high Q2 is sensitive to wavefunction

con�gurations where all six quarks overlap within an impact separation b?i < O(1=Q);
the leading power-law fall o� predicted by QCD is Fd(Q

2) = f(�s(Q
2))=(Q2)5, where,

asymptotically, f(�s(Q
2)) / �s(Q

2)5+2
 [56]. The derivation of the evolution equation

for the deuteron distribution amplitude and its leading anomalous dimension 
 is

given in Ref. [57] In general, the six-quark wavefunction of a deuteron is a mixture of

�ve di�erent color-singlet states. The dominant color con�guration at large distances

corresponds to the usual proton-neutron bound state. However at small impact space

separation, all �ve Fock color-singlet components eventually acquire equal weight,

i.e., the deuteron wavefunction evolves to 80% \hidden color." The relatively large

normalization of the deuteron form factor observed at large Q2 points to sizable

hidden color contributions [58].

Spin-Spin Correlations in Nucleon-Nucleon Scattering and the Charm Threshold.

One of the most striking anomalies in elastic proton-proton scattering is the large spin

correlation ANN observed at large angles [59]. At
p
s ' 5 GeV, the rate for scattering

with incident proton spins parallel and normal to the scattering plane is four times

larger than that for scattering with anti-parallel polarization. This strong polarization

correlation can be attributed to the onset of charm production in the intermediate

state at this energy [60]. The intermediate state j uuduudcci has odd intrinsic parity

and couples to the J = S = 1 initial state, thus strongly enhancing scattering when

the incident projectile and target protons have their spins parallel and normal to the

scattering plane. The charm threshold can also explain the anomalous change in color

transparency observed at the same energy in quasi-elastic pp scattering. A crucial

test is the observation of open charm production near threshold with a cross section

of order of 1�b.
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5 Features of Hard Exclusive Processes in QCD

Exclusive and di�ractive reactions are highly challenging to analyze in QCD since

they require knowledge of the hadron wavefunctions at the amplitude level. There

has been much progress analyzing exclusive and di�ractive reactions at large momen-

tum transfer from �rst principles in QCD. Rigorous statements can be made on the

basis of asymptotic freedom and factorization theorems which separate the under-

lying hard quark and gluon subprocess amplitude from the nonperturbative physics

incorporated into the process-independent hadron distribution amplitudes �H(xi; Q)

[11], the valence light-cone wavefunctions integrated over k2
?
< Q2.

In general, hard exclusive hadronic amplitudes such as quarkonium decay, heavy

hadron decay, and scattering amplitudes where hadrons are scattered with large mo-

mentum transfer can be factorized at leading power as a convolution of distribution

amplitudes and hard-scattering quark/gluon matrix elements [11]

MHadron =
Y
H

X
n

Z nY
i=1

d2k?

nY
i=1

dx Æ

 
1�

nX
i=1

xi

!
Æ

 
nX
i=1

~k?i

!

� (�)

n=H(xi;
~k?i; �i)T

(�)
H : (8)

Here T
(�)
H is the underlying quark-gluon subprocess scattering amplitude in which the

(incident and �nal) hadrons are replaced by their respective quarks and gluons with

momenta xip
+, xi~p?+~k?i and invariant mass above the separation scaleM2

n > �2. At

large Q2 one can integrate over the transverse momenta. The leading power behavior

of the hard quark-gluon scattering amplitude TH(~k?i = 0); de�ned for the case where

the quarks are e�ectively collinear with their respective parent hadron's momentum,

provides the basic scaling and helicity features of the hadronic amplitude. The es-

sential part of the hadron wavefunction is the hadronic distribution amplitudes [11],

de�ned as the integral over transverse momenta of the valence (lowest particle num-

ber) Fock wavefunction, as de�ned in Eq. (5) where the global cuto� � is identi�ed

with the resolution Q. The distribution amplitude controls leading-twist exclusive

amplitudes at high momentum transfer, and it can be related to the gauge-invariant

Bethe-Salpeter wavefunction at equal light-cone time � = x+.

The logQ evolution of the hadron distribution amplitudes �H(xi; Q) can be de-

rived from the perturbatively-computable tail of the valence light-cone wavefunction
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in the high transverse momentum regime. The LC ultraviolet regulators provide a

factorization scheme for elastic and inelastic scattering, separating the hard dynami-

cal contributions with invariant mass squaredM2 > �2
global from the soft physics with

M2 � �2
global which is incorporated in the nonperturbative LC wavefunctions. The

DGLAP evolution of quark and gluon distributions can also be derived in an analo-

gous way by computing the variation of the Fock expansion with respect to �2. The

renormalization scale ambiguities in hard-scattering amplitudes via commensurate

scale relations [24, 25, 26] which connect the couplings entering exclusive amplitudes

to the �V coupling which controls the QCD heavy quark potential [61].

The features of exclusive processes to leading power in the transferred momenta

are well known:

(1) The leading power fall-o� is given by dimensional counting rules for the hard-

scattering amplitude: TH � 1=Qn�1, where n is the total number of �elds (quarks,

leptons, or gauge �elds) participating in the hard scattering [62, 63]. Thus the reaction

is dominated by subprocesses and Fock states involving the minimum number of

interacting �elds. The hadronic amplitude follows this fall-o� modulo logarithmic

corrections from the running of the QCD coupling, and the evolution of the hadron

distribution amplitudes. In some cases, such as large angle pp ! pp scattering,

pinch contributions from multiple hard-scattering processes must also be included

[64]. The general success of dimensional counting rules implies that the e�ective

coupling �V (Q
�) controlling the gluon exchange propagators in TH are frozen in the

infrared, i.e., have an infrared �xed point, since the e�ective momentum transfers Q�

exchanged by the gluons are often a small fraction of the overall momentum transfer

[61]. The pinch contributions are then suppressed by a factor decreasing faster than

a �xed power [62].

(2) The leading power dependence is given by hard-scattering amplitudes TH

which conserve quark helicity [65, 66]. Since the convolution of TH with the light-

cone wavefunctions projects out states with Lz = 0, the leading hadron amplitudes

conserve hadron helicity; i.e., the sum of initial and �nal hadron helicities are con-

served. Hadron helicity conservation thus follows from the underlying chiral structure

of QCD.

(3) Since the convolution of the hard scattering amplitude TH with the light-cone

wavefunctions projects out the valence states with small impact parameter, the essen-
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tial part of the hadron wavefunction entering a hard exclusive amplitude has a small

color dipole moment. This leads to the absence of initial or �nal state interactions

among the scattering hadrons as well as the color transparency of quasi-elastic inter-

actions in a nuclear target [9, 67]. Color transparency re
ects the underlying gauge

theoretic basis of the strong interactions. For example, the amplitude for di�ractive

vector meson photoproduction 
�(Q2)p ! �p, can be written as convolution of the

virtual photon and the vector meson Fock state light-cone wavefunctions the gp! gp

near-forward matrix element [42]. One can easily show that only small transverse size

b? � 1=Q of the vector meson distribution amplitude is involved. The sum over the

interactions of the exchanged gluons tend to cancel re
ecting its small color dipole

moment. Since the hadronic interactions are minimal, the 
�(Q2)N ! �N reaction

at large Q2 can occur coherently throughout a nuclear target in reactions without ab-

sorption or �nal state interactions. The 
�A ! V A process thus provides a natural

framework for testing QCD color transparency. Evidence for color transparency in

such reactions has been found by Fermilab experiment E665 [68].

(4) The evolution equations for distribution amplitudes which incorporate the op-

erator product expansion, renormalization group invariance, and conformal symmetry

[11, 22, 23, 69, 70].

(5) Hidden color degrees of freedom in nuclear wavefunctions re
ects the complex

color structure of hadron and nuclear wavefunctions [57]. The hidden color increases

the normalization of nuclear amplitudes such as the deuteron form factor at large

momentum transfer.

The �eld of analyzable exclusive processes has recently been expanded to a new

range of QCD processes, such as the highly virtual di�ractive processes 
�p ! �p

[42, 71], and semi-exclusive processes such as 
�p! �+X [72, 73, 74] where the �+ is

produced in isolation at large pT . An important new application of the perturbative

QCD analysis of exclusive processes is the recent analysis of hard B decays such as

B ! �� by Beneke, et al. [14]

Exclusive hard-scattering reactions and hard di�ractive reactions are now giving

a valuable window into the structure and dynamics of hadronic amplitudes. Recent

measurements of the photon-to-pion transition form factor at CLEO [75], the di�rac-

tive dissociation of pions into jets at Fermilab [76], di�ractive vector meson leptopro-

duction at Fermilab and HERA, and the new program of experiments on exclusive
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proton and deuteron processes at Je�erson Laboratory are now yielding fundamen-

tal information on hadronic wavefunctions, particularly the distribution amplitude

of mesons. Such information is also critical for interpreting exclusive heavy hadron

decays and the matrix elements and amplitudes entering CP -violating processes at

the B factories.

There has been much progress analyzing exclusive and di�ractive reactions at

large momentum transfer from �rst principles in QCD. Rigorous statements can be

made on the basis of asymptotic freedom and factorization theorems which separate

the underlying hard quark and gluon subprocess amplitude from the nonperturbative

physics incorporated into the process-independent hadron distribution amplitudes

�H(xi; Q) [11]. An important new application is the recent analysis of hard exclusive

B decays by Beneke, et al. [14] Key features of such analyses are: (a) evolution equa-

tions for distribution amplitudes which incorporate the operator product expansion,

renormalization group invariance, and conformal symmetry [11, 22, 77, 23, 69, 70];

(b) hadron helicity conservation which follows from the underlying chiral structure

of QCD [65]; (c) color transparency, which eliminates corrections to hard exclusive

amplitudes from initial and �nal state interactions at leading power and re
ects the

underlying gauge theoretic basis for the strong interactions [9, 67]; and (d) hidden

color degrees of freedom in nuclear wavefunctions, which re
ects the color structure

of hadron and nuclear wavefunctions [57]. There have also been recent advances

eliminating renormalization scale ambiguities in hard-scattering amplitudes via com-

mensurate scale relations [24, 25, 26] which connect the couplings entering exclusive

amplitudes to the �V coupling which controls the QCD heavy quark potential [61].

The postulate that the QCD coupling has an infrared �xed-point can explain the

applicability of conformal scaling and dimensional counting rules to physical QCD

processes [62, 63, 61]. The �eld of analyzable exclusive processes has recently been

expanded to a new range of QCD processes, such as electroweak decay amplitudes,

highly virtual di�ractive processes such as 
�p! �p [42, 78], and semi-exclusive pro-

cesses such as 
�p! �+X [72, 73, 74] where the �+ is produced in isolation at large

pT .

The natural renormalization scheme for the QCD coupling in hard exclusive pro-

cesses is �V (Q), the e�ective charge de�ned from the scattering of two in�nitely-heavy

quark test charges. The renormalization scale can then be determined from the vir-
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tuality of the exchanged momentum of the gluons, as in the BLM and commensurate

scale methods [31, 24, 25, 26]. We will discuss these theoretical tools and methods in

the later sections.

The main features of exclusive processes to leading power in the transferred mo-

menta are:

(1) The leading power fall-o� is given by dimensional counting rules for the hard-

scattering amplitude: TH � 1=Qn�1, where n is the total number of �elds (quarks,

leptons, or gauge �elds) participating in the hard scattering [62, 63]. Thus the reaction

is dominated by subprocesses and Fock states involving the minimum number of

interacting �elds. The hadronic amplitude follows this fall-o� modulo logarithmic

corrections from the running of the QCD coupling, and the evolution of the hadron

distribution amplitudes. In some cases, such as large angle pp ! pp scattering,

pinch contributions from multiple hard-scattering processes must also be included

[64]. The general success of dimensional counting rules implies that the e�ective

coupling �V (Q
�) controlling the gluon exchange propagators in TH are frozen in the

infrared, i.e., have an infrared �xed point, since the e�ective momentum transfers Q�

exchanged by the gluons are often a small fraction of the overall momentum transfer

[61]. The pinch contributions are suppressed by a factor decreasing faster than a �xed

power [62].

(2) The leading power dependence is given by hard-scattering amplitudes TH

which conserve quark helicity [65, 66]. Since the convolution of TH with the light-

cone wavefunctions projects out states with Lz = 0, the leading hadron amplitudes

conserve hadron helicity; i.e., the sum of initial and �nal hadron helicities are con-

served.

(3) Since the convolution of the hard scattering amplitude TH with the light-cone

wavefunctions projects out the valence states with small impact parameter, the es-

sential part of the hadron wavefunction entering a hard exclusive amplitude has a

small color dipole moment. This leads to the absence of initial or �nal state interac-

tions among the scattering hadrons as well as the color transparency. of quasi-elastic

interactions in a nuclear target [9, 67]. For example, the amplitude for di�ractive

vector meson photoproduction 
�(Q2)p ! �p, can be written as convolution of the

virtual photon and the vector meson Fock state light-cone wavefunctions the gp! gp

near-forward matrix element [42]. One can easily show that only small transverse size
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b? � 1=Q of the vector meson distribution amplitude is involved. The sum over the

interactions of the exchanged gluons tend to cancel re
ecting its small color dipole

moment. Since the hadronic interactions are minimal, the 
�(Q2)N ! �N reaction

at large Q2 can occur coherently throughout a nuclear target in reactions without ab-

sorption or �nal state interactions. The 
�A ! V A process thus provides a natural

framework for testing QCD color transparency. Evidence for color transparency in

such reactions has been found by Fermilab experiment E665 [68].

Di�ractive multi-jet production in heavy nuclei provides a novel way to measure

the shape of the LC Fock state wavefunctions and test color transparency. For exam-

ple, consider the reaction [79, 80, 81] �A! Jet1+Jet2+A
0 at high energy where the

nucleus A0 is left intact in its ground state. The transverse momenta of the jets have

to balance so that ~k?i+~k?2 = ~q? < R�1
A ; and the light-cone longitudinal momentum

fractions have to add to x1 + x2 � 1 so that �pL < R�1
A . The process can then occur

coherently in the nucleus. Because of color transparency, i.e., the cancelation of color

interactions in a small-size color-singlet hadron, the valence wavefunction of the pion

with small impact separation will penetrate the nucleus with minimal interactions,

di�racting into jet pairs [79]. The x1 = x, x2 = 1� x dependence of the di-jet distri-

butions will thus re
ect the shape of the pion distribution amplitude; the ~k?1 � ~k?2
relative transverse momenta of the jets also gives key information on the underlying

shape of the valence pion wavefunction [80, 81]. The QCD analysis can be con�rmed

by the observation that the di�ractive nuclear amplitude extrapolated to t = 0 is

linear in nuclear number A, as predicted by QCD color transparency. The integrated

di�ractive rate should scale as A2=R2
A � A4=3. A di�ractive dissociation experiment

of this type, E791, is now in progress at Fermilab using 500 GeV incident pions on

nuclear targets [76]. The preliminary results from E791 appear to be consistent with

color transparency. The momentum fraction distribution of the jets is consistent with

a valence light-cone wavefunction of the pion consistent with the shape of the asymp-

totic distribution amplitude, �asympt
� (x) =

p
3f�x(1 � x). As discussed below, data

from CLEO [75] for the 

� ! �0 transition form factor also favor a form for the pion

distribution amplitude close to the asymptotic solution [11] to the perturbative QCD

evolution equation [82, 83, 61, 84, 85]. It will also be interesting to study di�ractive

tri-jet production using proton beams pA! Jet1 +Jet2 +Jet3 +A0 to determine the

fundamental shape of the 3-quark structure of the valence light-cone wavefunction
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of the nucleon at small transverse separation [80]. One interesting possibility is that

the distribution amplitude of the �(1232) for Jz = 1=2; 3=2 is close to the asymp-

totic form x1x2x3, but that the proton distribution amplitude is more complex. This

would explain why the p ! � transition form factor appears to fall faster at large

Q2 than the elastic p ! p and the other p ! N� transition form factors [86]. Con-

versely, one can use incident real and virtual photons: 
�A ! Jet1 + Jet2 + A0 to

con�rm the shape of the calculable light-cone wavefunction for transversely-polarized

and longitudinally-polarized virtual photons. Such experiments will open up a direct

window on the amplitude structure of hadrons at short distances.

There are a large number of measured exclusive reactions in which the empiri-

cal power law fall-o� predicted by dimensional counting and PQCD appears to be

accurate over a large range of momentum transfer. These include processes such

as the proton form factor, time-like meson pair production in e+e� and 

 anni-

hilation, large-angle scattering processes such as pion photoproduction 
p ! �+p,

and nuclear processes such as the deuteron form factor at large momentum transfer

and deuteron photodisintegration [56]. A spectacular example is the recent mea-

surements at CESR of the photon to pion transition form factor in the reaction

e
 ! e�0 [75]. As predicted by leading twist QCD [11] Q2F
�0(Q
2) is essentially

constant for 1 GeV2 < Q2 < 10 GeV2: Further, the normalization is consistent with

QCD at NLO if one assumes that the pion distribution amplitude takes on the form

�asympt
� (x) =

p
3f�x(1 � x) which is the asymptotic solution [11] to the evolution

equation for the pion distribution amplitude [82, 83, 61, 85].

If the pion distribution amplitude is close to its asymptotic form, then one can

predict the normalization of exclusive amplitudes such as the spacelike pion form fac-

tor Q2F�(Q
2). Next-to-leading order predictions are now becoming available which

incorporate higher order corrections to the pion distribution amplitude as well as the

hard scattering amplitude [23, 87, 88]. However, the normalization of the PQCD pre-

diction for the pion form factor depends directly on the value of the e�ective coupling

�V (Q
�) at momenta Q�2 ' Q2=20. Assuming �V (Q

�) ' 0:4, the QCD LO prediction

appears to be smaller by approximately a factor of 2 compared to the presently avail-

able data extracted from the original pion electroproduction experiments from CEA

[89]. A de�nitive comparison will require a careful extrapolation to the pion pole and

extraction of the longitudinally polarized photon contribution of the ep! �+n data.
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The measured deuteron form factor and the deuteron photodisintegration cross

section appear to follow the leading-twist QCD predictions at large momentum trans-

fers in the few GeV region [90, 91]. The normalization of the measured deuteron form

factor is large compared to model calculations [58] assuming that the deuteron's six-

quark wavefunction can be represented at short distances with the color structure of

two color singlet baryons. This provides indirect evidence for the presence of hidden

color components as required by PQCD [57].

There are, however, experimental exceptions to the general success of the leading

twist PQCD approach, such as (a) the dominance of the J= ! �� decay which

is forbidden by hadron helicity conservation and (b) the strong normal-normal spin

asymmetry ANN observed in polarized elastic pp ! pp scattering and an apparent

breakdown of color transparency at large CM angles and ECM � 5 GeV. These

con
icts with leading-twist PQCD predictions can be used to identify the presence

of new physical e�ects. For example, It is usually assumed that a heavy quarkonium

state such as the J= always decays to light hadrons via the annihilation of its heavy

quark constituents to gluons. However, the transition J= ! �� can also occur by

the rearrangement of the cc from the J= into the j qqcci intrinsic charm Fock state

of the � or � [48]. On the other hand, the overlap rearrangement integral in the decay

 0 ! �� will be suppressed since the intrinsic charm Fock state radial wavefunction

of the light hadrons will evidently not have nodes in its radial wavefunction. This

observation provides a natural explanation of the long-standing puzzle why the J= 

decays prominently to two-body pseudoscalar-vector �nal states, whereas the  0 does

not. The unusual e�ects seen in elastic proton-proton scattering at ECM � 5 GeV and

large angles could be related to the charm threshold and the e�ect of a j uuduudcci
resonance which would appear as in the J = L = S = 1 pp partial wave [60].

Recent experiments at Je�erson laboratory utilizing a new polarization transfer

technique indicate that GE(Q
2)=GM(Q

2) falls with increasing momentum transfer

�t = Q2 in the measured domain 1 < Q2 < 3 GeV2 [92]. This observation implies that

the helicity-changing Pauli form factor F2(Q
2) is comparable to the helicity conserving

form factor F2(Q
2) in this domain. If such a trend continues to larger Q2 it would be

in severe con
ict with the hadron-helicity conserving principle of perturbative QCD.

If F2 were comparable to F1 at large Q2 in the case of timelike processes, such as

pp! e+e�, where GE = F1+
Q2

4M2
N

F2; one would see strong deviations from the usual
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1 + cos2 � dependence of the di�erential cross section as well as PQCD scaling. This

seems to be in con
ict with the available data from the E835 pp! e+e� experiment

at Fermilab [93].

A debate has continued on whether processes such as the pion and proton form

factors and elastic Compton scattering 
p! 
p might be dominated by higher twist

mechanisms until very large momentum transfers [94, 95, 96]. For example, if one

assumes that the light-cone wavefunction of the pion has the form  soft(x; k?) =

A exp(�b k2
?

x(1�x)
), then the Feynman endpoint contribution to the overlap integral at

small k? and x ' 1 will dominate the form factor compared to the hard-scattering

contribution until very large Q2. However, the above form of  soft(x; k?) has no

suppression at k? = 0 for any x; i.e., the wavefunction in the hadron rest frame does

not fall-o� at all for k? = 0 and kz ! �1. Thus such wavefunctions do not represent

soft QCD contributions. Furthermore, such endpoint contributions will be suppressed

by the QCD Sudakov form factor, re
ecting the fact that a near-on-shell quark must

radiate if it absorbs large momentum. If the endpoint contribution dominates proton

Compton scattering, then both photons will interact on the same quark line in a local

fashion, and the amplitude is predicted to be real, in strong contrast to the complex

phase structure of the PQCD predictions. It should be noted that there is no apparent

endpoint contribution which could explain the success of dimensional counting (s�7

scaling at �xed �cm) in large-angle pion photoproduction.

The perturbative QCD predictions [97] for the Compton amplitude phase can

be tested in virtual Compton scattering by interference with Bethe-Heitler processes

[98]. One can also measure the interference of deeply virtual Compton amplitudes

with the timelike form factors by studying reactions in e+e� colliders such as e+e� !
�+��
. The asymmetry with respect to the electron or positron beam measures the

interference of the Compton diagrams with the amplitude in which the photon is

emitted from the lepton line.

It is interesting to compare the corresponding calculations of form factors of

bound states in QED. The soft wavefunction is the Schr�odinger-Coulomb solution

 1s(~k) / (1 + ~p2=(�mred)
2)�2, and the full wavefunction, which incorporates trans-

versely polarized photon exchange, only di�ers by a factor (1 + ~p2=m2
red). Thus the

leading twist dominance of form factors in QED occurs at relativistic scales Q2 > m2
red

[99]. Furthermore, there are no extra relative factors of � in the hard-scattering con-
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tribution. If the QCD coupling �V has an infrared �xed-point, then the fall-o� of

the valence wavefunctions of hadrons will have analogous power-law forms, consistent

with the Abelian correspondence principle [28]. If such power-law wavefunctions are

indeed applicable to the soft domain of QCD then, the transition to leading-twist

power law behavior will occur in the nominal hard perturbative QCD domain where

Q2 � hk2
?
i ; m2

q.

6 Measurement of Light-cone Wavefunctions and

Tests of Color Transparency via Di�ractive Dis-

sociation.

Di�ractive multi-jet production in heavy nuclei provides a novel way to measure the

shape of the LC Fock state wavefunctions and test color transparency. For example,

consider the reaction [79, 80, 81] �A ! Jet1 + Jet2 + A0 at high energy where the

nucleus A0 is left intact in its ground state. The transverse momenta of the jets have

to balance so that ~k?i+~k?2 = ~q? < R�1
A ; and the light-cone longitudinal momentum

fractions have to add to x1 + x2 � 1 so that �pL < R�1
A . The process can then occur

coherently in the nucleus. Because of color transparency, i.e., the cancelation of color

interactions in a small-size color-singlet hadron, the valence wavefunction of the pion

with small impact separation will penetrate the nucleus with minimal interactions,

di�racting into jet pairs [79]. The two-gluon exchange process in e�ect di�erentiates

the transverse momentum dependence of the hadron's wavefunction twice. Thus the

x1 = x, x2 = 1� x dependence of the di-jet distributions will re
ect the shape of the

pion distribution amplitude; the ~k?1 � ~k?2 relative transverse momenta of the jets

also gives key information on the underlying shape of the valence pion wavefunction

[80, 81]. The QCD analysis can be con�rmed by the observation that the di�ractive

nuclear amplitude extrapolated to t = 0 is linear in nuclear number A, as predicted

by QCD color transparency. The integrated di�ractive rate should scale as A2=R2
A �

A4=3. A di�ractive dissociation experiment of this type, E791, is now in progress at

Fermilab using 500 GeV incident pions on nuclear targets [76]. The preliminary results

from E791 appear to be consistent with color transparency. The momentum fraction

distribution of the jets is consistent with a valence light-cone wavefunction of the
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pion consistent with the shape of the asymptotic distribution amplitude, �asympt
� (x) =p

3f�x(1 � x). Data from CLEO [75] for the 

� ! �0 transition form factor also

favor a form for the pion distribution amplitude close to the asymptotic solution [11]

to the perturbative QCD evolution equation [82, 83, 61, 84, 85]. It is also possible that

the distribution amplitude of the �(1232) for Jz = 1=2; 3=2 is close to the asymptotic

form x1x2x3, but that the proton distribution amplitude is more complex. This would

explain why the p! � transition form factor appears to fall faster at large Q2 than

the elastic p ! p and the other p ! N� transition form factors [86]. It will thus be

very interesting to study di�ractive tri-jet production using proton beams dissociating

into three jets on a nuclear target. pA ! Jet1 + Jet2 + Jet3 + A0 to determine the

fundamental shape of the 3-quark structure of the valence light-cone wavefunction of

the nucleon at small transverse separation [80].

It is also interesting to consider the Coulomb dissociation of hadrons as a means

to resolve their light-cone wavefunctions [100]. In the case of photon exchange, the

transverse momentum dependence of the light-cone wavefunction is di�erentiated only

once. For example, consider the process ep! e0Jet1+Jet2+Jet3 in which the proton

dissociates into three distinct jets at large transverse momentum by scattering on

an electron. In the case of an ep collider such as HERA, one can require all of the

hadrons to be produced outside a forward annular exclusion zone, �H > �min, thus

ensuring a minimum transverse momentum of each produced �nal state particle. The

distribution of hadron longitudinal momentum in each azimuthal sector can be used

to determine the underlying x1; x2; x3 dependence of the proton's valence three-quark

wavefunction. Such a procedure will allow the proton to self-resolve its fundamental

structure. Similarly at lower momentum scales, one can study the dissociation of

light nuclei into their nucleon and mesonic components in di�ractive high momentum

reactions.

One can use incident real and virtual photons: 
�A! Jet1+Jet2+A
0 to con�rm

the shape of the calculable light-cone wavefunction for transversely-polarized and

longitudinally-polarized virtual photons. At low transverse momentum, one expects

interesting nonperturbative modi�cations. Such experiments will open up a direct

window on the amplitude structure of hadrons at short distances.
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7 Semi-Exclusive Processes: New Probes of Hadron

Structure

A new class of hard \semi-exclusive" processes of the form A + B ! C + Y , have

been proposed as new probes of QCD [74, 72, 73]. These processes are characterized

by a large momentum transfer t = (pA � pC)
2 and a large rapidity gap between

the �nal state particle C and the inclusive system Y . Here A;B and C can be

hadrons or (real or virtual) photons. The cross sections for such processes factorize

in terms of the distribution amplitudes of A and C and the parton distributions in

the target B. Because of this factorization semi-exclusive reactions provide a novel

array of generalized currents, which not only give insight into the dynamics of hard

scattering QCD processes, but also allow experimental access to new combinations of

the universal quark and gluon distributions.

QCD scattering amplitude for deeply virtual exclusive processes like Compton

scattering 
�p! 
p and meson production 
�p!Mp factorizes into a hard subpro-

cess and soft universal hadronic matrix elements [101, 78, 42]. For example, consider

exclusive meson electroproduction such as ep ! e�+n (Fig. 2a). Here one takes (as

in DIS) the Bjorken limit of large photon virtuality, with xB = Q2=(2mp�) �xed,

while the momentum transfer t = (pp � pn)
2 remains small. These processes involve

`skewed' parton distributions, which are generalizations of the usual parton distribu-

tions measured in DIS. The skewed distribution in Fig. 2a describes the emission of

a u-quark from the proton target together with the formation of the �nal neutron

from the d-quark and the proton remnants. As the subenergy ŝ of the scattering

process 
�u! �+d is not �xed, the amplitude involves an integral over the u-quark

momentum fraction x.

An essential condition for the factorization of the deeply virtual meson production

amplitude of Fig. 2a is the existence of a large rapidity gap between the produced

meson and the neutron. This factorization remains valid if the neutron is replaced

with a hadronic system Y of invariant mass M2
Y � W 2, where W is the c.m. energy

of the 
�p process. ForM2
Y � m2

p the momentum k0 of the d-quark in Fig. 2b is large

with respect to the proton remnants, and hence it forms a jet. This jet hadronizes

independently of the other particles in the �nal state if it is not in the direction of the

meson, i.e., if the meson has a large transverse momentum q0
?
= �

?
with respect to
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Figure 2: (a): Factorization of 
�p! �+n into a skewed parton distribution (SPD),

a hard scattering H and the pion distribution amplitude ��. (b): Semi-exclusive

process 
(�)p ! �+Y . The d-quark produced in the hard scattering H hadronizes

independently of the spectator partons in the proton. (c): Diagram for the cross sec-

tion of a generic semi-exclusive process. It involves a hard scattering H, distribution

amplitudes �A and �C and a parton distribution (PD) in the target B.

the photon direction in the 
�p c.m. Then the cross section for an inclusive system

Y can be calculated as in DIS, by treating the d-quark as a �nal state particle.

The large �? furthermore allows only transversally compact con�gurations of the

projectile A to couple to the hard subprocess H of Fig. 2b, as it does in exclusive pro-

cesses [11]. Hence the above discussion applies not only to incoming virtual photons

at large Q2, but also to real photons (Q2 = 0) and in fact to any hadron projectile.

Let us then consider the general process A + B ! C + Y , where B and C are

hadrons or real photons, while the projectile A can also be a virtual photon. In the

semi-exclusive kinematic limit �2
QCD; M

2
B; M

2
C � M2

Y ; �
2
?
� W 2 we have a large

rapidity gap jyC�ydj = log W 2

�2
?

+M2
Y

between C and the parton d produced in the hard
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scattering (see Fig. 2c). The cross section then factorizes into the form

d�

dt dxS
(A+B ! C + Y )

=
X
b

fb=B(xS ; �
2)
d�

dt
(Ab! Cd) ; (9)

where t = (q�q0)2 and fb=B(xS; �2) denotes the distribution of quarks, antiquarks and
gluons b in the target B. The momentum fraction xS of the struck parton b is �xed

by kinematics to the value xS =
�t

M2
Y
�t

and the factorization scale �2 is characteristic

of the hard subprocess Ab! Cd.

It is conceptually helpful to regard the hard scattering amplitude H in Fig. 2c as

a generalized current of momentum q� q0 = pA� pC , which interacts with the target

parton b. For A = 
� we obtain a close analogy to standard DIS when particle C

is removed. With q0 ! 0 we thus �nd �t ! Q2, M2
Y ! W 2, and see that xS goes

over into xB = Q2=(W 2 +Q2). The possibility to control the value of q0 (and hence

the momentum fraction xS of the struck parton) as well as the quantum numbers of

particles A and C should make semi-exclusive processes a versatile tool for studying

hadron structure. The cross section further depends on the distribution amplitudes

�A, �C (c.f. Fig. 2c), allowing new ways of measuring these quantities.

8 Conformal Symmetry as a Template

Testing quantum chromodynamics to high precision is not easy. Even in processes

involving high momentum transfer, perturbative QCD predictions are complicated

by questions of the convergence of the series, particularly by the presence of \renor-

malon" terms which grow as n!, re
ecting the uncertainty in the analytic form of

the QCD coupling at low scales. Virtually all QCD processes are complicated by

the presence of dynamical higher twist e�ects, including power-law suppressed contri-

butions due to multi-parton correlations, intrinsic transverse momentum, and �nite

quark masses. Many of these e�ects are inherently nonperturbative in nature and

require knowledge of hadron wavefunction themselves. The problem of interpreting

perturbative QCD predictions is further compounded by theoretical ambiguities due

to the apparent freedom in the choice of renormalization schemes, renormalizations

scales, and factorization procedures.
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A central principle of renormalization theory is that predictions which relate phys-

ical observables to each other cannot depend on theoretical conventions. For example,

one can use any renormalization scheme, such as the modi�ed minimal subtraction

dimensional regularization scheme, and any choice of renormalization scale � to com-

pute perturbative series observables A and B. However, all traces of the choices of

the renormalization scheme and scale must disappear when we algebraically eliminate

the �MS(�) and directly relate A to B. This is the principle underlying \commen-

surate scale relations" (CSR) [24], which are general leading-twist QCD predictions

relating physical observables to each other. For example, the \generalized Crewther

relation", which is discussed in more detail below, provides a scheme-independent re-

lation between the QCD corrections to the Bjorken (or Gross Llewellyn-Smith) sum

rule for deep inelastic lepton-nucleon scattering, at a given momentum transfer Q, to

the radiative corrections to the annihilation cross section �e+e�!hadrons(s), at a cor-

responding \commensurate" energy scale
p
s [24, 25]. The speci�c relation between

the physical scales Q and
p
s re
ects the fact that the radiative corrections to each

process have distinct quark mass thresholds.

Any perturbatively calculable physical quantity can be used to de�ne an e�ective

charge [102, 103, 104] by incorporating the entire radiative correction into its de�-

nition. For example, the e+e�
� ! hadrons annihilation to muon pair cross section

ratio can be written

Re+e�(s) � R0
e+e�(s)[1 +

�R(s)

�
]; (10)

where R0
e+e� is the prediction at Born level. Similarly, we can de�ne the entire

radiative correction to the Bjorken sum rule as the e�ective charge �g1(Q
2) where Q

is the corresponding momentum transfer:

Z 1

0
dx
h
g
ep
1 (x;Q

2)� gen1 (x;Q2)
i
� 1

6

�����gAgV
�����CBj(Q

2)

=
1

6

�����gAgV
�����
"
1� 3

4
CF

�g1(Q
2)

�

#
: (11)

By convention, each e�ective charge is normalized to �s in the weak coupling limit.

One can de�ne e�ective charges for virtually any quantity calculable in perturbative

QCD; e.g. moments of structure functions, ratios of form factors, jet observables, and

the e�ective potential between massive quarks. In the case of decay constants of the

Z or the � , the mass of the decaying system serves as the physical scale in the e�ective
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charge. In the case of multi-scale observables, such as the two-jet fraction in e+e�

annihilation, the multiple arguments of the e�ective coupling �2jet(s; y) correspond

to the overall available energy s variables such as y = maxij(pi + pj)
2=s representing

the maximum jet mass fraction.

Commensurate scale relations take the general form

�A(QA) = CAB[�B(QB)] : (12)

The function CAB(�B) relates the observables A and B in the conformal limit; i.e.,

CAB gives the functional dependence between the e�ective charges which would be

obtained if the theory had zero � function. The conformal coeÆcients can be distin-

guished from the terms associated with the � function at each order in perturbation

theory from their color and 
avor dependence, or by an expansion about a �xed point.

The ratio of commensurate scales is determined by the requirement that all terms

involving the � function are incorporated into the arguments of the running cou-

plings, as in the original BLM procedure. Physically, the ratio of scales corresponds

to the fact that the physical observables have di�erent quark threshold and distinct

sensitivities to fermion loops. More generally, the di�ering scales are in e�ect rela-

tions between mean values of the physical scales which appear in loop integrations.

Commensurate scale relations are transitive; i.e., given the relation between e�ective

charges for observables A and C and C and B, the resulting between A and B is

independent of C. In particular, transitivity implies �AB = �AC � �CB.

One can consider QCD predictions as functions of analytic variables of the number

of colors NC and 
avors NF . For example, one can show at all orders of perturbation

theory that PQCD predictions reduce to those of an Abelian theory at NC ! 0 with

b� = CF�s and cNF = Nf=TCF held �xed. In particular, CSRs obey the \Abelian

correspondence principle" in that they give the correct Abelian relations at Nc ! 0:

Similarly, commensurate scale relations obey the \conformal correspondence prin-

ciple": the CSRs reduce to correct conformal relations when NC and NF are tuned

to produce zero � function. Thus conformal symmetry provides a template for QCD

predictions, providing relations between observables which are present even in theo-

ries which are not scale invariant. All e�ects of the nonzero beta function are encoded

in the appropriate choice of relative scales �AB = QA=QB.

The scaleQ which enters a given e�ective charge corresponds to a physical momen-
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tum scale. The total logarithmic derivative of each e�ective charge e�ective charge

�A(Q) with respect to its physical scale is given by the Gell Mann-Low equation:

d�A(Q;m)

d logQ
= 	A(�A(Q;m); Q=m); (13)

where the functional dependence of 	A is speci�c to its own e�ective charge. Here m

refers to the quark's pole mass. The pole mass is universal in that it does not depend

on the choice of e�ective charge. The Gell Mann-Low relation is re
exive in that  A

depends on only on the coupling �A at the same scale. It should be emphasized that

the Gell Mann-Low equation deals with physical quantities and is independent of

the renormalization procedure and choice of renormalization scale. A central feature

of quantum chromodynamics is asymptotic freedom; i.e., the monotonic decrease of

the QCD coupling �A(�
2) at large spacelike scales. The empirical test of asymptotic

freedom is the veri�cation of the negative sign of the Gell Mann-Low function at large

momentum transfer, which must be true for any e�ective charge.

In perturbation theory,

	A = � f0gA

�2A
�
�  

f1g
A

�3A
�2
�  

f2g
A

�4A
�3

+ � � � (14)

At large scales Q2 � m2, the �rst two terms are universal and identical to the �rst

two terms of the � function  
f0g
A = �0 = 11NC

3
� 2

3
NF ;  

f1g
A = �1; whereas  

fng
A for

n � 2 is process dependent. The quark mass dependence of the  function is analytic,

and in the case of �V scheme is known to two loops.

The commensurate scale relation between �A and �B implies an elegant rela-

tion between their conformal dependence CAB and their respective Gell Mann Low

functions:

 B =
dCBA

d�A
�  A: (15)

Thus given the result for NF;V (m=Q) in �V scheme we can use the CSR to derive

NF;A(m=Q) for any other e�ective charge, at least to two loops. The above relation

also shows that if one e�ective charge has a �xed point  A[�A(Q
FP
A )] = 0, then

all e�ective charges B have a corresponding �xed point  B[�B(Q
FP
B )] = 0 at the

corresponding commensurate scale and value of e�ective charge.

In quantum electrodynamics, the running coupling �QED(Q
2), de�ned from the

Coulomb scattering of two in�nitely heavy test charges at the momentum transfer t =
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�Q2, is taken as the standard observable. Is there a preferred e�ective charge which

we should use to characterize the coupling strength in QCD? In the case of QCD,

the heavy-quark potential V (Q2) is de�ned via a Wilson loop from the interaction

energy of in�nitely heavy quark and antiquark at momentum transfer t = �Q2:

The relation V (Q2) = �4�CF�V (Q
2)=Q2 then de�nes the e�ective charge �V (Q):

As in the corresponding case of Abelian QED, the scale Q of the coupling �V (Q)

is identi�ed with the exchanged momentum. Thus there is never any ambiguity in

the interpretation of the scale. All vacuum polarization corrections due to fermion

pairs are incorporated in �V through the usual vacuum polarization kernels which

depend on the physical mass thresholds. Other observables could be used to de�ne

the standard QCD coupling, such as the e�ective charge de�ned from heavy quark

radiation [105].

Commensurate scale relations between �V and the QCD radiative corrections to

other observables have no scale or scheme ambiguity, even in multiple-scale problems

such as multi-jet production. As is the case in QED, the momentum scale which

appears as the argument of �V re
ect the mean virtuality of the exchanged gluons.

Furthermore, we can write a commensurate scale relation between �V and an analytic

extension of the �MS coupling, thus transferring all of the unambiguous scale-�xing

and analytic properties of the physical �V scheme to the MS coupling.

An elegant example is the relation between the rate for semi-leptonic B-decay and

�V :

�(b! Xu`�) =
G2
F jVubj2M2

b

192�3

"
1� 2:41

�V (0:16Mb)

�
� 1:43

�V (0:16Mb)

�

2#
; (16)

where Mb is the scheme independent b�quark pole mass. The coeÆcient of �2
MS

(�)

in the usual expansion with � = mb is 26.8.

Some other examples of CSR's at NLO:

�R(
p
s) = �g1(0:5

p
s)� �2g1(0:5

p
s)

�
+
�3g1(0:5

p
s)

�2
(17)

�R(
p
s) = �V (1:8

p
s) + 2:08

�2V (1:8
p
s)

�
� 7:16

�3V (1:8
p
s)

�2
(18)

�� (
p
s) = �V (0:8

p
s) + 2:08

�2V (0� :8
p
s)

�
� 7:16

�3V (0:8
p
s)

�2
(19)

�g1(
p
s) = �V (0:8Q) + 1:08

�2V (0:8Q)

�
� 10:3

�3V (0:8Q)

�2
: (20)
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For numerical purposes in each case we have used NF = 5 and �V = 0:1 to compute

the NLO correction to the CSR scale.

Commensurate scale relations thus provide fundamental and precise scheme-independent

tests of QCD, predicting how observables track not only in relative normalization, but

also in their commensurate scale dependence.

9 The Generalized Crewther Relation

The generalized Crewther relation can be derived by calculating the QCD radiative

corrections to the deep inelastic sum rules and Re+e� in a convenient renormalization

scheme such as the modi�ed minimal subtraction scheme MS. One then algebraically

eliminates �MS(�). Finally, BLM scale-setting [31] is used to eliminate the �-function

dependence of the coeÆcients. The form of the resulting relation between the observ-

ables thus matches the result which would have been obtained had QCD been a

conformal theory with zero � function. The �nal result relating the observables is

independent of the choice of intermediate MS renormalization scheme.

More speci�cally, consider the Adler function [106] for the e+e� annihilation cross

section

D(Q2) = �12�2Q2 d

dQ2
�(Q2); �(Q2) = � Q2

12�2

Z
1

4m2
�

Re+e�(s)ds

s(s+Q2)
: (21)

The entire radiative correction to this function is de�ned as the e�ective charge

�D(Q
2):

D
�
Q2=�2; �s(�

2)
�

= D
�
1; �s(Q

2)
�

(22)

� 3
X
f

Q2
f

"
1 +

3

4
CF

�D(Q
2)

�

#
+ (

X
f

Qf )
2CL(Q

2)

� 3
X
f

Q2
fCD(Q

2) + (
X
f

Qf)
2CL(Q

2);

where CF =
N2
C
�1

2NC
: The coeÆcient CL(Q

2) appears at the third order in perturbation

theory and is related to the \light-by-light scattering type" diagrams. (Hereafter �s

will denote the MS scheme strong coupling constant.)

It is straightforward to algebraically relate �g1(Q
2) to �D(Q

2) using the known

expressions to three loops in the MS scheme. If one chooses the renormalization scale
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to resum all of the quark and gluon vacuum polarization corrections into �D(Q
2),

then the �nal result turns out to be remarkably simple [25] (b� = 3=4CF �=�) :

b�g1(Q) = b�D(Q�)� b�2D(Q�) + b�3D(Q�) + � � � ; (23)

where

ln

 
Q�2

Q2

!
=

7

2
� 4�(3) +

 
�D(Q

�)

4�

!"�
11

12
+
56

3
�(3)� 16�2(3)

�
�0

+
26

9
CA � 8

3
CA�(3)� 145

18
CF � 184

3
CF�(3) + 80CF�(5)

#
:

where in QCD, CA = NC = 3 and CF = 4=3. This relation shows how the coeÆcient

functions for these two di�erent processes are related to each other at their respective

commensurate scales. We emphasize that the MS renormalization scheme is used only

for calculational convenience; it serves simply as an intermediary between observables.

The renormalization group ensures that the forms of the CSR relations in perturbative

QCD are independent of the choice of an intermediate renormalization scheme.

The Crewther relation was originally derived assuming that the theory is confor-

mally invariant; i.e., for zero � function. In the physical case, where the QCD coupling

runs, all non-conformal e�ects are resummed into the energy and momentum transfer

scales of the e�ective couplings �R and �g1. The general relation between these two

e�ective charges for non-conformal theory thus takes the form of a geometric series

1� b�g1 = [1 + b�D(Q�)]�1 : (24)

We have dropped the small light-by-light scattering contributions. This is again a

special advantage of relating observable to observable. The coeÆcients are indepen-

dent of color and are the same in Abelian, non-Abelian, and conformal gauge theory.

The non-Abelian structure of the theory is re
ected in the expression for the scale

Q�.

Is experiment consistent with the generalized Crewther relation? Fits [107] to the

experimental measurements of the R-ratio above the thresholds for the production

of cc bound states provide the empirical constraint: �R(
p
s = 5:0 GeV)=� ' 0:08 �

0:03: The prediction for the e�ective coupling for the deep inelastic sum rules at

the commensurate momentum transfer Q is then �g1(Q = 12:33 � 1:20 GeV)=� '
�GLS(Q = 12:33�1:20 GeV)=� ' 0:074�0:026:Measurements of the Gross-Llewellyn

38



Smith sum rule have so far only been carried out at relatively small values of Q2

[108, 109]; however, one can use the results of the theoretical extrapolation [110] of

the experimental data presented in [111]: �extrapolGLS (Q = 12:25 GeV)=� ' 0:093�0:042:
This range overlaps with the prediction from the generalized Crewther relation. It is

clearly important to have higher precision measurements to fully test this fundamental

QCD prediction.

10 General Form of Commensurate Scale Rela-

tions

In general, commensurate scale relations connecting the e�ective charges for observ-

ables A and B have the form

�A(QA) = �B(QB)

 
1 + r

(1)

A=B

�B(QB)

�
+ r

(2)

A=B

�B(QB)

�

2

+ � � �
!
; (25)

where the coeÆcients rnA=B are identical to the coeÆcients obtained in a conformally

invariant theory with �B(�B) � (d=d lnQ2)�B(Q
2) = 0. The ratio of the scales

QA=QB is thus �xed by the requirement that the couplings sum all of the e�ects of

the non-zero � function. In practice the NLO and NNLO coeÆcients and relative

scales can be identi�ed from the 
avor dependence of the perturbative series; i.e. by

shifting scales such that the NF -dependence associated with �0 = 11=3CA�4=3TFNF

and �1 = �34=3C2
A + 20

3
CATFNF + 4CFTFNF does not appear in the coeÆcients.

Here CA = NC , CF = (N2
C � 1)=2NC and TF = 1=2. The shift in scales which gives

conformal coeÆcients in e�ect pre-sums the large and strongly divergent terms in the

PQCD series which grow as n!(�0�s)
n, i.e., the infrared renormalons associated with

coupling-constant renormalization [112, 44, 113, 114].

The renormalization scales Q� in the BLM method are physical in the sense that

they re
ect the mean virtuality of the gluon propagators. This scale-�xing proce-

dure is consistent with scale �xing in QED, in agreement with in the Abelian limit,

NC ! 0 [31, 28, 115, 116, 117]. The ratio of scales �A=B = QA=QB guarantees that

the observables A and B pass through new quark thresholds at the same physical

scale. One can also show that the commensurate scales satisfy the transitivity rule

�A=B = �A=C�C=B; which ensures that predictions are independent of the choice of an

intermediate renormalization scheme or intermediate observable C:
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In general, we can write the relation between any two e�ective charges at arbi-

trary scales �A and �B as a correction to the corresponding relation obtained in a

conformally invariant theory:

�A(�A) = CAB[�B(�B)] + �B[�B(�B)]FAB[�B(�B)] (26)

where

CAB[�B] = �B +
X
n=1

C
(n)
AB�

n
B (27)

is the functional relation when �B[�B] = 0. In fact, if �B approaches a �xed point

�B where �B[�B] = 0, then �A tends to a �xed point given by

�A ! �A = CAB[�B]: (28)

The commensurate scale relation for observables A and B has a similar form, but in

this case the relative scales are �xed such that the non-conformal term FAB is zero.

Thus the commensurate scale relation �A(QA) = CAB[�B(QB)] at general commen-

surate scales is also the relation connecting the values of the �xed points for any

two e�ective charges or schemes. Furthermore, as � ! 0, the ratio of commensurate

scales Q2
A=Q

2
B becomes the ratio of �xed point scales Q

2

A=Q
2

B as one approaches the

�xed point regime.

11 Implementation of �V Scheme

The e�ective charge �V (Q) provides a physically-based alternative to the usual mod-

i�ed minimal subtraction (MS) scheme. All vacuum polarization corrections due to

fermion pairs are incorporated in �V through the usual vacuum polarization kernels

which depend on the physical mass thresholds. When continued to time-like mo-

menta, the coupling has the correct analytic dependence dictated by the production

thresholds in the crossed channel. Since �V incorporates quark mass e�ects exactly,

it avoids the problem of explicitly computing and resumming quark mass corrections

which are related to the running of the coupling. Thus the e�ective number of 
avors

NF (Q=m) is an analytic function of the scale Q and the quark masses m. The e�ects

of �nite quark mass corrections on the running of the strong coupling were �rst con-

sidered by De R�ujula and Georgi [118] within the momentum subtraction schemes
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(MOM) (see also Georgi and Politzer [119], Shirkov and collaborators [120], and

Ch�yla [121]).

One important advantage of the physical charge approach is its inherent gauge

invariance to all orders in perturbation theory. This feature is not manifest in massive

�-functions de�ned in non-physical schemes such as the MOM schemes. A second,

more practical, advantage is the automatic decoupling of heavy quarks according to

the Appelquist-Carazzone theorem [122].

By employing the commensurate scale relations other physical observables can be

expressed in terms of the analytic coupling �V without scale or scheme ambiguity.

This way the quark mass threshold e�ects in the running of the coupling are taken

into account by utilizing the mass dependence of the physical �V scheme. In e�ect,

quark thresholds are treated analytically to all orders in m2=Q2; i.e., the evolution of

the physical �V coupling in the intermediate regions re
ects the actual mass depen-

dence of a physical e�ective charge and the analytic properties of particle production.

Furthermore, the de�niteness of the dependence in the quark masses automatically

constrains the scale Q in the argument of the coupling. There is thus no scale ambi-

guity in perturbative expansions in �V .

In the conventional MS scheme, the coupling is independent of the quark masses

since the quarks are treated as either massless or in�nitely heavy with respect to the

running of the coupling. Thus one formulates di�erent e�ective theories depending

on the e�ective number of quarks which is governed by the scale Q; the massless

�-function is used to describe the running in between the 
avor thresholds. These

di�erent theories are then matched to each other by imposing matching conditions at

the scale where the e�ective number of 
avors is changed (normally the quark masses).

The dependence on the matching scale can be made arbitrarily small by calculating

the matching conditions to high enough order. For physical observables one can then

include the e�ects of �nite quark masses by making a higher-twist expansion inm2=Q2

and Q2=m2 for light and heavy quarks, respectively. These higher-twist contributions

have to be calculated for each observables separately, so that in principle one requires

an all-order resummation of the mass corrections to the e�ective Lagrangian to give

correct results.

The speci�cation of the coupling and renormalization scheme also depends on the

de�nition of the quark mass. In contrast to QED where the on-shell mass provides a
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natural de�nition of lepton masses, an on-shell de�nition for quark masses is compli-

cated by the con�nement property of QCD. In this paper we will use the pole mass

m(p2 = m2) = m which has the advantage of being scheme and renormalization-scale

invariant. Furthermore, when combined with the �V scheme, the pole mass gives

predictions which are free of the leading renormalon ambiguity.

A technical complication of massive schemes is that one cannot easily obtain

analytic solutions of renormalization group equations to the massive � function, and

the Gell-Mann Low function is scheme-dependent even at lowest order.

In a recent paper we have presented a two-loop analytic extension of the �V -

scheme based on the recent results of Ref. [123]. The mass e�ects are in principle

treated exactly to two-loop order and are only limited in practice by the uncertainties

from numerical integration. The desired features of gauge invariance and decoupling

are manifest in the form of the two-loop Gell-Mann Low function, and we give a simple

�tting-function which interpolates smoothly the exact two-loop results obtained by

using the adoptive Monte Carlo integrator VEGAS [124]. Strong consistency checks

of the results are performed by comparing the Abelian limit to the well known QED

results in the on-shell scheme. In addition, the massless as well as the decoupling

limit are reproduced exactly, and the two-loop Gell-Mann Low function is shown to

be renormalization scale independent.

The results of our numerical calculation of N (1)
F;V in the V -scheme for QCD and

QED are shown in Fig. 3. The decoupling of heavy quarks becomes manifest at small

Q=m, and the massless limit is attained for large Q=m. The QCD form actually

becomes negative at moderate values of Q=m, a novel feature of the anti-screening

non-Abelian contributions. This property is also present in the (gauge dependent)

MOM results. In contrast, in Abelian QED the two-loop contribution to the e�ective

number of 
avors becomes larger than 1 at intermediate values of Q=m. We also

display the one-loop contributionN
(0)
F;V

�
Q
m

�
which monotonically interpolates between

the decoupling and massless limits. The solid curves displayed in Fig. 3 shows that the

parameterizations which we used for �tting the numerical results are quite accurate.

The relation of �V (Q
2) to the conventional MS coupling is now known to NNLO

[125], but for clarity in this section only the NLO relation will be used. The com-
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NF

Q/m

N
(0)

F,V

N
(1)

F,V QCD

N
(1)

F,V QED

MOM

Figure 3: The numerical results for the gauge-invariant N
(1)
F;V in QED (open circles)

and QCD (triangles) with the best �2 �ts superimposed respectively. The dashed line

shows the one-loop N
(0)
F;V function. For comparison we also show the gauge dependent

two-loop result obtained in MOM schemes (dash-dot) [127, 128]. At large Q
m

the

theory becomes e�ectively massless, and both schemes agree as expected. The �gure

also illustrates the decoupling of heavy quarks at small Q
m
.

mensurate scale relation is given by [126]

�MS(Q) = �V (Q
�) +

2

3
NC

�2V (Q
�)

�

= �V (Q
�) + 2

�2V (Q
�)

�
; (29)

which is valid for Q2 � m2. The coeÆcients in the perturbation expansion have their

conformal values, i.e., the same coeÆcients would occur even if the theory had been

conformally invariant with � = 0. The commensurate scale is given by

Q� = Q exp
�
5

6

�
: (30)
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The scale in the MS scheme is thus a factor � 0:4 smaller than the physical scale.

The coeÆcient 2NC=3 in the NLO coeÆcient is a feature of the non-Abelian couplings

of QCD; the same coeÆcient occurs even if the theory were conformally invariant with

�0 = 0:

Using the above QCD results, we can transform any NLO prediction given in

MS scheme to a scale-�xed expansion in �V (Q). We can also derive the connection

between the MS and �V schemes for Abelian perturbation theory using the limit

NC ! 0 with CF�s and NF=CF held �xed [28].

The use of �V and related physically de�ned e�ective charges such as �p (to

NLO the e�ective charge de�ned from the (1,1) plaquette, �p is the same as �V ) as

expansion parameters has been found to be valuable in lattice gauge theory, greatly

increasing the convergence of perturbative expansions relative to those using the bare

lattice coupling [115]. Recent lattice calculations of the �- spectrum [129] have been

used with BLM scale-�xing to determine a NLO normalization of the static heavy

quark potential: �
(3)
V (8:2GeV) = 0:196(3) where the e�ective number of light 
avors

is nf = 3. The corresponding modi�ed minimal subtraction coupling evolved to the

Z mass and �ve 
avors is �
(5)

MS
(MZ) = 0:1174(24). Thus a high precision value for

�V (Q
2) at a speci�c scale is available from lattice gauge theory. Predictions for other

QCD observables can be directly referenced to this value without the scale or scheme

ambiguities, thus greatly increasing the precision of QCD tests.

One can also use �V to characterize the coupling which appears in the hard scat-

tering contributions of exclusive process amplitudes at large momentum transfer,

such as elastic hadronic form factors, the photon-to-pion transition form factor at

large momentum transfer [31, 32] and exclusive weak decays of heavy hadrons [13].

Each gluon propagator with four-momentum k� in the hard-scattering quark-gluon

scattering amplitude TH can be associated with the coupling �V (k
2) since the gluon

exchange propagators closely resembles the interactions encoded in the e�ective po-

tential V (Q2). [In Abelian theory this is exact.] Commensurate scale relations can

then be established which connect the hard-scattering subprocess amplitudes which

control exclusive processes to other QCD observables.

We can anticipate that eventually nonperturbative methods such as lattice gauge

theory or discretized light-cone quantization will provide a complete form for the

heavy quark potential in QCD. It is reasonable to assume that �V (Q) will not diverge
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at small space-like momenta. One possibility is that �V stays relatively constant

�V (Q) ' 0:4 at low momenta, consistent with �xed-point behavior. There is, in

fact, empirical evidence for freezing of the �V coupling from the observed systematic

dimensional scaling behavior of exclusive reactions [32]. If this is in fact the case,

then the range of QCD predictions can be extended to quite low momentum scales,

a regime normally avoided because of the apparent singular structure of perturbative

extrapolations.

There are a number of other advantages of the V -scheme:

1. Perturbative expansions in �V with the scale set by the momentum transfer

cannot have any �-function dependence in their coeÆcients since all running

coupling e�ects are already summed into the de�nition of the potential. Since

coeÆcients involving �0 cannot occur in an expansions in �V , the divergent

infrared renormalon series of the form �nV �
n
0n! cannot occur. The general con-

vergence properties of the scale Q� as an expansion in �V is not known [44].

2. The e�ective coupling �V (Q
2) incorporates vacuum polarization contributions

with �nite fermion masses. When continued to time-like momenta, the coupling

has the correct analytic dependence dictated by the production thresholds in

the t channel. Since �V incorporates quark mass e�ects exactly, it avoids the

problem of explicitly computing and resumming quark mass corrections.

3. The �V coupling is the natural expansion parameter for processes involving

non-relativistic momenta, such as heavy quark production at threshold where

the Coulomb interactions, which are enhanced at low relative velocity v as

��V =v, need to be re-summed [130, 131, 132]. The e�ective Hamiltonian for

nonrelativistic QCD is thus most naturally written in �V scheme. The thresh-

old corrections to heavy quark production in e+e� annihilation depend on �V

at speci�c scales Q�. Two distinct ranges of scales arise as arguments of �V

near threshold: the relative momentum of the quarks governing the soft gluon

exchange responsible for the Coulomb potential, and a high momentum scale,

induced by hard gluon exchange, approximately equal to twice the quark mass

for the corrections [131]. One thus can use threshold production to obtain a

direct determination of �V even at low scales. The corresponding QED results
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for � pair production allow for a measurement of the magnetic moment of the

� and could be tested at a future � -charm factory [130, 131].

We also note that computations in di�erent sectors of the Standard Model have

been traditionally carried out using di�erent renormalization schemes. However, in

a grand uni�ed theory, the forces between all of the particles in the fundamental

representation should become universal above the grand uni�cation scale. Thus it

is natural to use �V as the e�ective charge for all sectors of a grand uni�ed theory,

rather than in a convention-dependent coupling such as �MS.

12 Extension of the MS Scheme

The standard MS scheme is not an analytic function of the renormalization scale at

heavy quark thresholds; in the running of the coupling the quarks are taken as mass-

less, and at each quark threshold the value of NF which appears in the � function is

incremented. Thus Eq. (29) is technically only valid far above a heavy quark thresh-

old. However, we can use this commensurate scale relation to de�ne an extended

MS scheme which is continuous and analytic at any scale. The new modi�ed scheme

inherits all of the good properties of the �V scheme, including its correct analytic

properties as a function of the quark masses and its unambiguous scale �xing [126].

Thus we de�ne

e�MS(Q) = �V (Q
�) +

2NC

3

�2V (Q
��)

�
+ � � � ; (31)

for all scales Q. This equation not only provides an analytic extension of the MS

and similar schemes, but it also ties down the renormalization scale to the physical

masses of the quarks as they enter into the vacuum polarization contributions to �V .

The modi�ed scheme e�MS provides an analytic interpolation of conventional MS

expressions by utilizing the mass dependence of the physical �V scheme. In e�ect,

quark thresholds are treated analytically to all orders in m2=Q2; i.e., the evolution of

the analytically extended coupling in the intermediate regions re
ects the actual mass

dependence of a physical e�ective charge and the analytic properties of particle pro-

duction. Just as in Abelian QED, the mass dependence of the e�ective potential and

the analytically extended scheme e�MS re
ects the analyticity of the physical thresh-

olds for particle production in the crossed channel. Furthermore, the de�niteness
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of the dependence in the quark masses automatically constrains the renormalization

scale. There is thus no scale ambiguity in perturbative expansions in �V or e�MS.

In leading order the e�ective number of 
avors in the modi�ed scheme e�MS is given

to a very good approximation by the simple form [126]

fN (0)

F;MS

 
m2

Q2

!
�=
 
1 +

5m2

Q2 exp(5
3
)

!�1
�=
 
1 +

m2

Q2

!�1
: (32)

Thus the contribution from one 
avor is ' 0:5 when the scale Q equals the quark

mass mi. The standard procedure of matching �MS(�) at the quark masses serves as

a zeroth-order approximation to the continuous NF .

Figure 4: The continuous fN (0)

F;MS
in the analytic extension of the MS scheme as a

function of the physical scale Q. (For reference the continuous NF is also compared

with the conventional procedure of taking NF to be a step-function at the quark-mass

thresholds.)

Adding all 
avors together gives the total fN (0)
F;MS

(Q) which is shown in Fig. 4.

For reference, the continuous NF is also compared with the conventional procedure

of taking NF to be a step-function at the quark-mass thresholds. The �gure shows

clearly that there are hardly any plateaus at all for the continuous fN (0)

F;MS
(Q) in between
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the quark masses. Thus there is really no scale below 1 TeV where fN (0)

F;MS
(Q) can be

approximated by a constant; for all Q below 1 TeV there is always one quark with

mass mi such that m2
i � Q2 or Q2 � m2

i is not true. We also note that if one

would use any other scale than the BLM-scale for fN (0)
F;MS

(Q), the result would be to

increase the di�erence between the analytic NF and the standard procedure of using

the step-function at the quark-mass thresholds.

Figure 5: The solid curve shows the relative di�erence between the solutions to the 1-

loop renormalization group equation using continuous NF , e�MS(Q), and conventional

discrete theta-function thresholds, �MS(Q). The dashed (dotted) curves shows the

same quantity but using the scale 2Q (Q=2) in fN (0)

F;MS
. The solutions have been

obtained numerically starting from the world average [133] �MS(MZ) = 0:118.

Figure 5 shows the relative di�erence between the two di�erent solutions of the 1-

loop renormalization group equation, i.e. (e�MS(Q)� �MS(Q))=e�MS(Q). The solutions

have been obtained numerically starting from the world average [133] �MS(MZ) =

0:118. The �gure shows that taking the quark masses into account in the running

leads to e�ects of the order of one percent which are most especially pronounced near

thresholds.
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The extension of the MS-scheme proposed here provides a coupling which is an

analytic function of both the scale and the quark masses. The new modi�ed coupling

e�MS(Q) inherits most of the good properties of the �V scheme, including its correct

analytic properties as a function of the quark masses and its unambiguous scale �x-

ing [126]. However, the conformal coeÆcients in the commensurate scale relation

between the �V and MS schemes does not preserve one of the de�ning criterion of the

potential expressed in the bare charge, namely the non-occurrence of color factors cor-

responding to an iteration of the potential. This is probably an e�ect of the breaking

of conformal invariance by the MS scheme. The breaking of conformal symmetry has

also been observed when dimensional regularization is used as a factorization scheme

in both exclusive [77, 134, 135] and inclusive [136] reactions. Thus, it does not turn

out to be possible to extend the modi�ed scheme e�MS beyond leading order without

running into an intrinsic contradiction with conformal symmetry.

The observation of rapidly increasing structure functions in deep inelastic scat-

tering at small-xbj and the observation of rapidly increasing di�ractive processes

such as 
�p ! �p at high energies at HERA is in agreement with the expecta-

tions of the BFKL [137] QCD high-energy limit. The highest eigenvalue, !max,

of the leading order (LO) BFKL equation [137] is related to the intercept of the

Pomeron which in turn governs the high-energy asymptotics of the cross sections:

� � s�IP�1 = s!
max

. The BFKL Pomeron intercept in LO turns out to be rather

large: �IP � 1 = !max
L = 12 ln 2 (�S=�) ' 0:55 for �S = 0:2; hence, it is very impor-

tant to know the next-to-leading order (NLO) corrections.

Recently the NLO corrections to the BFKL resummation of energy logarithms

were calculated [138, 139] by employing the modi�ed minimal subtraction scheme

(MS) [140] to regulate the ultraviolet divergences with arbitrary scale setting. The

NLO corrections [138, 139] to the highest eigenvalue of the BFKL equation turn out

to be negative and even larger than the LO contribution for �s > 0:157. It is thus

important to analyze the NLO BFKL resummation of energy logarithms [138, 139]

in physical renormalization schemes and apply the BLM-CSR method. In fact, as

shown in a recent paper [141], the reliability of QCD predictions for the intercept

of the BFKL Pomeron at NLO when evaluated using BLM scale setting [31] within

non-Abelian physical schemes, such as the momentum space subtraction (MOM)

scheme [142, 143] or the �-scheme based on �! ggg decay, is signi�cantly improved
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compared to the MS-scheme.

The renormalization scale ambiguity problem can be resolved if one can optimize

the choice of scales and renormalization schemes according to some sensible criteria.

In the BLM optimal scale setting [31], the renormalization scales are chosen such

that all vacuum polarization e�ects from the QCD �-function are resummed into the

running couplings. The coeÆcients of the perturbative series are thus identical to

the perturbative coeÆcients of the corresponding conformally invariant theory with

� = 0.

In the present case one can show that within the V-scheme (or the MS-scheme)

the BLM procedure does not change signi�cantly the value of the NLO coeÆcient

r(�). This can be understood since the V-scheme, as well as MS-scheme, are ad-

justed primarily to the case when in the LO there are dominant QED (Abelian) type

contributions, whereas in the BFKL case there are important LO gluon-gluon (non-

Abelian) interactions. Thus one can choose for the BFKL case the MOM-scheme

[142, 143] or the �-scheme based on �! ggg decay.

Adopting BLM scale setting, the NLO BFKL eigenvalue in the MOM-scheme is

!MOM
BLM (Q2; �) = NC�L(�)

�MOM(Q
MOM 2
BLM )

�

"
1 + rMOM

BLM (�)
�MOM(Q

MOM 2
BLM )

�

#
; (33)

rMOM
BLM (�) = r

conf
MOM(�) :

The �-dependent part of the rMOM(�) de�nes the corresponding BLM optimal

scale

QMOM 2
BLM (�) = Q2 exp

"
�4r

�
MOM(�)

�0

#
= Q2 exp

"
1

2
�L(�)� 5

3
+ 2

�
1 +

2

3
I

�#
: (34)

At � = 0 we have QMOM 2
BLM (0) = Q2(4 exp[2(1 + 2I=3) � 5=3]) ' Q2 127. Note that

QMOM 2
BLM (�) contains a large factor, exp[�4T �

MOM=�0] = exp[2(1+2I=3)] ' 168, which

re
ects a large kinematic di�erence between MOM- and MS- schemes [144, 31].

One of the striking features of this analysis is that the NLO value for the intercept

of the BFKL Pomeron, improved by the BLM procedure, has a very weak dependence

on the gluon virtuality Q2. This agrees with the conventional Regge-theory where one

expects an universal intercept of the Pomeron without anyQ2-dependence. The minor

Q2-dependence obtained, on one side, provides near insensitivity of the results to the

precise value of �, and, on the other side, leads to approximate scale and conformal
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invariance. Thus one may use conformal symmetry [145, 146] for the continuation of

the present results to the case t 6= 0.

The NLO corrections to the BFKL equation for the QCD Pomeron thus become

controllable and meaningful provided one uses physical renormalization scales and

schemes relevant to non-Abelian gauge theory. BLM optimal scale setting auto-

matically sets the appropriate physical renormalization scale by absorbing the non-

conformal �-dependent coeÆcients. The strong renormalization scheme dependence

of the NLO corrections to BFKL resummation then largely disappears. This is in con-

trast to the unstable NLO results obtained in the conventional MS-scheme with arbi-

trary choice of renormalization scale. A striking feature of the NLO BFKL Pomeron

intercept in the BLM approach is its very weak Q2-dependence, which provides ap-

proximate conformal invariance.

The new results presented here open new windows for applications of NLO BFKL

resummation to high-energy phenomenology.

Recently the L3 collaboration at LEPL3 has presented new results for the vir-

tual photon cross section �(
�(QA)

�(Qb) ! hadrons using double tagged e+e� !

e+e�hadrons: This process provides a remarkably clean possible test of the perturba-

tive QCD pomeron since there are no initial hadrons [147]. The calculation of �(
�
�)

and is discussed in detail in references [147]. We note here some important features:

i) for large virtualities, �(
�
�) the longitudinal cross section �LL dominates and

scales like 1=Q2, where Q2 � maxfQ2
A; Q

2
Bg. This is characteristic of the perturbative

QCD prediction. Models based on Regge factorization (which work well in the soft-

interaction regime dominating 
 
 scattering near the mass shell) would predict a

higher power in 1=Q.

ii) �(
�
�) is a�ected by logarithmic corrections in the energy s to all orders in

�s. As a result of the BFKL summation of these contributions, the cross section

rises like a power in s, � / s�. The Born approximation to this result (that is, the

O(�2s) contribution, corresponding to single gluon exchange gives a constant cross

section, �Born / s0. A �t to photon-photon sub-energy dependence measured by L3

at
p
se+e� = 91 GeV and hQ2

Ai = hQ2
Ai = 3:5 GeV2 gives �P�1 = 0:28�0:05. The L3

data at
p
se+e� = 183 GeV and hQ2

Ai = hQ2
Ai = 14 GeV2; gives �P � 1 = 0:40� 0:07

which shows a rise of the virtual photon cross section much stronger than single gluon

or soft pomeron exchange, but it is compatible with the expectations from the NLO
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scale- and scheme-�xed BFKL predictions. It will be crucial to measure the Q2
A and

Q2
B scaling and polarization dependence and compare with the detailed predictions

of PQCD [147].

Commensurate scale relations have a number of attractive properties:

1. The ratio of physical scales QA=QB which appears in commensurate scale rela-

tions re
ects the relative position of physical thresholds, i.e. quark anti-quark

pair production.

2. The functional dependence and perturbative expansion of the CSR are identical

to those of a conformal scale-invariant theory where �A(�A) = 0 and �B(�B) =

0.

3. In the case of theories approaching �xed-point behavior �A(�A) = 0 and �B(�B) =

0, the commensurate scale relation relates both the ratio of �xed point couplings

�A=�B, and the ratio of scales as the �xed point is approached.

4. Commensurate scale relations satisfy the Abelian correspondence principle [28];

the non-Abelian gauge theory prediction reduces to Abelian theory for NC ! 0

at �xed CF�s and �xed NF=CF .

5. The perturbative expansion of a commensurate scale relation has the same

form as a conformal theory, and thus has no n! renormalon growth arising from

the �-function [148]. It is an interesting conjecture whether the perturbative

expansion relating observables to observable are in fact free of all n! growth. The

generalized Crewther relation, where the commensurate relation's perturbative

expansion forms a geometric series to all orders, has convergent behavior.

Virtually any perturbative QCD prediction can be written in the form of a com-

mensurate scale relation, thus eliminating any uncertainty due to renormalization

scheme or scale dependence. Recently it has been shown [149] how the commensu-

rate scale relation between the radiative corrections to � -lepton decay and Re+e�(s)

can be generalized and empirically tested for arbitrary � mass and nearly arbitrarily

functional dependence of the � weak decay matrix element.

An essential feature of the �V (Q) scheme is the absence of any renormalization

scale ambiguity, since Q2 is, by de�nition, the square of the physical momentum
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transfer. The �V scheme naturally takes into account quark mass thresholds, which

is of particular phenomenological importance to QCD applications in the mass region

close to threshold. As we have seen, commensurate scale relations provide an analytic

extension of the conventional MS scheme in which many of the advantages of the

�V scheme are inherited by the e�MS scheme, but only minimal changes have to be

made. Given the commensurate scale relation connecting e�MS to �V expansions in

e�MS are e�ectively expansions in �V to the given order in perturbation theory at a

corresponding commensurate scale.

The calculation of  
(1)
V , the two-loop term in the Gell-Mann Low function for

the �V scheme, with massive quarks gives for the �rst time a gauge invariant and

renormalization scheme independent two-loop result for the e�ects of quarks masses

in the running of the coupling. Renormalization scheme independence is achieved by

using the pole mass de�nition for the \light" quarks which contribute to the scale

dependence of the static heavy quark potential. Thus the pole mass and the V -scheme

are closely connected and have to be used in conjunction to give reasonable results.

It is interesting that the e�ective number of 
avors in the two-loop coeÆcient of the

Gell-Mann Low function in the �V scheme, N
(1)
F;V , becomes negative for intermediate

values ofQ=m. This feature can be understood as anti-screening from the non-Abelian

contributions and should be contrasted with the QED case where the e�ective number

of 
avors becomes larger than 1 for intermediate Q=m. For small Q=m the heavy

quarks decouple explicitly as expected in a physical scheme, and for large Q=m the

massless result is retained.

The analyticity of the �V coupling can be utilized to obtain predictions for any

perturbatively calculable observables including the �nite quark mass e�ects associated

with the running of the coupling. By employing the commensurate scale relation

method, observables which have been calculated in the MS scheme can be related to

the analytic V-scheme without any scale ambiguity. The commensurate scale relations

provides the relation between the physical scales of two e�ective charges where they

pass through a common 
avor threshold. We also note the utility of the �V e�ective

charge in supersymmetric and grand uni�ed theories, particularly since the uni�cation

of couplings and masses would be expected to occur in terms of physical quantities

rather than parameters de�ned by theoretical convention.

As an example we have showed in Ref. [126] how to calculate the �nite quark mass
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corrections connected with the running of the coupling for the non-singlet hadronic

width of the Z-boson compared with the standard treatment in the MS scheme.

The analytic treatment in the V-scheme gives a simple and straightforward way of

incorporating these e�ects for any observable. This should be contrasted with the MS

scheme where higher twist corrections due to �nite quark mass threshold e�ects have

to be calculated separately for each observable. The V-scheme is especially suitable

for problems where the quark masses are important such as for threshold production

of heavy quarks and the hadronic width of the � lepton.

It has also been shown that the NLO corrections to the BFKL equation for the

QCD Pomeron become controllable and meaningful provided one uses physical renor-

malization scales and schemes relevant to non-Abelian gauge theory. BLM optimal

scale setting automatically sets the appropriate physical renormalization scale by

absorbing the non-conformal �-dependent coeÆcients. The strong renormalization

scheme dependence of the NLO corrections to BFKL resummation then largely dis-

appears. This is in contrast to the unstable NLO results obtained in the conven-

tional MS-scheme with arbitrary choice of renormalization scale. A striking feature

of the NLO BFKL Pomeron intercept in the BLM/CSR approach is its very weak

Q2-dependence, which provides approximate conformal invariance. The new results

presented here open new windows for applications of NLO BFKL resummation to

high-energy phenomenology, particularly virtual photon-photon scattering.

Outlook

The traditional focus of theoretical work in QCD has been on hard inclusive processes

and jet physics where perturbative methods and leading-twist factorization provide

predictions up to next-to-next-to leading order. Most of these predictions appear to

be validated by experiment with good precision. More recently, the domain of reliable

perturbative QCD predictions has been extended to much more complex phenomena,

such as the BFKL approach to the hard QCD pomeron in deep inelastic scattering

at small xbj, [150] virtual photon scattering [151], and the energy dependence of hard

virtual photon di�ractive processes, such as 
�p! �0p [42].

Exclusive hard-scattering reactions and hard di�ractive reactions are now provid-

ing an invaluable window into the structure and dynamics of hadronic amplitudes.
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Recent measurements of the photon-to-pion transition form factor at CLEO [75],

the di�ractive dissociation of pions into jets at Fermilab [76], di�ractive vector me-

son leptoproduction at Fermilab and HERA, and the new program of experiments

on exclusive proton and deuteron processes at Je�erson Laboratory are now yield-

ing fundamental information on hadronic wavefunctions, particularly the distribution

amplitude of mesons. There is now strong evidence for color transparency from such

processes. Such information is also critical for interpreting exclusive heavy hadron

decays and the matrix elements and amplitudes entering CP -violating processes at

the B factories.

It many ways the study of quantum chromodynamics is just beginning. The most

important features of the theory remain to be solved, such as the problem of con-

�nement in QCD, the behavior of the QCD coupling in the infrared, the phase and

vacuum structure/zero mode structure of QCD, the fundamental understanding of

hadronization and parton coalescence at the amplitude level, and the nonperturba-

tive structure of hadron wavefunctions. There are also still many outstanding phe-

nomenological puzzles in QCD. The precise interpretation of CP violation and the

weak interaction parameters in exclusive B decays will require a full understanding

of the QCD physics of hadrons.

Light-cone quantization methods appear to be especially well suited for progress

in understanding the relevant nonperturbative structure of the theory. Since the

Hamiltonian approach is formulated in Minkowski space, predictions for the hadronic

phases needed for CP violation studies can be obtained. In these lectures I have dis-

cussed how light-cone Fock-state wavefunctions can be used to encode the properties

of a hadron in terms of its fundamental quark and gluon degrees of freedom. Given

the proton's light-cone wavefunctions, one can compute not only the quark and gluon

distributions measured in deep inelastic lepton-proton scattering, but also the multi-

parton correlations which control helicity correlations in polarized leptoproduction

[152], the distribution of particles in the proton fragmentation region and dynamical

higher twist e�ects. Light-cone wavefunctions also provide a systematic framework

for evaluating exclusive hadronic matrix elements, including timelike heavy hadron

decay amplitudes and form factors.

Commensurate scale relations promise a new level of precision in perturbative

QCD predictions which are devoid of renormalization scale and renormalon ambi-
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guities. However, progress in QCD is driven by experiment, and we are fortunate

that there are new experimental facilities such as Je�erson laboratory, the upcoming

QCD studies of exclusive processes e+e� and 

 processes at the high luminosity B

factories, as well as the new accelerators and colliders now being planned to further

advance the study of QCD phenomena.
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APPENDIX I

LIGHT CONE QUANTIZATION AND PERTURBATION THEORY

In this Appendix, the canonical quantization of QCD in the ghost free A+ = 0

light-cone gauge is given. The discussion follows that given in Refs. [153, 99, 154]. The

light-cone quantization of QCD in Feynman gauge is given in Ref. [21] The quantiza-

tion proceeds in several steps. First one identi�es the independent dynamical degrees

of freedom in the Lagrangian. The theory is quantized by de�ning commutation re-

lations for these dynamical �elds at a given light-cone time � = t + z (we choose

� = 0). These commutation relations lead immediately to the de�nition of the Fock

state basis. Expressing dependent �elds in terms of the independent �elds, we then

derive a light-cone Hamiltonian, which determines the evolution of the state space
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with changing � . Finally the rules for � -ordered perturbation theory or given. The

major purpose of this exercise is to illustrate the origins and nature of the Fock state

expansion, and of light-cone perturbation theory. Subtleties due to the large scale

structure of non-Abelian gauge �elds (e.g. `instantons'), chiral symmetry breaking,

and the like are ignored. Although these have a profound e�ect on the structure of

the vacuum, the theory can still be described with a Fock state basis and some sort

of e�ective Hamiltonian. Furthermore, the short distance interactions of the theory

are una�ected by this structure, or at least this is the central ansatz of perturbative

QCD.

Quantization

The Lagrangian (density) for QCD can be written

L = �1
2
Tr (F �� F��) +  (i 6D �m) (35)

where F �� = @�A� � @�A� + ig[A�; A�] and iD� = i@� � gA�. Here the gauge

�eld A� is a traceless 3 � 3 color matrix (A� � P
a A

a�T a, Tr(T aT b) = 1=2Æab,

[T a; T b] = icabcT c; : : :), and the quark �eld  is a color triplet spinor (for simplicity,

we include only one 
avor). At a given light-cone time, say � = 0, the independent

dynamical �elds are  � � �� and Ai
?
with conjugate �elds i y+ and @+Ai

?
, where

�� = 
o
�=2 are projection operators (�+�� = 0; �2
�
= ��; �+ + �� = 1) and

@� = @0 � @3. Using the equations of motion, the remaining �elds in L can be

expressed in terms of  +; A
i
?
:

 � � �� =
1

i@+

h
i ~D? � ~�? + �m

i
 +

= e � � 1

i@+
g ~A? � ~�?  + ;

A+ = 0 ;

A� =
2

i@+
i~@? � ~A? +

2g

(i@+)2

nh
i@+Ai

?
; Ai

?

i
+ 2 y+ T

a  + T
a
o

� eA� +
2g

(i@+)2

nh
i@+Ai

?
; Ai

?

i
+ 2 y+ T

a  + T
a
o
; (36)

with � = 
o and ~�? = 
o~
.

To quantize, we expand the �elds at � = 0 in terms of creation and annihilation

operators,

 +(x) =
Z
k+>0

dk+ d2k?

k+ 16�3
X
�

n
b(k; �) u+(k; �) e

�ik�x
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+ dy(k; �) v+(k; �) e
ik�x
o
; � = x+ = 0

Ai
?
(x) =

Z
k+>0

dk+ d2k?

k+ 16�3
X
�

n
a(k; �) �i

?
(�) e�ik�x + c:c:

o
;

� = x+ = 0 ; (37)

with commutation relations (k = (k+; ~k?)):

n
b(k; �); by(p; �)

o
=

n
d(k; �); dy(p; �0)

o
=

h
a(k; �); ay(p; �0)

i
= 16�3 k+ Æ3(k � p) Æ��0 ;

fb; bg = fd; dg = : : : = 0 ; (38)

where � is the quark or gluon helicity. These de�nitions imply canonical commutation

relations for the �elds with their conjugates (� = x+ = y+ = 0;x= (x�; x?); : : :):n
 +(x);  

y

+(y)
o

= �+ Æ
3(x� y) ;h

Ai(x); @+Aj
?
(y)
i

= iÆij Æ3(x� y) : (39)

The creation and annihilation operators de�ne the Fock state basis for the theory

at � = 0, with a vacuum j 0i de�ned such that bj 0i = dj 0i = aj 0i = 0. The evolution

of these states with � is governed by the light-cone Hamiltonian,HLC = P�, conjugate

to � . The Hamiltonian can be readily expressed in terms of  + and Ai
?
:

HLC = H0 + V ; (40)

where

H0 =
Z
d3x

n
Tr
�
@i
?
A
j
?
@i
?
A
j
?

�

+  
y

+ (i@? � �? + �m)
1

i@+
(i@? � �? + �m) +

�

=
X
�

colors

Z
dk+ d2k?

16�3 k+

(
ay(k; �) a(k; �)

k2
?

k+
+ by(k; �) b(k; �)

� k2
?
+m2

k+
+ dy(k; �) b(k; �)

k2
?
+m2

k+

)
+ constant (41)

is the free Hamiltonian and V the interaction:

V =
Z
d3x

(
2g Tr

�
i@� eA�

h eA�;
eA�

i�
� g2

2
Tr
�h eA�; eA�

i h eA�;
eA�

i�
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+ g e 6 eA e + g2Tr

 h
i@+ eA�; eA�

i 1

(i@+)2

h
i@+ eA�; eA�

i!

+ g2 e 6 eA 
+

2i@+
6 eA e � g2 e 
+

 
1

(i@+)2

h
i@+ eA�; eA�

i! e 
+

g2

2
 
+ T a 

1

(i@+)2
 
+ T a 

)
; (42)

with e = e � +  + (!  as g ! 0) and eA� = (0; eA�; Ai
?
) (! A� as g ! 0). The

Fock states are obviously eigenstates of H0 with

H0jn : k+i ; k?ii =
X
i

 
k2
?
+m2

k+

!
i

jn : k+i ; k?ii : (43)

It is equally obvious that they are not eigenstates of V , though any matrix element

of V between Fock states is trivially evaluated.
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a
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Figure 6: Diagrams which appear in the interaction Hamiltonian for QCD on the

light cone. The propagators with horizontal bars represent \instantaneous" gluon

and quark exchange which arise from reduction of the dependent �elds in A+ = 0

gauge. (a) Basic interaction vertices in QCD. (b) \Instantaneous" contributions.

The �rst three terms in V correspond to the familiar three and four gluon vertices,

and the gluon-quark vertex [ Fig. 6 (a)]. The remaining terms represent new four-

quanta interactions containing instantaneous fermion and gluon propagators [Fig. 6

(b)]. All terms conserve total three-momentum k = (k+; ~k?), because of the integral

over x in V . Furthermore, all Fock states other than the vacuum have total k+ >
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0, since each individual bare quantum has k+ > 0: Consequently the Fock state

vacuum must be an eigenstate of V and therefore an eigenstate of the full light-cone

Hamiltonian.

Light-Cone Perturbation Theory

We de�ne light-cone Green's functions to be the probability amplitudes that a

state starting in Fock state j ii ends up in Fock state j fi a (light-cone) time � later

hf jii G(f; i; �) � hf je�iHLC�=2jii
= i

Z
d�

2�
e�i��=2 G(f; i; �) hf jii ; (44)

where Fourier transform G(f; i; �) can be written

hf jii G(f; i; �) =
D
f

����� 1

��HLC + i0+

����� i
E

=
D
f

����� 1

��HLC + i0+
+

1

��H0 + i0+
V

1

��H0 + i0+

+
1

��H0 + i0+
V

1

��H0 + i0+
V

1

��H0 + i0+

+ : : :j i
E
: (45)

The rules for � -ordered perturbation theory follow immediately when (� � H0)
�1 is

replaced by its spectral decomposition.

1

��H0 + i0+
=
X
n;�i

Z �Y dk+i d
2k?i

16�3 k+i

jn : ki; �ii hn : ki; �i j
��P

i
(k2 +m2)i=k

+
i + i0+

(46)

The sum becomes a sum over all states n intermediate between two interactions.

To calculate G(f; i; �) perturbatively then, all � -ordered diagrams must be consid-

ered, the contribution from each graph computed according to the following rules:[153]

1. Assign a momentum k� to each line such that the total k+; k? are conserved at

each vertex, and such that k2 = m2, i.e. k� = (k2 + m2)=k+. With fermions

associate an on-shell spinor.

u(k; �) =
1p
k+

�
k+ + �m+ ~�? � ~k?

� (
�(") � ="
�(#) � =# (47)

or

v(k; �) =
1p
k+

�
k+ � �m+ ~�? � ~k?

� (�(#) � ="
�(") � =# (48)
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where �(") = 1=
p
2 (1; 0; 1; 0) and �(#) = 1=

p
2 (0; 1; 0;�1)T . For gluon lines,

assign a polarization vector �� = (0; 2~�?�~k?=k+; ~�?) where ~�?(") = �1=p2 (1; i)
and ~�?(#) = 1=

p
2 (1;�i).

2. Include a factor �(k+)=k+ for each internal line.

3. For each vertex include

a

b

c

a

b

c

b

c d

a

b

c d

a

b

c d

a

b

c d

a

b

c d

a

Vertex Factor
gu–(c) εb u (a)

Color Factor

g{(pa–pb) . εc* εa . εb
+ cyclic permutations} 

g2{εb . εc εa* . εcd*  + εa* . εc εb . εcd* }
 

g 2u– (a) εb  
2(pc

+ – pd
+)

(pa
+ – pb

+) (pc
+ – pd

+)

γ +
εc* u (c)

g2εa* . εb
(pc

+ + pb
+)

εd* . εc

εd* . εc
(pc

+ – pd
+)

(pc
+ – pd

+)2

g2u– (a)γ+u(b)

g2

(pc
+ + pd

+)2

u–(a)γ+u(b) u–(d)γ+u(c)

Tb

Tb Td

iCabc

iCabe iCcde
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iCcde Te

Te Te

+ +
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Figure 7: Graphical rules for QCD in light-cone perturbation theory.

factors as illustrated in Fig. 7. To convert incoming into outgoing lines or vice

versa replace

u$ v ; u$ �v ; �$ �� (49)

in any of these vertices.
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4. For each intermediate state there is a factor

1

�� P
interm

k� + i0+
(50)

where � is the incident P�, and the sum is over all particles in the intermediate

state.

5. Integrate
R
dk+d2k?=16�

3 over each independent k, and sum over internal he-

licities and colors.

6. Include a factor �1 for each closed fermion loop, for each fermion line that both
begins and ends in the initial state (i.e. v : : : u), and for each diagram in which

fermion lines are interchanged in either of the initial or �nal states.

As an illustration, the second diagram in Fig. 7 contributes

1

�� P
i=b;d

�
k2
?

+m2

k+

�
i

� �(k
+
a � k+b )

k+a � k+b

�
g2
P
�
u(b) ��(k a � k b; �) u(a) u(d) 6 �(k a � k b; �) u(c)

�� P
i=b;c

�
k2
?

+m2

k+

�
i

� (k
?a�k?b)2

k+a �k
+

b

� 1

�� P
i=a;c

�
k2
?

+m2

k+

�
i

(51)

(times a color factor) to the qq ! qq Green's function. (The vertices for quarks

and gluons of de�nite helicity have very simple expressions in terms of the

momenta of the particles.) The same rules apply for scattering amplitudes, but

with propagators omitted for external lines, and with � = P� of the initial (and

�nal) states.

Finally, notice that this quantization procedure and perturbation theory (graph

by graph) are manifestly invariant under a large class of Lorentz transformations:

1. boosts along the 3-direction|i.e. p+ ! Kp+; p� ! K�1p�; p? ! p? for each

momentum;
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2. transverse boosts|i.e. p+ ! p+; p� ! p�+2p? �Q?+p
+Q2

?
; p? ! p?+p

+Q?

for each momentum (Q? like K is dimensionless);

3. rotations about the 3-direction.

It is these invariances which lead to the frame independence of the Fock state

wave functions.

APPENDIX II

LIGHT CONE FOCK REPRESENTATION OF

ELECTROWEAK CURRENTS

The light-cone Fock representation provides an explicit form for the matrix ele-

ments of electroweak currents hAjJ�jBi between hadrons B and A. The discussion

in this appendix follows that of Ref. [35] The underlying formalism is the light-cone

Hamiltonian Fock expansion in which hadron wavefunctions are decomposed on the

free Fock basis of QCD. In this formalism, the full Heisenberg current J� can be

equated to the current j� of the non-interacting theory which in turn has simple

matrix elements on the free Fock basis.

Elastic form factors at space-like momentum transfer q2 = �Q2 < 0 are most

simply evaluated from matrix elements of the \good" current j+ = j0 + jz in the

preferred Lorentz frame where q+ = q0 + qz = 0 [155, 156, 10]. The j+ current has

the advantage that it does not have large matrix elements to pair 
uctuations, so that

only diagonal, parton-number-conserving transitions need to be considered. The use

of the j+ current and the q+ = 0 frame brings out striking advantage of the light-

cone quantization formalism: only diagonal, parton-number-conserving Fock state

matrix elements are required. However, in the case of the time-like form factors

which occur in semileptonic heavy hadron decays, we need to choose a frame with

q+ > 0, where q� is the four-momentum of the lepton pair. Furthermore, in order

to sort out the contributions to the various weak decay form factors, we need to

evaluate the \bad" � current j� = j0 � jz as well as the \good" current j+. In such

cases we will also require o�-diagonal Fock state transitions; i.e. the convolution of

Fock state wavefunctions di�ering by two quanta, a qq0 pair. The entire electroweak

current matrix element is then in general given by the sum of the diagonal n ! n
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and o�-diagonal n+ 1! n� 1 transitions. As we shall see, an important feature of

a general analysis is the emergence of singular Æ(x) \zero-mode" contributions from

the o�-diagonal matrix elements if the choice of frame dictates q+ = 0: The formulas

[35] are in principle exact, given the light-cone wavefunctions of hadrons.

nn

B

A

q

1–∆, –q⊥

∆, q⊥

xn, k⊥n

x2, k⊥2

xn, k⊥n

x1, k⊥1

1, 0⊥

n+1 n–1
1–∆, –q⊥

∆, q⊥

xn+1, k⊥n+1
x2, k⊥2

x1, k⊥1

1, 0⊥

6–98
8415A1

=

+

Figure 8: Exact representation of electroweak decays and time-like form factors in

the light-cone Fock representation.

The evaluation of the timelike semileptonic decay amplitude B ! A`� requires

the matrix element of the weak current between hadron states hAjj�(0)jBi. Here

x = k+

P+ = k0+k3

P 0+P 3 and we use the metric convention a � b = 1
2
(a+b� + a�b+)� ~a? �~b?.

(See Fig. 8.) The interaction current then has simple matrix elements of the free

Fock amplitudes, with the provisal that all xi > 0: We shall adopt the choice of a

Lorentz general frame where the outgoing leptonic current carries q� = (q+; q?; q
�) =�

�P+; q?;
q2+q2

?

�P+

�
. The value of � = q+=P+ is determined from four-momentum
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conservation:
q2 + q2

?

�
+
m2

A + q2
?

1��
= m2

B: (52)

In the limit �! 0, the matrix element for the + vector current should coincide with

the Drell-Yan West formula [155, 156, 10].

For the n ! n diagonal term (�n = 0), the �nal-state hadron wavefunction

has arguments x1��
1��

, ~k?1� 1�x1
1��

~q? for the struck quark and xi
1��

, ~k?i+
xi

1��
~q? for the

n�1 spectators. We thus have a formula for the diagonal (parton-number-conserving)

matrix element of the form:

hAjJ�jBi�n=0 =
X
n; �

nY
i=1

Z 1

�
dx1

Z 1

0
dxi(i6=1)

Z
d2~k?i

2(2�)3

� Æ

0
@1� nX

j=1

xj

1
A Æ(2)

0
@ nX
j=1

~k?j

1
A

�  
y

A(n)(x
0

i;
~k0
?i; �i) j

�  B(n)(xi; ~k?i; �i); (53)

where 8><
>:
x01 =

x1��
1��

; ~k0
?1 =

~k?1 � 1�x1
1��

~q? for the struck quark

x0i =
xi

1��
; ~k0

?i = ~k?i +
xi

1��
~q? for the (n� 1) spectators.

(54)

A sum over all possible helicities �i is understood. If quark masses are neglected

the vector and axial currents conserve helicity. We also can check that
Pn

i x
0

i = 1,Pn
i
~k0
?i = ~0?.

For the n+1! n�1 o�-diagonal term (�n = �2), let us consider the case where
partons 1 and n + 1 of the initial wavefunction annihilate into the leptonic current

leaving n � 1 spectators. Then xn+1 = � � x1, ~k?n+1 = ~q? � ~k?1. The remaining

n� 1 partons have total momentum ((1��)P+;�~q?). The �nal wavefunction then

has arguments x0i =
xi

(1��)
and ~k0

?i =
~k?i +

xi
1��

~q?. We thus obtain the formula for

the o�-diagonal matrix element:

hAjJ�jBi�n=�2 =
X
n �

Z �

0
dx1

Z 1

0
dxn+1

Z
d2~k?1

2(2�)3

Z
d2~k?n+1

2(2�)3

�
nY
i=2

Z 1

0
dxi

Z
d2~k?i

2(2�)3
Æ

0
@1� n+1X

j=1

xj

1
A Æ(2)

0
@n+1X
j=1

~k?j

1
A
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�  
y

A(n�1)(x
0

i;
~k0
?i; �i) j

�  B(n+1)

� (fx1; xi; xn+1 = �� x1g;

� f~k?1; ~k?i; ~k?n+1 = ~q? � ~k?1g;

� f�1; �i; �n+1 = ��1g): (55)

Here i = 2; 3; � � � ; n with

x0i =
xi

1��
; ~k0

?i =
~k?i +

xi

1��
~q? (56)

label the n � 1 spectator partons which appear in the �nal-state hadron wavefunc-

tion. We can again check that the arguments of the �nal-state wavefunction satisfyPn
i=2 x

0

i = 1,
Pn

i=2
~k0
?i = ~0?. Similarly, in gauge theory with spin-half charged con-

stituents, matrix elements of the \bad" currents J? and J� receive �n = �1 and

�n = �3 contributions from the induced instantaneous fermion exchange currents

q ! 
�qg, gq ! 
�q, and gqq ! 
�. In the case of scalars, these contributions arise

from the 4 point \seagull" interactions. Note that these terms do not occur for matrix

elements of J+.

The free current matrix elements j� in the light-cone representation are easily

constructed. For example, the vector current of quarks takes the form

j� =
u(x0; k0

?
; �0)
�u(x; k?; �)p
k+
p
k+0

(57)

and

j+ = 2Æ�;�0 : (58)

The other light-cone spinor matrix elements of j� can be obtained from the tables in

Ref. [11]. In the case of spin zero partons

j+ =
x + x0p
xx0

(59)

and

j� =
k� + k0�p
xx0P+

: (60)

However, instead of evaluating each k� in the j� current from the on-shell condition

k�k+ = m2, one must instead evaluate the k� of the struck partons from energy
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conservation k� = p�initial� p�spectator. This e�ect is seen explicitly when one integrates

the covariant current over the denominator poles in the k� variable. It can also be

understood as due to the implicit inclusion of local instantaneous exchange contri-

butions obtained in light-cone quantization [36, 157]. The mass m2
spectator which is

needed for the evaluation of j� current in the diagonal case is the mass of the entire

spectator system. Thus m2
?spectator = m2

spectator+
~k2
?spectator, where

~k?spectator =
P

j
~k?j

and m2
?spectator=xspectator =

P
jm

2
j=xj, summed over the j spectators. This is an im-

portant simpli�cation for phenomenology, since we can change variables to m2
spectator

and d2~k?spectator and replace all of the spectators by a spectral integral over the cluster

mass m2
spectator.

The proper treatment of the J� current implies consistency conditions which must

be obeyed by the light-cone wavefunctions. For example, current conservation for the

form factors of spin zero hadrons requires

(2p� q)�F (q2) = hp� q j J�(0) j pi (61)

and thus D
p� q j J+ j p

E
=

(2p� q)+

(2p� q)�

D
p� q j J� j p

E
: (62)

We have explicitly veri�ed this new type of virial theorem in a simple scalar composite

model in Ref. [35] .

The o�-diagonal n + 1 ! n � 1 contributions provide a new perspective on the

physics of B-decays. A semileptonic decay involves not only matrix element where

a quark changes 
avor, but also a contribution where the leptonic pair is created

from the annihilation of a qq0 pair within the Fock states of the initial B wavefunc-

tion. The semileptonic decay thus can occur from the annihilation of a nonvalence

quark-antiquark pair in the initial hadron. This feature will carry over to exclusive

hadronic B-decays, such as B0 ! ��D+. In this case the pion can be produced from

the coalescence of a du pair emerging from the initial higher particle number Fock

wavefunction of the B. The D meson is then formed from the remaining quarks after

the internal exchange of a W boson.

A remarkable advantage of the light-cone formalism that all matrix elements of lo-

cal operators can be written down exactly in terms of simple convolutions of light-cone

Fock wavefunctions. The light-cone wavefunctions depend only on the hadron itself;
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they are process-independent. The formalism is relativistic and frame-independent|

the incident four-vectors can be chosen in any frame. Note that the matrix element

of a current in the covariant Bethe-Salpeter formalism requires the construction of

the current from insertions into an in�nite number of irreducible kernels. The Bethe-

Salpeter formalism becomes even more intractable for bound-states of more than two

particles.

APPENDIX III

BARYON FORM FACTORS AND EVOLUTION EQUATIONS

The baryon form factor is a prototype for the calculation of the QCD hard scat-

tering contribution for the whole range of exclusive processes at large momentum

transfer. Away from possible special points in the xi integrations a general hadronic

amplitude can be written to leading order in 1=Q2 as a convolution of a connected

hard-scattering amplitude TH convoluted with the meson and baryon distribution

amplitudes:

�M(x;Q) =
Z
jEj<Q2

d2k?

16�2
 
Q
qq(x;~k?) ; (63)

and

�B(xi; Q) =
Z
jEj<Q2

[d2k?] qqq(xi; ~k?i) : (64)

Here E =M2
qqq�M2

B is the invariant o�-shellness of the three-quark baryon light-cone

wavefunction.

The hard scattering amplitude TH is computed by replacing each external hadron

line by massless valence quarks each collinear with the hadron's momentum p
�
i
�=

xip
�
H . For example the baryon form factor at large Q2 has the form [153, 158]

GM(Q
2) =

Z
[dx][dy]�?(yi; Q)TH(x; y;Q

2)�(x;Q) (65)

where TH is the 3q + 
 ! 3q0 amplitude. For the proton and neutron we have to

leading order [CB = 2=3]

Tp =
128�2C2

B

(Q2 +M2
0 )2

T1

Tn =
128�2C2

B

3(Q2 +M2
0 )

2
[T1 � T2] (66)
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where

T1 = � �s(x3y3Q
2) �s(1� x1)(1� y1)Q

2)

x3(1� x1)2 y3(1� y1)2

+
�s(x2y2Q

2) �s ((1� x1)(1� y1)Q
2)

x2(1� x1)2 y2(1� y1)2

� �s(x2y2Q
2) �s(x3y3Q

2)

x2x3(1� x3) y2y3(1� y1)
; (67)

and

T2 = � �s(x1y1Q
2) �s(x3y3Q

2)

x1x3(1� x1) y1y3(1� y3)
: (68)

T1 corresponds to the amplitude where the photon interacts with the quarks (1) and

(2) which have helicity parallel to the nucleon helicity, and T2 corresponds to the

amplitude where the quark with opposite helicity is struck. The running coupling

constants have arguments Q̂2 corresponding to the gluon momentum transfer of each

diagram. Only the large Q2 behavior is predicted by the theory; we utilize the param-

eter M0 to represent the e�ect of power-law suppressed terms from mass insertions,

higher Fock states, etc.

The Q2-evolution of the baryon distribution amplitude can be derived from the

operator product expansion of three quark �elds or from the gluon exchange kernel.

The baryon evolution equation to leading order in �s is [158]

x1x2x3

(
@

@�
~�(xi; Q) +

3

2

CF

�0
~�(xi; Q)

)
=
CB

�0

Z 1

0
[dy]V (xi; yi)~�(yi; Q): (69)

Here � = x1x2x3 ~�; � = log(logQ2=�2), CF = (n2c�1)=2nc = 4=3; CB = (nc+1)=2nc =

2=3; � = 11 � (2=3)nf , and V (xi; yi) is computed to leading order in �s from the

single-gluon-exchange kernel:

V (xi; yi) = 2xix2x3
X
i6=j

�(yi � xi)Æ(xk � yk)
yj

xj

 
Æhihj
xi + xj

+
�

yi � xi

!

= V (yi; xi) : (70)

The infrared singularity at xi = yi is cancelled because the baryon is a color singlet.

The baryon evolution equation automatically sums to leading order in �s(Q
2) all

of the contributions from multiple gluon exchange which determine the tail of the

valence wavefunction and thus the Q2-dependence of the distribution amplitude. The
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general solution of this equation is

�(xi; Q) = x1x2x3

1X
n=0

an

 
`n
Q2

�2

!�
n
�
n(xi) ; (71)

where the anomalous dimensions 
n and the eigenfunctions e�n(xi) satisfy the charac-
teristic equation:

x1x2x3

 
�
n + 3CF

2�

! e�n(xi) = CB

�

Z 1

0
[dy] V (xi; yi) e�n(yi) : (72)

A useful technique for obtaining the solution to evolution equations is to construct

completely antisymmetric representations as a polynomial orthonormal basis for the

distribution amplitude of multiquark bound states. In this way one obtain a distinc-

tive classi�cation of nucleon (N) and delta (�) wave functions and the corresponding

Q2 dependence which discriminates N and � form factors. This technique is devel-

oped in detail in Ref. [159]. The conformal representation of baryon distribution

amplitudes is given in Ref. [70].

Taking into account the evolution of the baryon distribution amplitude, the nu-

cleon magnetic form factors at large Q2, has the form [153, 158]

GM(Q
2)! �2s(Q

2)

Q4

X
n;m

bnm

 
log

Q2

�2

!
Bn �
Bn "
1 +O

 
�s(Q

2);
m2

Q2

!#
: (73)

where the 
n are computable anomalous dimensions of the baryon three-quark wave

function at short distance and the bmn are determined from the value of the distribu-

tion amplitude �B(x;Q
2
0) at a given point Q2

0 and the normalization of TH . Asymp-

totically, the dominant term has the minimum anomalous dimension. The dominant

part of the form factor comes from the region of the xi integration where each quark

has a �nite fraction of the light cone momentum. The integrations over xi and yi have

potential endpoint singularities. However, it is easily seen that any anomalous con-

tribution [e.g. from the region x2; x3 � O(m=Q); x1 � 1�O(m=Q)] is asymptotically
suppressed at large Q2 by a Sudakov form factor arising from the virtual correction

to the q
q vertex when the quark legs are near-on-shell [p2 � O(mQ)] [158, 160].
This Sudakov suppression of the endpoint region requires an all orders resummation

of perturbative contributions, and thus the derivation of the baryon form factors is

not as rigorous as for the meson form factor, which has no such endpoint singularity

[160].
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One can also use PQCD to predict ratios of various baryon and isobar form fac-

tors assuming isospin or SU(3)-
avor symmetry for the basic wave function struc-

ture. Results for the neutral weak and charged weak form factors assuming standard

SU(2)� U(1) symmetry are given in Ref. [161].

Comparison Between Time-Ordered and � -Ordered Perturbation Theory

Equal t Equal � = t + z

ko =
q
~k2 +m2 (particle mass shell) k� =

k2
?

+m2

k+
(particle mass shell)

P ~k conserved
P ~k?; k

+ conserved

Mab = Vab +
P
c
Vac

1P
a
ko�
P

c
ko+i�

Vac Mab = Vab +
P
c
Vac

1P
a
k��

P
c
k�+i�

Vcb

n! time-ordered contributions k+ > 0 only

Fock states  n(~ki) Fock states  n(~k?i; xi)

nP
i=1

~ki = ~P = 0 x = k+

P+ ;
nP
i=1

xi = 1 ;
nP
i=1

~k?i = 0

(0 < xi < 1)

E = P o � nP
i=1

koi E = P+

�
P� � nP

i=1
k�i

�

=M � nP
i=1

q
k2i +m2

i =M2 � nP
i=1

�
k2
?

+m2

x

�
i
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