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Abstract

In this note, we briey review the current lattice of the NLC extraction line which

was designed for the nominal NLC beam parameters [1, 2]. Then we describe

the beam parameters for the high luminosity option with larger beam disruption

parameter [3] and discuss its e�ect on beam loss in the extraction line. Finally,

we present a summary of the optics study aimed at minimizing the beam loss

with high disruption beams.

�Work supported by Department of Energy contract DE{AC03{76SF00515.



1 Introduction

In a linear collider, the rate of colliding bunches tends to be low when compared with a

colliding beam storage ring. Fortunately, because the beams are not stored, the disruptive

e�ect of the beam-beam forces is not a dynamical limitation and thus the beams can be

focused to very small spot sizes to attain the high charge densities necessary to achieve the

desired luminosity. When the high energy electron and positron beams collide, the space

charge forces of the opposing beam cause large deections. This has two e�ects: �rst,

the e�ective beam emittance of the outgoing beam is increased due to the non-linearity of

the beam-beam force and, second, when the high energy particles are deected, they can

radiate a signi�cant fraction of their energies as synchrotron radiation which is referred to

as beamstrahlung.

The NLC extraction line must be designed to transport this disrupted particle beam and

the beamstrahlung photons away from the interaction point (IP) to dumps. In addition, the

extraction line should provide diagnostics to fully instrument the collisions. This includes the

ability to measure the outgoing beam angle and position, measure the energy spectrum of the

outgoing beam, and measure the polarization of the outgoing beam. Because of the increased

angular divergence and energy spread of the disrupted beam, it is a very di�cult task to

capture this beam and control it su�ciently well to make measurements of its properties.

In the next sections, we will review the present NLC design for the extraction line and

some of the studies that have been made to further improve the performance. Many details

of the present design are described in Ref. [4].

2 Current Lattice Design

The current lattice of the NLC extraction line is shown in Fig. 1. The magnet apertures are

designed to allow the outgoing main beam and beamstrahlung photons to be transported to

one shared dump at about 150 m from IP. The design provides 6 m of free space after IP to

avoid interference with the quadrupoles needed to focus the incoming beam.

The optics consists of two multi-quad systems in the beginning and at the end of the

beam-line, and a four-bend horizontal chicane in the middle. The �rst set of quadrupoles

focuses the beam to a waist at the center of the horizontal chicane and then the second set

of quadrupoles creates a parallel beam at the dump. The chicane creates 2 cm of horizontal

dispersion at the secondary IP which will facilitate the measurement of the disrupted beam

energy spread from which one can infer the luminosity spectrum. In addition, the chicane

separates the particle beam from the core of the beamstrahlung photons which will allow

measurements of the photon distribution. Finally, the electron beam waist and chicane pro-

vide an ideal location to measure the beam polarization using a Compton laser polarimeter,

similar to the one developed for the SLC [5].

One of the main issues for the extraction line design is the minimization of beam loss;

this is necessary to control backgrounds in the detector as well as the instrumentation in the

extraction line. Most of the losses occur for the very low energy particles which experience

large deections in the magnets. For the typical NLC beam parameters [1, 2], the beam-
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Figure 1: Current lattice of the NLC extraction line (IP at s = 0).

beam collisions generate an extremely broad energy spread in the outgoing beams. The

spectrum at 500 GeV in the center-of-mass (cms) is narrower, but, with collisions at 1 TeV

cms, the spectrum is so wide that there is still a signi�cant number of electrons with energy

deviations � = �p

p
below -80% [6]. An example of the disrupted beam energy distribution

is shown in Fig. 2 which corresponds to the beam parameters with the largest disruption at

an energy of 1 TeV cms in the nominal NLC operation; these beam parameters are listed in

Table 1 and are referred to as the `NLC 1 TeV case A' parameter set. In this paper, we will

refer to this case as the `nominal disruption' case.

The low energy over-focusing in the extraction line is minimized with the use of alter-

nating gradient multiple quadrupole systems rather than simple doublets. The strength of

Figure 2: Energy distribution for the nominal disruption beam (NLC 1 TeV case A;

50,000 particles).
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Table 1: IP parameters for the nominal disruption beam (NLC 1 TeV case A).

Beam parameter Undisrupted Disrupted

x=y x=y

Emittance (m�rad) [10�13] 39/0.59 120/1.02

rms beam size (nm) 198/2.7 198/3.2

rms divergence (�rad) 20/22 125/33

�� (mm) 10/0.125 3.259/0.103

�� 0/0 1.805/0.306

Energy cms (GeV) 1046

Particles per bunch 0:75 � 1010

Bunches per train 95

Repetition rate (Hz) 120

Disruption parameter 0.094/6.9

Average energy loss per particle 9.5%

individual quadrupoles in these systems is reduced compared to the doublet. This results

in less over-focusing, smaller amplitude of the low energy particle oscillations and reduced

beam loss.

For the beam parameters in Table 1 and optimized quadrupole strengths, the beam power

losses in the extraction line are below 0.3 kW/m (see Fig. 3) with the total loss of 4.8 kW

or 0.25% particles; the energy distribution of the lost and survived particles is shown in

Fig. 4. It should be noted that at a cms energy of 500 GeV, the losses are roughly an

order-of-magnitude smaller.

The azimuth distribution of particle loss is shown in Fig. 5, where � = atan y

x
and x, y

are the �nal coordinates of the lost particles. Due to somewhat larger horizontal beam size

in the �rst half of the extraction line, there are more losses in the x-plane (� = 0;�180�)

Figure 3: Power loss distribution for the nominal disruption beam in the current lattice

(NLC 1 TeV case A).
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Figure 4: Energy distribution for the lost (thick line) and survived (thin) nominal disruption

beam particles in the current lattice (NLC 1 TeV case A; 50,000 particles).

Figure 5: Azimuth distribution of lost particles (dots) for the nominal disruption beam

(NLC 1 TeV case A).

than in the y-plane (� = �90�). Though not yet fully studied, it is hoped that this level of

beam loss can be safely absorbed without signi�cant complications.

3 High Disruption Beam

It has been reported recently that the NLC luminosity can be increased several times by

using near-equal horizontal and vertical beta functions at the IP [3]. In this scenario, the

undisrupted horizontal beam size at the IP is reduced and the vertical size is increased. The

latter has an additional advantage of much looser tolerances in the �nal focus system. The

disadvantage of this scenario is a signi�cant increase in the angular beam divergence and

beam energy spread after the collision. The IP parameters for the `high disruption' case,

similar to the case in Table 1, are listed in Table 2 [3]. The corresponding energy distribution

for the disrupted beam is shown in Fig. 6.

Tables 1 and 2 show that the angular divergence of the high disruption beam is increased
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Table 2: IP parameters for the `round(er) beam' collisions at 1 TeV.

Beam parameter Undisrupted Disrupted

x=y x=y

Emittance (m�rad) [10�13] 39/0.59 235/7.4

rms beam size (nm) 62.5/7.7 67.3/10.7

rms divergence (�rad) 62.5/7.7 531/103

�� (mm) 1.0/1.0 0.192/0.154

�� 0/0 1.143/1.100

Energy cms (GeV) 1046

Particles per bunch 0:75 � 1010

Bunches per train 95

Repetition rate (Hz) 120

Disruption parameter 0.85/6.9

Average energy loss per particle 41%

Figure 6: Energy distribution for the high disruption beam (15,000 particles).

by a factor of 3-4 compared to the nominal beam. This larger divergence translates into

larger beam size in the quadrupoles, and therefore larger quadrupole apertures are required.

Secondly, as seen in Fig. 2 and 6, the low energy tail in the high disruption beam is much more

populated than in the nominal beam option. For comparison, the nominal disruption beam

has about 1.2% low energy particles with � below -60%, while the high disruption beam has

30% particles in this range and 10.6% particles with � below -80%. To achieve beam loss in

the high disruption case similar to the nominal case (about 5 kW), the chromatic bandwidth

of the extraction line has to be increased to � = �92% from the -70% for the nominal beam.

Thus, the lowest particle energy accepted by the optics has to be further reduced by a factor

of 4. Note that at � = �92% the particles experience 12 times larger deections in the

magnets compared to the on-momentum beam. These very large deections make it di�cult

to con�ne the tail particles within the aperture.
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4 Study of High Disruption Beam Loss

As a �rst step, we veri�ed the high disruption beam loss for the current extraction line

design. In the simulations, we used disrupted beam distributions at the IP generated with

GUINEA{PIG code [6], and then tracked the beam to the dump using modi�ed DIMAD

code which correctly simulates large energy deviations [8]. With 15,000 initial particles, the

total beam loss was 28.2% particles, all in the range of � below -60%. Most of these losses

are due to the very low energy particles, but are also enhanced by the large beam divergence

at the IP. About half of the beam loss (15.2%) occurred in the �ve-quadrupole system after

IP.

Clearly, the above losses need to be signi�cantly reduced for a realistic design with high

disruption beams. Below we describe various methods we tried to reduce the beam loss.

However, more studies are needed for an acceptable solution.

Finally, note that in this paper we discuss one particular option for the high disruption

beam parameters (Table 2). There are other scenarios with less severely disrupted beams

which still bene�t from the near-equal beta functions at the IP [3]. There are also parameters

for high luminosity operation at 1 TeV with `at' beams that have much smaller disruption

and beamstrahlung [2].

4.1 Optics Modi�cations

As mentioned earlier, a large portion of the high disruption beam (15.2% particles) is lost

in the �ve quadrupoles after IP. It indicates that the optics optimization has to begin with

this quadrupole system. The main causes of the excessive beam loss are: much larger than

nominal the low energy tail and increased beam divergence at the IP.

The larger IP divergence increases the beam size in the quadrupoles. To improve the

quadrupole acceptance, we increased the quadrupole aperture by a factor of 2 (for instance,

from ap = 10 to 23 mm in the �rst quad, etc., where ap is the pole tip radius). For realistic

design, we kept the quadrupole pole tip �eld Bp below 12 kG. The resultant reduction in �eld

gradientBp=ap was compensated by lengthening of the quadrupoles. The longer quadrupoles,

in turn, increase the beam size; thus, both the length and aperture were optimized.

The quadrupole focusing depends on energy as KL
1+�

, where KL is the on-momentum

focusing strength. In the high disruption beam most losses are caused by the low energy

over-focusing. This happens when the quadrupole o�-momentum focal distance 1+�

KL
becomes

too small compared to the distance between quadrupoles. One way to reduce this e�ect is

to make smaller the on-momentum KL values. This can be done by increasing the num-

ber of alternating gradient quadrupoles after IP. Since the total on-momentum focusing in

the quadrupole system has to remain about the same (to focus to the secondary IP), the

individual quadrupole KL values are reduced with more quads. As a result, the low energy

particles experience less deections in each quadrupole and less betatron amplitude in the

system. The disadvantages of this method are the longer quadrupole system, the increased

on-momentum beam size and larger aperture.

In this study, we added one more quadrupole to make a six-quadrupole system after IP.

Due to the larger aperture and additional quadrupole, the length of this focusing system
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increased from the current 25.2 m to 45.8 m. The quadrupole parameters were optimized to

provide at least 5�x/10�y disrupted beam acceptance in the quadrupoles within the energy

range of � from 0 to -70%. The resultant apertures vary from ap = 23 mm in the �rst

quadrupole to 69 mm in the sixth quadrupole (compare to ap = 10 to 32 mm in the current

lattice).

The described lattice option for the high disruption beam is shown in Fig. 7. The

parameters of the last quadruplet were also optimized for the maximum acceptance. The

apertures of these quadrupoles range from ap = 114 to 157 mm and were de�ned by the

�1 mrad IP divergence of the beamstrahlung photon beam. In the chicane, the bend x=y-

apertures were increased from �202=50 mm to �250=108 mm. For realistic design, the long

quadrupoles were made of a number of short quadrupoles with gaps between them.

Tracking simulation with the high disruption beam showed that the total beam loss in

the modi�ed lattice is still very high: 21.2% particles versus 28.2% in the original lattice.

Despite the larger quadrupole apertures after IP, about 14.7% particles are lost in the six-

quad system. The energy distribution of the lost and survived particles is shown in Fig. 8.

Clearly, all of the beam losses occur in the low energy tail at � below -60%. The analysis of

the beam distribution at IP showed that the highest energy lost particles (� � �60%) had

also large horizontal angles at IP, while the particles with small IP angles survived up to

� � �75%.

For comparison, we tracked the nominal disruption beam in this modi�ed lattice. The

total beam power loss reduced to 3.9 kW (4.8 kW in the original lattice), and the number

of lost particles reduced from 0.25% to 0.23%. The power loss distribution in the modi�ed

lattice is shown in Fig. 9 and the energy distribution of the lost and survived particles is

shown in Fig. 10. Note that increased bandwidth in Fig. 10 compared to Fig. 8 is due to

smaller IP angular divergence in the nominal disruption beam.

Figure 7: Lattice option for the high disruption beam.
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Figure 8: Energy distribution for the lost (thick line) and survived (thin) high disruption

beam particles in the modi�ed lattice (15,000 particles).

Figure 9: Power loss distribution for the nominal disruption beam in the modi�ed lattice

(NLC 1 TeV case A).

Figure 10: Energy distribution for the lost (thick line) and survived (thin) nominal disruption

beam particles in the modi�ed lattice (NLC 1 TeV case A; 50,000 particles).
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Since the particle deections in the quadrupoles increase at low energies rather fast

(� 1=energy), very large magnets would be needed for a signi�cant improvement of the

chromatic acceptance with the high disruption beam. Further discussions are needed to

decide if the use of larger magnets is acceptable.

4.2 Sextupole Correction

In accelerators sextupoles are typically used to compensate linear and some high order

deviations in quadrupole focusing caused by energy errors. The correction requires non-

zero dispersion at the sextupoles to generate compensating quadrupole e�ect on the orbit

of the o�-momentum particles. For a small energy spread, the focusing in quadrupoles and

sextupoles depends linearly on �, therefore the correction works for all particles in the bunch.

In the case of the high disruption beam with a very broad energy spread, the focusing and

trajectories change non-linearly at large j�j and the sextupole e�ect may vary signi�cantly

for particles with di�erent energies.

To study the e�ect of sextupoles on high disruption beam loss, we added a sextupole to

each of the �rst six quadrupoles in the modi�ed extraction line lattice and a horizontal bend

at s = 2 m from IP (4 m before the �rst quad) to generate dispersion. For the maximum

e�ect, we assumed that the sextupole �eld can be superimposed over full length of the

quadrupoles. Though a large dispersion helps reduce the sextupole �eld, its amplitude is

limited by the quadrupole aperture ap and desired energy acceptance. In our case, the bend

at s = 2 m generates spread in o�-momentum particle trajectories, so at the entrance of the

�rst quadrupole the horizontal orbit as a function of energy is x(�) = � �

1+�
, where � is the

linear dispersion at this point. Applying jx(�)j < ap for ap = 23 mm and � > �92% results

in the maximum dispersion value of j�j = 2 mm. This corresponds to 8.34 kG�m �eld in the

dispersion generating bend at 500 GeV.

Optimization of the sextupole strengths showed that this correction does not signi�cantly

improve the low energy beam acceptance. With the sextupole �eld e�ectively imposed over

quadrupole length and for the optimized values of the pole tip �eld in the six sextupoles

(Bsext
p = 4; 0:5;�9:5; 13;�5;�1 kG), the particle loss at the end of the six-quadrupole system

is reduced from 14.7% to 11.3%. This marginal reduction in the beam loss seems to not justify

the complications of an extra bend near IP, superimposed sextupole and quadrupole �elds

and the need for dispersion cancellation after the sextupoles.

4.3 Octupole Correction

In a separate study, we investigated the e�ect of octupoles on the beam loss. As in the case

with sextupoles, we e�ectively superimposed six octupoles over the six quadrupoles after IP.

Since the octupole �eld increases as a cube of a particle amplitude, we consider that its most

e�ect will be on the low energy particles experiencing large deections in the quads, and will

not signi�cantly a�ect the rest of the beam.

In quadrupoles the beam is focused or defocused either in horizontal or vertical direction.

Accordingly, the main losses of the low energy particles are expected to be in x and y-planes
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(see Fig. 5). Octupoles also provide horizontal and vertical focusing which can be used

to compensate the quadrupole e�ect at large amplitudes. Compared to the quadrupoles,

a normal octupole provides simultaneous non-linear focusing along the x and y-axes and

defocusing along the jxj = jyj lines, or vice versa.

In the quadrupole system the net x and y focusing is dominated by the horizontally (F)

and vertically (D) focusing quads, respectively. Therefore, to reduce the net low energy

over-focusing in both planes one has to reduce the horizontal focusing in F-quads and ver-

tical focusing in D-quads. Since the octupoles simultaneously focus (or defocus) in the x

and y-planes, all six compensating octupoles need to be defocusing in order to reduce the

quadrupole focusing at large amplitudes.

In simulations, we varied the individual octupole strengths and con�rmed that the six

octupoles have to be defocusing for the most reduction of the high disruption beam loss. The

same aperture and e�ective length was used for the combined octupoles and quadrupoles.

Fig. 11 shows the particle loss as a function of octupole pole tip �eld (same for the six

octupoles). For realistic �eld values the particle loss at the end of the six-quadrupole system

reduces to 12.6% from 14.7% without octupoles. This is rather small improvement and we

do not yet consider this compensation as a practical solution.

Figure 11: High disruption beam loss N(%) at the end of the six-quadrupole system versus

octupole pole tip �eld.

4.4 Low Energy Tail Separation

An alternative way to avoid large beam loss in the extraction line is to separate the low

energy tail from the beam and direct it to a di�erent transport line. In this case, the energy

acceptance requirement can be relaxed for the main beam extraction line and the transport

line for the tail can be better adjusted for the lower energy or designed to absorb the energy.

Since the large losses start in the quadrupoles after IP, the separation has to be done before

the beam enters the quads.
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Dipole bending naturally spreads the particle trajectories with di�erent energies. The low

energy particles experience the largest deviations from the on-momentum orbit, which are

proportional to �

1+�
. For the beam separation study, we introduced a symmetric horizontal

chicane between s = 6 and 18.6 m after IP and moved the �rst quadrupole to s = 18:9 m

as shown in Fig. 12. Each individual chicane bend is 1.2 m long and has 12 kG �eld at

500 GeV. The goal for the �rst two chicane bends was to generate a large spread between

trajectories of the low energy particles and the core beam. Then the septum bends in the

middle of chicane are used to deect back only the core beam particles and allow the low

energy tail travel unbent into a di�erent transport line. The dispersion at the end of the

chicane is canceled, and if the energy spread in the beam is signi�cantly reduced after the

tail separation, then a simpler quadrupole system, such as a doublet, can be used to focus

to the secondary IP.

We used the beam separation condition which required that the separated tail particles

did not strike the face of the �rst quadrupole located at s = 18:9 m. In other words, the sep-

tum bends would separate only the tail particles with deection at the �rst quadrupole larger

than the outer quadrupole radius. We estimated that the aperture of the �rst quadrupole

needs to be about ap � 60 mm and the outer radius of such a permanent magnet with 12 kG

pole tip �eld can be on the order of 150 mm.

The high disruption beam distribution was tracked through the �rst two deecting bends,

and Fig. 13 shows the horizontal angular divergence versus energy at the entrance to the

�rst separating septum bend at s = 9:6 m. The horizontal phase space at this point is

shown in Fig. 14, where the vertical line at x = �34:8 mm separates the beam core and

the tail. Counting the particles shows that only 3.1% particles are in the tail. The energy

distributions of the core and tail beams are shown in Fig. 15.

Since the number of low energy particles in the core beam is still large after the separation,

we conclude that the above scheme is not very e�ective. For this reason we did not proceed

to study other important issues such as the design and e�ciency of septum bends and the

transport line for the low energy tail.

Figure 12: Beam separation with chicane and septum bends.
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Figure 13: Horizontal angular distribution vs. energy at the separating septum bend.

Figure 14: Horizontal phase space distribution of the high disruption beam at the separating

septum bend. The vertical line separates the tail (on the left) from the core.

5 Summary

We investigated various methods to reduce the beam loss in the NLC extraction line caused

by a large number of very low energy particles in the high disruption beam option. The

study included the use of larger quadrupole aperture, weaker quadrupole focusing, sextupole

compensation, octupole focusing at large amplitudes, and beam tail separation with chicane

septum bends. We did not �nd signi�cant reduction of the beam loss with the above methods.

Further studies and new ideas are needed to �nd a practical solution for the high disruption

scenario.
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Figure 15: Energy distribution for the tail (thick line) and the core (thin) high disruption

beams at the separating septum bend (15,000 particles).
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