
SLAC{PUB{8301

Feb 2000

JAVA ANALYSIS STUDIO

AND

THE hep.lcd CLASS LIBRARY a

M.T. RONAN

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

J. BOGART, G. BOWER, A.S. JOHNSON

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

N. SINEV

Physics Department, University of Oregon, Eugene, OR 97403-1274, USA

D. BENTON

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA

19104-6396, USA

The Java Analysis Studio and the hep.lcd class library provide a general framework

for performing Java-based Linear Collider Detector (LCD) studies. The package is

being developed to fully reconstruct 500 GeV to 1.5 TeV e
+
e
�annihilation events

for analyzing detector options and performance. The current North American LCD

reconstruction e�ort is aimed at comparing di�erent detailed detector models by
performing full detector simulation and reconstruction. This paper describes the

JAS/hep.lcd distributed analysis framework and some aspects of the reconstruction

and analysis object modeling.

1 Introduction

The Java Analysis Studio 1 (JAS, pronounced jazz...) is a desktop data analysis

application written mainly in the Java Language Environment 2. It features a ex-

ible modular design with a colorful histogram viewer and a well-tailored graphical

user interface. The JAS framework allows users to perform arbitrarily complex data

analysis tasks by writing Java analysis modules. The application runs as a local

standalone program or as a client of a remote Java Data Server. The client-server

architecture allows users to access large data samples stored on remote data centers

in a natural and eÆcient way.

The hep.lcd class library, implemented entirely in Java, forms a framework for

processing and analyzing High-Energy Physics (HEP) data. The current North

American Linear Collider Detector (LCD) reconstruction e�ort includes �rst-pass

pattern recognition, clustering, track-cluster association and jet �nding for use in

detailed detector studies.

aPresented at the International Workshop on Linear Colliders, April 28 - May 5, 1999 Sitges,
Barcelona, Spain

Work supported by Department of Energy contracts DE{AC03{76SF00515 (SLAC) and DE{

AC03{76SF00098 (LBNL).

1

In this paper, we describe some features of JAS and our Java analysis frame-

work, and outline some aspects of the hep.lcd object modeling. We show results

from our �rst pass at complete reconstruction of 500 GeV e+e�annihilation events.

2 Java Analysis Studio

The Java Analysis Studio is mainly written in Java, a modern Object-Oriented

(OO) language which is easy to learn and use. It includes extensive core libraries

for building graphical user interfaces, for network access and for many utility pur-

poses, and has many other application programming interfaces (API's). The Java

compiler writes byte-compiled code which is portable and dynamically loadable.

The Java Language Environment, available on all modern machines, provides a

Java Virtual Machine to interpret the byte code and, in most cases, a Just-In-Time

(JIT) compiler to generate binary code for faster execution. Java thus allows rapid

prototyping and transparent porting of code and compiled objects to any platform

running the Java VM.

The main features of JAS are described below.

2.1 Graphical User Interface

A graphical user interface (GUI) is aimed at making the program easy to learn

and use, and is well-tailored to the steps required for various operations. It is

highly customizable to handle di�erent user's preferences and features a number of

\Wizards" which guide the user through operations such as starting a new project,

selecting data sources or writing analysis templates.

JAS provides a package of classes for creating, �lling and manipulating his-

tograms. Built-in partition classes support histograming dates and strings as well

as integers and oating-point numbers, and allow either �xed binning while �lling,

or delayed binning with subsequent manipulation and rebinning using the GUI.

2.2 User Analysis Modules

While JAS allows simple analysis operations and histogram viewing to be performed

using the graphical user interface, serious analysis is done by writing analysis mod-

ules in Java. Two core analysis class libraries, hep.physics and hep.analysis, have

been implemented. The hep.physics library provides basic particle physics de�ni-

tions and utilities for displaying particle hierarchy and property information. The

hep.analysis library contains de�nitions of event data types, generators and ana-

lyzers, as well as classes to de�ne, partition and store histograms. JAS includes

a \Wizard" for creating templates for event generation or analysis modules, and

a built-in Editor and Compiler. Analysis modules can be dynamically loaded and

unloaded while the program is running, with no linking involved, resulting in very

fast turn-around during software development and debugging.

2

2.3 Data Formats

Data in di�erent formats are input to JAS through interface modules. JAS is pro-

vided with several built-in Data Interface Modules (DIMs), which provide support

for PAW n-tuples, SQL databases and standard (StdHEP) generator �les. JAS can

read data stored on the user's local machine, or stored on a remote server. Once

the data source is selected, the interface presented to the user is identical whether

the data being analyzed is local or remote.

2.4 Extending the Java Analysis Studio

JAS has been designed to be extended by end users for di�erent uses or experiments.

A number of API's have been de�ned for this purpose:

� The Data Interface Module API for writing interfaces to new data types.

� The Function API for writing new analytical functions.

� The Fitter API for writing new data �tters.

� The Plugin API for writing user or experiment speci�c extensions to the JAS

client.

The Plugin API allows extension of the GUI by supporting the creation of new

menu items, dedicated windows and dialogs, and provides methods for interacting

with the event stream.

3 Reconstruction and Analysis Software (The hep.lcd Class Library)

The present North American Linear Collider Detector (LCD) simulation e�ort is

focused on detailed Monte Carlo tracking and event reconstruction studies of two

design options, known as Large and Small.3 The Large detector is based on a central

Time Projection Chamber (TPC) tracking system with a 3 Tesla superconducting

coil mounted outside of Electromagnetic (EM) and Hadronic (HAD) calorimeters.

The Small silicon tracking detector has a 6 Tesla �eld with the coil located inside

of the Hadronic (HAD) calorimeter. Both detector models include an inner vertex

tracking system based on similar CCD designs, and an outer muon identi�cation

system. In the LCD simulation system4, �nal state particles from standard StdHEP

generators are tracked through detailed detector models in a Gismo C++ tracking

package.

The hep.lcd class library provides an extensible Java framework for running

sophisticated analyses such as fast parameterized Monte Carlo (FastMC) simula-

tion and full event reconstruction. The LCD simulation system allows analysis of

generator-level four vectors, FastMC quantities or space point data from the full

tracking package. Use of the Java Language Environment allows for rapid develop-

ment of reconstruction algorithms and excellent through-put in processing. A suite

of physics analysis tools, such as histograming, event display and jet �nding, enable

users to build on proven code. The overall design emphasizes exibility and exten-

sibility, typically providing multiple algorithms in following object-oriented design

3

Figure 1: Display of a simulated 500 GeV e+e�!W+
W
�event for the Large TPC detector model

in the (x-y) bend plane. The EM and HAD calorimeters are shown in light and dark gray,

respectively. For this detector model, the large number of contiguous space points measured in

the tracking detector at 144 radial layers allows straight-forward pattern recognition.

rules. The framework can be used as a standalone or run inside Java Analysis

Studio.

Several Java packages have been written to provide a exible framework for

developing reconstruction and analysis software

� event - describes the event structure and provides event handling methods

� geometry - speci�es the detector being analyzed and its segmentation

� io - includes methods for reading generator output and LCD data �les

� mc - contains fast Monte Carlo and full detector point smearing methods

� physics - 3- and 4-vector utilities, event shape determination and standard

(\y-cut") jet �nders translated from the JETSET library 5

� plugin - a simple event display shown in Fig. 1

� recon - full reconstruction packages for tracking, cluster �nding, etc. discussed

below

� util - includes LCD analysis framework building blocks (Sec. 3.1) and general

reconstruction utilities such as a helical track swimmer.

3.1 A Java Object-Oriented Framework

The object modeling of the hep.lcd.util.driver package allows exible modular de-

signs. Modular Processor objects carry out the event processing, implementing

4

de�ned processing methods such as start, process and stop. Driver objects, which

have methods for adding Processors to be executed, pick up the LCDEvent data

generated by the Monte Carlo tracking package. Each loaded driver runs through its

list of Processors in following the prescribed data processing sequence. Each pro-

cessor receives the event for processing and can add its reconstructed quantities to

it. Drivers also implement the Processor methods so that they can also be driven

by other drivers in assembling an arbitrarily complex sequence. A ProcessorCon-

text object is held by each Processor to specify the processing, histogramming

and debugging options for that processor.

3.2 Track Finding and Fitting

The hep.lcd.recon.tracking package 6 contains full pattern recognition and track �t-

ting software, including simple vertex detector hit association. Track reconstruction

interfaces are speci�ed for the Tracker, TrkFinder, TrkFitter and VertexDe-

tector objects. Common base implementations are provided in each case: An ab-

stract AbsTracker class, implementing the Processor methods (Sec. 3.1), picks

up the LCDEvent data and orders the TrackerHits by tracker layer for use by the

track �nder. The AbsTrkFinder class implements common methods for returning

track information, leaving the actual pattern recognition to concrete implementa-

tions. The AbsVertexDetector processor class accesses the VXDHits from the

LCDEvent data and orders them by vertex detector layer. The base AbsTracker

class is extended in specifying the dimensions and parameters of the tracker by de-

tector speci�c classes such as TPCReco and SiliconReco for the Large and Small

detector options, respectively. For track �nding, a 3D pattern recognition class,

TPCPat2 ported from existing C++ code, extends the AbsTrkFinder methods

in using various triplets of layers to �nd helical tracks that originate from the origin

and satisfy minimum pt requirements. Track �tters based on existing algoritms

have been ported to Java and are being developed. A CCDReco class, extending

the AbsVertexDetector class, speci�es the CCD vertex detector option and as-

sociates the vertex detector hits with the reconstructed tracks. Fully reconstructed

tracks, ReconstructedTracks, which implement the hep.lcd.event.Track de�-

nitions are added to the event by a separate processor AddReconTrks. The track

reconstruction package is controlled by the TrackReco driver which extends the

Driver class (Sec. 3.1).

3.3 Cluster Finding

Electromagnetic and Hadronic Calorimeter clusters, hep.lcd.event.Clusters, are

formed from the CalorimeterHit cells contained in the LCDEvent data. A

number of calorimeter clustering algorithms have been implemented. The Clus-

terCheater uses Monte Carlo generator information to \cheat" in �nding the clus-

ters due to individual particles. In cells where the showers from more than one

MCParticle have contributed, the corresponding deposited energy is unfolded to

allow complete separation of the clusters due to di�erent parent particles. Other

realistic cluster �nders are under development. A SimpleClusterBuilder �nds

clusters which consist of contiguous hit cells, and a RadialClusterBuilder builds

5

1400

1200

1000

800

600

400

200

Jet-jet Invariant Mass (GeV)

0
0 100 200 300 400 500

N
um

be
r

of
 J

et
 P

ai
rs

2-2000
8527A2

Figure 2: Inclusive jet-jet W boson reconstruction in simulated 500 GeV e+e�!W+
W
�reactions

for the Large TPC detector model. Individual jets are found following a standard Energy-Flow

algorithm. The W mass is then reconstructed in events with both W's decaying hadronically.

The solid histogram represents all jet pair mass combinations. The data points and light dashed
histogram are constructed for jets from the same or di�erent W-boson parents. The heavy dashed

histogram is from a Gaussian �t to the central W-boson mass region with a �tted mass and

resolution of 80.5�0.15 GeV and 7.4�0.14 Gev, respectively.

clusters radially outward. For ease in program development, higher level objects

are de�ned which extend the Cluster de�nitions to include additional cluster in-

formation, such as the innermost point on a cluster for track-cluster associations,

and corresponding accessor methods.

3.4 Full Event Reconstruction

In completing a �rst pass reconstruction of simulated Monte Carlo events, each

subsequent processor uses the reconstructed tracks and clusters from the TrackList

and ClusterList stored in the LCDEvent data. A TrackClusterAssociator

processor separates charged and neutral clusters in following a standard Energy-

Flow algorithm. A hybrid Monte Carlo system is used to mix fully reconstructed

tracks and clusters with a parameterized simulation for any particles that may

have been missed. The resulting mixed particles (both reconstructed and added)

are used by the JetFinders to �nd the expected number of jets for the types of

events being analyzed, e.g. 2,3 or 4 jets for e+e�!W
+
W
�depending on whether

the W's decayed leptonically or hadronically. The jets are used to study invariant

mass reconstruction for W's, Z's and top quarks for di�erent detector designs. The

jet-jet W mass reconstruction 7 for e+e�!W
+
W
�simulated for the Large detector

design is shown in Fig. 2. The �tted W mass and width are consistent with Fast

Monte Carlo simulations. This full reconstruction technique also demonstrates non-

gaussian tails to the mass distribution as might be expected.

6

4 Java-based Computing

There are a number of advantages to the chosen Java-based computing model.

4.1 Distributed Analysis Model

The client-server architecture of the LCD reconstruction framework allows users to

access the sizable Monte Carlo data samples in performing Java-based distributed

analyses. The user's analysis modules are still edited and byte-compiled locally,

then sent over the network to be executed on a remote server located at a data

center. The user can monitor histograms as the job is executing, or disconnect and

reconnect later. When the user requests a plot created by an analysis module, only

the resulting selected histogram data are sent back over the network. The data are

then manipulated, binned and �t on the local client machine, thus taking advantage

of the powerful graphical features and computing capabilities of desktop machines.

4.2 Overall Performance

The use of Java and the JAS distributed analysis environment has several perfor-

mance advantages. Since Java is easy to read, the OO design of the code is more

transparent and allows good performance optimization in the object modeling. The

Java compiler provides clear programming messages in enforcing the design model,

and dynamic loading results in quick turn-around in program development. Java

itself is fast! With a good JIT compiler, the GUI's are responsive and program ex-

ecution times are quite good. We �nd that the calorimeter cluster �nding and the

track pattern recognition run in 0.1 sec/event and 1-2 sec/event, respectively, for

500 GeV W
+
W
�and t�t events on a�ordable PC's. The computing model makes

good use of centralized data centers, eliminating the need to transport data to re-

mote sites, and makes the never-ending task of porting code to di�erent platforms

obsolete.

References

1. A.S. Johnson, Java Analysis Studio, http://www-sldnt.slac.stanford.edu/jas.

2. Sun Microsystems, Inc., http://java.sun.com.

3. J. Brau, in these proceedings.

4. R. Dubois, LCD Small and Large Calorimeter Single Particle Resolutions, in

these proceedings.

5. G.R. Bower, Reconstruction of High Mass Particles from Hadronic Jets at a

High Energy Lepton Collider, in these proceedings.

6. M.T. Ronan, Tracking in Full Monte Carlo Detector Simulations of 500 GeV

e
+
e
� Collisions, in these proceedings.

7. M.T. Ronan, W Reconstruction in Full Monte Carlo Detector Simulations of

500 GeV e
+
e
� Collisions, in these proceedings.

7

