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Abstract

We explore the consequences of placing the Standard Model gauge �elds in the bulk

of the recently proposed localized gravity model of Randall and Sundrum. We �nd that

the Kaluza Klein excitations of these �elds are necessarily strongly coupled and we

demonstrate that current precision electroweak data constrain the lowest states to lie

above ' 23 TeV. Taking the weak scale to be � 1 TeV, the resulting implications on the

model parameters force the bulk curvature to be larger than the higher dimensional

Planck scale, violating the consistency of the theory. Hence we conclude that it is

disfavored to place the Standard Model gauge �elds in the bulk of this model as it is

presently formulated.
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1 Introduction

The possibility of extra space-like dimensions with accessible physics near the TeV scale[1]

has opened a new avenue for explaining the gauge hierarchy. The models which address the

hierarchy make use of our ignorance about gravity, in particular, the fact that gravity has yet

to be probed at energy scales much above 10�3 eV in laboratory experiments. The prototype

scenario in this class of theories is due to Arkani-Hamed, Dimopoulos and Dvali[2] who use

the volume associated with large extra dimensions, which may be as sizable as a fraction of

a millimeter, to bring the D-dimensional Planck scale down to a few TeV. Here, the gauge

hierarchy problem is recast into the issue of stabilizing the rather large ratio between the

TeV Planck scale and the compacti�cation scale of the extra dimensions. Nonetheless, the

phenomenological[3] and astrophysical[4] implications of this model have been examined by

a large number of authors.

More recently, Randall and Sundrum(RS)[5] have proposed an alternative scenario

wherein the hierarchy is generated by an exponential function of the compacti�cation radius,

called a warp factor. Unlike the model of Arkani-Hamed et al., they assume a 5-dimensional

non-factorizable geometry, based on a slice of AdS5 spacetime. Two 3-branes, one being

`visible' with the other being `hidden', with opposite tensions rigidly reside at S1=Z2 orbifold

�xed points, taken to be � = 0; �, where � is the angular coordinate parameterizing the

extra dimension. It is assumed that the extra-dimensional bulk is only populated by gravity,

and that the SM lies on the brane with negative tension at � = �. Gravity is localized

on the Planck brane at � = 0. The solution to Einstein's equations for this con�guration,

maintaining 4-dimensional Poincare invariance, is given by the 5-dimensional metric

ds2 = e�2�(�)���dx
�dx� + r2cd�

2 ; (1)

where the Greek indices run over ordinary 4-dimensional spacetime, �(�) = krcj�j with rc
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being the compacti�cation radius of the extra dimension, and 0 � j�j � �. Here k is a

scale of order the Planck scale and relates the 5-dimensional Planck scale M to the bulk

cosmological constant. Similar con�gurations have also been found to arise in M/string-

theory[6]. All calculations are performed with the assumption k < M withM �MP l (where

MP l ' 2:44 � 1018 GeV is the reduced Planck mass) so that the 5-dimensional curvature

is small compared to M and that this solution for the bulk metric can be trusted[5]. If

k > M then higher order terms in the curvature would need to be kept in the initial action

to maintain self-consistency.

Examination of the action in the 4-dimensional e�ective theory in the RS scenario

yields[5]

M
2

P l =
M3

k
(1� e�2krc�) (2)

for the reduced e�ective 4-D Planck scale. A �eld on the SM brane with the fundamental

mass parameter m0 will appear to have the physical mass m = e�krc�m0. TeV scales are

thus generated from fundamental scales of order MP l via a geometrical exponential factor

and the observed scale hierarchy is reproduced if krc ' 11 � 12. Due to the exponential

nature of the warp factor, no additional large hierarchies are generated. In fact, it has been

demonstrated[7] that the magnitude of 1=rc in this scenario can be stabilized without the

�ne tuning of parameters. This model thus provides an interesting interpretation of the

electroweak scale.

In our recent analysis[8], we examined the phenomenological implications and con-

straints on the RS model that arise from the direct resonant production and exchange of

weak scale Kaluza-Klein (KK) towers of gravitons. In this work we consider adding the SM

gauge �elds to the RS bulk under the assumption that they make little contribution to the

bulk energy density so that the solution of Einstein's equations remains valid, i.e., the stress
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energy tensor due to SM gauge �elds in the bulk is far smaller than the size of the bulk

cosmological constant. The possibility that the SM gauge �elds may appear in the bulk of

models with at, factorizable geometries has been examined in detail[1, 9, 10] for a wide

variety of reasons, including the attainment of low energy coupling constant uni�cation[11].

Here, we will demonstrate that the spectra and couplings of the bulk gauge �eld KK towers

are qualitatively di�erent in the RS model of localized gravity than in the case with factoriz-

able geometry. In addition, we will show that the resulting phenomenological constraints on

the model parameters lead to a potential internal inconsistency within the theory and thus

gauge �elds cannot exist in the bulk without some modi�cation to the theory.

We remind the reader that in the case with a factorizable metric and one extra

dimension compacti�ed on S1=Z2, (i) the masses of the KK excitations are equally spaced,

given simply by the relation mn = n=R, with R being the compacti�cation radius, (ii)

the SM chiral fermions are assumed to naturally remain on the SM brane at the orbifold

�xed point since they live in the \twisted" sector of string theory, and (iii) the ratio of the

couplings to wall fermions of the excited KK states to that of the zero mode is simply
p
2 for

all n. While we retain the second assumption below, we will see that the other results will

be quite di�erent in the RS model. We also note that we do not need to specify whether the

Higgs scalar is also a bulk �eld, but if it does reside in the bulk, it must be Z2 even in order to

obtain the zero-mode Higgs on the SM brane. In the remainder of the paper we �rst derive

the KK spectrum of the gauge �elds and their couplings to fermions, and then examine the

phenomenological consequences of their contributions to electroweak radiative corrections.

We summarize our results and their implications on the theory in the conclusions.
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2 The Gauge Field KK Spectrum

In what follows we derive the KK spectrum of a U(1) bulk gauge �eld A
M
(where the upper

case Roman indices extend over all 5 dimensions) in the e�ective 4-dimensional theory. The

extension to the case of non-Abelian �elds is straightforward. Here, we assume that the A�

(where the Greek indices run over ordinary 4-dimensional spacetime) are Z2-even and that

A4 is Z2-odd with respect to the extra dimension x4. This choice of Z2 parity preserves the

gauge-fermion interactions and ensures that A4 does not have a zero mode in the e�ective

4-dimensional theory. The 5-dimensional action S
A
for a pure U(1) gauge �eld is given by

S
A
= �1

4

Z
d5x

p
�G G

MK

G
NL

F
KL
F
MN

; (3)

where
p�G � det

�
G
MN
�
= e�4� and F

MN
is the 5-dimensional �eld strength tensor given

by

F
MN

= @
M
A
N
� @

N
A
M
: (4)

Note that this de�nition does not involve the a�ne connection terms due to the antisymmetry

of F
MN

. After an integration by parts, Eq. (3) yields

S
A
= �1

4

Z
d5x

h
������F��F�� � 2 ���A� @4

�
e�2�@4A�

�i
; (5)

where we have used gauge freedom to choose A4 = 0. This is consistent with the gauge

invariant equation
H
dx4A4 = 0, which results from our assumption that A4 is a Z2-odd

function of the extra dimension. This choice eliminates A4 from the theory on the 3-brane,

but it will not disturb the gauge invariance of the action in the e�ective 4-dimensional theory,

as we will see below.
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Let the KK expansion of A� be given by

A�(x; �) =
1X
n=0

A(n)
� (x)

�(n)(�)p
rc

; (6)

with x4 = rc�. Using this expansion in Eq. (5) and integrating over � gives

S
A
=
Z
d4x

1X
n=0

�
�1
4
������F

(n)
�� F

(n)
�� �

1

2
m2
n�

��A(n)
� A

(n)
�

�
; (7)

where F (n)
�� = @�A

(n)
� � @�A

(n)
� , and we have required that the �-dependent wavefunctions

satisfy the orthonormality condition

Z �

��
d��(m)�(n) = �mn (8)

and the di�erential equation

�1
r2c

d

d�

 
e�2�

d

d�
�(n)

!
= m2

n �
(n) : (9)

The expression in Eq. (7) is the action for gauge �elds A(n)
� of mass mn in 4-dimensional

Minkowski space and, as mentioned above, for the zero mode (with mn = 0), S
A
has 4-

dimensional gauge invariance.

Here we note that we could have also derived the above di�erential equation from

examining the M = � components of the 5-dimensional Maxwell's equation

1p�G
�p
�GFMN

�
;
N
= 0 ; (10)

resulting from the action S
A
of the full theory in Eq. (3). Inserting the KK expansion in (6)

into the M = 4 component of Maxwell's equation yields

���
1X
n=0

@�A
(n)
�

d

d�
�(n) = 0 : (11)
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For n = 0, we have d�(0)=d� = 0 and thus a 4-dimensional condition is not imposed on

the zero mode A(0)
� ; this is consistent with the gauge invariance of the 4-dimensional U(1)

theory. However, for the excited modes, d�(n)=d� 6= 0 and hence we must demand

���@�A
(n)
� = 0 ; (12)

as required for massive vector particles in 4-dimensional Minkowski space.

De�ning zn � (mn=k)e
� and f (n) � e���(n) we see that Eq. (9) can be written in the

form "
z2n

d2

dz2n
+ zn

d

dzn
+ (z2n � 1)

#
f (n) = 0 ; (13)

which is the Bessel equation of order 1. Therefore, the solutions for �(n) are

�(n) =
e�

Nn

[J1(zn) + �n Y1(zn)] ; (14)

where Nn are the wavefunction normalizations, J1 and Y1 are Bessel functions of order 1, and

�n are constant coe�cients. Note that this di�ers from the case of gravitons[8], where the

solutions involved the second order Bessel functions J2 and Y2. Hermiticity of the di�erential

operator in Eq. (9) requires that the �rst derivative of �(n) be continuous at the orbifold

�xed points � = 0 and � = ��. In the limit e�krc� � 1, continuity of d�(n)=d� at � = 0

yields the relation

�n � � �

2 [ln(xn=2)� krc� +  + 1=2]
; (15)

and at � = �� we obtain the following di�erential equation

J1(xn) + xnJ
0

1(xn) + �n [Y1(xn) + xnY
0

1(xn)] = 0 ; (16)

where xn � (mn=k)e
krc�,  � 0:577 is Euler's constant, and we have assumed that mn � k.

From these equations, we see that the solutions for xn depend on the value of the model
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parameter krc. To estimate this parameter we note that the weak scale �� is related to MP l

by �� =MP l e
�krc�, and hence to have 100 GeV < �� < 1000 GeV, we need 11 < krc < 12.

For the low lying modes, varying krc within this range will not signi�cantly change the

values of xn (the results are only modi�ed by a few percent) and for de�niteness we take

�� = 1000 GeV, corresponding to krc � 11:27. A numerical solution of Eq. (16) then yields

x1 � 2:45; x2 � 5:57; x3 � 8:70, and x4 � 11:84, for the �rst 4 massive KK modes A(n)
� with

mn = kxne
�krc�.

It is important to contrast the gauge �eld KK spectrum with the corresponding KK

states for gravitons[8]. For gravitons we found that the KK masses are given by Mn =

k~xne
�krc�, where the ~xn are roots of the J1 Bessel function, i.e., J1(~xn) = 0, with ~xn =

3:83 ; 7:02 ; 10:17 ; and 13.32 for the �rst few states. Comparison of the values of the roots xn

with ~xn shows that level by level, the KK excitations of the gauge bosons are signi�cantly

lighter than those of the corresponding graviton excitations.

3 KK Couplings to Fermions

We now consider the coupling of the gauge KK modes to fermions on the 3-brane corre-

sponding to the visible universe. The fermion kinetic and gauge interaction terms are given

by

S = i
Z
d4x

Z
d� [det(V )] � V

M

� (@� + ig5A�) �
�
M
�(�� �) ; (17)

where V
M

� is the vierbein given by

G
MN

= V �
M
V �
N
��� (18)

with

V 4
4 = 1 ; V �

� = e����� ; det(V ) = e�4� : (19)
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Here, � are the Minkowski space Dirac -matrices, and g5 is the 5-dimensional U(1) coupling

strength. Upon integration over � 2 [��; �] and using the KK expansion in (6), we obtain

for the gauge-fermion interaction term

S = �
Z
d4xg5  

�

 
1X
n=0

A(n)
� (x)

�(n)(�)p
rc

!
 ; (20)

where we have employed the rede�nition  ! e3�(�)=2  .

In order to derive the e�ective 4-dimensional coupling, we need to know the normal-

ization Nn of �(n)(�). We note that the wavefunction for the zero mode is a constant and

that the orthonormality condition (8) yields

�(0) =
1p
2�

: (21)

For the excited modes with n 6= 0, we see that Eq. (15) gives �n � 10�2 for the low lying

states. Thus, within a few percent error, the Y1 term, which is proportional to �n, can be

neglected in the solution for �(n)(�). Using the orthonormality condition we then �nd

Nn � ekrc�p
krc

J1(xn) : (22)

De�ning g � g5=
p
2�rc, where g is the e�ective 4-dimensional U(1) coupling constant, this

yields

S � �
Z
d4xg  �

 
A(0)
� (x) +

q
2�krc

1X
n=1

A(n)
� (x)

!
 (23)

for the gauge-fermion interaction term. Taking krc � 11:27, we obtain
p
2�krc � 8:4. There-

fore, the excited KK modes couple to the 3-brane fermions about 8 times more strongly than

the zero mode, which is identi�ed with the usual `photon' of the 4-dimensional Minkowski
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space. It is clear that by following the same procedure as above for the non-abelian gauge

�elds[9] we will �nd that the KK excitations of all the SM �elds are universally more strongly

coupled than the zero mode by the factor
p
2�krc. This fact has signi�cant phenomenological

implications that will be discussed in the next section.

4 Phenomenological Constraints

We are now ready to explore the phenomenological consequences of the gauge KK towers.

In particular, we examine the inuence of these KK states on electroweak precision data, as-

suming that the KK �elds are the only source of new physics that perturb the SM predictions

for these variables.

To begin this analysis, we �rst realize that the above discussion regarding U(1) �elds

in the RS bulk can be immediately generalized to the case of non-Abelian gauge groups as is

appropriate for the SM. In particular we note that the mass spectra of the excited states of

the W , Z and  towers will be given by the roots of Eq. (16) plus small corrections due to

the appropriate zero mode masses. In addition, the couplings of all the excitations of the SM

gauge �elds to the fermions on the brane will be enhanced relative to their zero modes by

the same amount,
p
2�krc. Except for the excitation mass spectrum and the precise value

of the relative coupling enhancement, we see that this situation very closely resembles the

physics of the more conventional scenario of placing SM gauge �elds in the 5-dimensional

bulk of a factorizable geometry. Such a scenario has been studied in some detail by many

authors in order to obtain a bound on the mass of the lightest KK state[9, 10]. Below, we

follow closely the analysis as presented in Ref. [10] but employ the more recent precision

electroweak data as presented at the summer 1999 conferences[12]. We assume that even

though the gauge �eld couplings are large, a leading order estimate will yield qualitatively
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correct results.

We consider the limit where the KK tower exchanges can be described as a set of

contact interactions by integrating out the tower �elds. In this case, the tower exchanges

lead to new dimension-six operators whose coe�cients are proportional to a single �xed

dimensionless quantity

V =
1X
n=1

g2n
g20

M2
W

m2
n

: (24)

Although the couplings are large, we treat V as a small parameter since MW=mn is small

enough to compensate for the couplings. The e�ects of KK exchanges on the electroweak

observables, calculated to leading order in V , are delineated in Ref. [10]. These corrections

include the contributions from tree-level KK interactions with the zero modes in addition

to the usual loop corrections from the zero mode states, or SM �elds. It is assumed that

loop corrections involving the KK states are higher order and that tree-level contributions

from exchanged KK states can be neglected on the Z-pole. A second parameter, s�, is also

required in this analysis to describe whether or not the SM Higgs �eld is in the bulk or on

the wall. We let this parameter vary over its entire allowed range in the analysis below, but

as we will see, it will have little inuence on our �nal result.

The electroweak observables used in our global analysis are the leptonic width of the

Z, MW , sin2 �e�w as given by a combined determination of all the electroweak asymmetries,

Ab, Ac, Rb, Rc, QW - the weak charge of atomic parity violation, and sin2 ��Nw as measured

in deep inelastic neutrino scattering. The SM loop corrections involving the light zero-mode

states were computed numerically with ZFITTER6.21[13]. Performing a �2 �t to the most

recent data set[12] and assuming only that the Higgs boson mass is � 100 GeV[12] yields

the constraint

V � 0:0010� 0:0013 (25)
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at 95% C.L, where the range results from varying the parameter s�. We simply assume the

weaker bound, V < 0:0013, in what follows. We note that this bound allows for variations

in both the input values of the top quark mass, �(MZ), and �s(MZ), as well as systematic

e�ects as described in [10].

Given the ratio of coupling strengths derived in the above section, i.e., gn=g0 =

p
2�krc � 8:4, and using

1X
n=1

x21
x2n
� 1:5 ; (26)

implies that the mass of the �rst gauge boson excited state is bounded by m1 >� 23 TeV. It

is interesting to note that this bound implies a corresponding constraint of M1 >� 36 TeV

on the mass of the �rst KK graviton resonance. Since both of these lower bounds on the

�rst excitation mass are about a factor of 100 or more larger than the SM Higgs vacuum

expectation value, one may worry that we are in danger of forming another hierarchy. Since

mn = kxne
�krc�, with xn given above, this yields the constraint ke�krc� >� 9:4 TeV. Taking

the conservative value �� = 1 TeV for the weak scale and folding in the explicit de�nition of

�� as well as the relationship in Eq. (2), we �nally arrive at the constraint on the RS model

parameters of

k

M
>� 4:5 : (27)

This implies that the magnitude of the bulk curvature violates the initial assumption of the

theory that k < M . Note that if we had taken a smaller value for �� and/or the tighter

constraint on V the above bound on this ratio of RS parameters would have been stronger

by as much as a factor of 4.
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5 Conclusions

In this paper we have explored the phenomenological viability of placing gauge �elds in

the bulk of the Randall-Sundrum model of localized gravity. We derived the gauge �eld

KK spectrum from examination of the action of the theory and also from analyzing the

5-dimensional Maxwell's equation. We then computed the gauge-fermion interactions on

the SM 3-brane and found that the excited KK states couple � 8 times more strongly than

the zero-modes. The inuence of these strongly-coupled gauge KK states on electroweak

precision data was investigated with the resulting constraint on the mass of the �rst excited

state of m1 >� 23 TeV. Assuming �� � 1 TeV, this in turn implies a bound on the model

parameters of k=M >� 4:5, which suggests that the bulk curvature is too large to trust the

RS metric (1) as a solution to Einstein's equations. Hence the model as presently formulated

is inconsistent with gauge �elds existing in the bulk. The e�ects of higher order curvature

terms must be examined in order to determine the robustness of the theory.
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