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Abstract 

We propose a new framework for mediating supersymmetry breaking 
through an extra dimension. It predicts positive scalar masses and solves 

the supersymmetric flavor problem. Supersymmetry breaks on a “source” 
brane that is spatially separated from a parallel brane on which the standard 
model matter fields and their superpartners live. The gauge and gaugino fields 
propagate in the bulk, the latter receiving a supersymmetry breaking mass 
from direct couplings to the source brane. Scalar masses are suppressed at the 
high scale but are generated via the renormalization group. We briefly discuss 

the spectrum and collider signals for a range of compactification scales. 

*dkaplan@theory.uchicago.edu 

tkribsQcmu. edu 

~schmaltz@slac.stanford.edu 



I. INTRODUCTION 

Electroweak precision data indicate that the mechanism of electroweak symmetry break- 
ing involves a weakly coupled Higgs field. Through radiative corrections the Higgs mass is 
quadratically sensitive to any scale of new physics. It is therefore hard to understand why 
the Higgs mass is so much lower than other mass scales which we believe exist in nature, for 
example the Planck scale. 

Low energy supersymmetry is arguably the most compelling framework for addressing 
this problem: in the minimal supersymmetric standard model (MSSM) one simply intro- 
duces superpartners which cancel the divergences order by order in perturbation theory. 
Unfortunately this solution to the hierarchy problem introduces new problems. Accidental 
flavor symmetries which suppress flavor changing neutral currents (FCNC) in the standard 
model (SM) are badly broken by the supersymmetry breaking scalar masses and A-terms 
in a generic version of the MSSM [I]. E x p erimental limits on FCNCs force us to consider 
only very special regions in parameter space where the squark and slepton mass matrices 
are nearly degenerate [2] or aligned with quark and lepton masses [3]. Two recent proposals 
for the communication of supersymmetry breaking which do give such degenerate squark 
and slepton masses are gauge mediation [4,5] and anomaly mediation [6,7].l 

In this article we propose a new mechanism for communicating supersymmetry break- 
ing that leads to a distinctive spectrum of superpartner masses. It is phenomenologically 
viable and respects the approximate flavor symmetries of the SM. In our scenario, the 
matter fields of the MSSM (quarks, leptons, Higgs fields and superpartners) are localized 
on a 3 + 1 dimensional brane (the “matter” brane) embedded in extra dimensions. The 
SU(3) x SU(2) x U(1) gauge fields and gauginos live in the bulk of the extra dimensions 
[15]. Supersymmetry is broken (dynamically) on a parallel “source” brane that is separated 
from the matter brane in the extra dimensions [17]. Note that in contrast to hidden sector 
models, our source brane is not hidden at all; the SM gauge fields couple directly to both 
branes. This set-up leads to the following spectrum of superpartner masses at the compact- 
ification scale: gauginos obtain masses through their direct couplings to the supersymmetry 
breaking source and all other supersymmetry breaking masses are suppressed by the spatial 
separation of the source and matter branes and/or by loop factors. Thus after integrating 
out the extra dimensional dynamics at the compactification scale L-i we obtain the MSSM 
with the only non-negligible supersymmetry breaking being the gaugino masses. This im- 
plies that our scenario is very predictive since all supersymmetry breaking parameters can 
be traced to a single source. 

‘It is also pos sible to decouple the problematic flavor violating effects by by making the first two 
generations of scalars heavy [8,9]. H owever in practice realistic models do require some degree of 

degeneracy [lo] or alignment [ll]. 
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It is easy to understand that this high scale boundary condition is also very attractive 
phenomenologically. The absence of soft scalar masses and trilinear A terms implies that 
the only source of flavor violation is the Yukawa matrices. This solves the supersymmetric 
flavor problem by a super-GIM mechanism. Furthermore, gaugino masses contribute to 
the renormalization of the scalar masses with the correct sign to give only positive scalar 
squared masses. There is one subtlety in this argument which leads to successful radiative 
electroweak symmetry breaking. Because of their strong couplings to gluinos, the masses of 
colored scalars become large much faster than the supersymmetry breaking Higgs masses. 
As a consequence the heavy stops running in loops involving the large top Yukawa coupling 
eventually drive the up-type Higgs (mass)2 negative. Thus radiative electroweak symmetry 
breaking [12] is also automatic in our framework. 

For L-l near the Planck scale, the phenomenology of this model is similar to that of 
“no-scale” supergravity [13] with unified gaugino masses. However, in our scenario the 
compactification scale is a free parameter, so the superpartner spectrum and the associated 
phenomenology varies with this parameter. 

In the next section we present our theoretical framework and discuss the coupling of 
bulk gauge fields to the two branes. In Section III we calculate the effective gaugino masses 
and scalar masses resulting from integrating out the higher dimensional physics for gen- 
eral supersymmetry breaking sectors. As an example we then present a specific model of 
supersymmetry breaking. In Section IV a renormalization group analysis is performed, de- 
termining the spectrum of superpartner masses at the weak scale. We find that the NLSP is 
nearly always the stau, and we show that current LEP bounds on charged sparticle masses 
already restrict a significant portion of parameter space. Finally, the collider signals are 
briefly mentioned. In Section V we discuss various potential solutions to the p problem and 
in Section VI we conclude. 

II. SUPERSYMMETRY BREAKING FROM A DISTANCE 

Our underlying assumption is that all the MSSM matter fields live on a three brane in 
extra dimensions whereas the gauge fields live in the bulk2. Furthermore we assume that 
supersymmetry is broken dynamically on a brane which is a distance d away from the matter 
brane. The supersymmetry breaking “source” brane could either be a three brane or - in 
the case of more than one extra dimension - it could also be of higher dimension. For 
the explicit calculations in the next section we will assume that the two branes are at the 
boundaries of one extra dimension such that d = L. 

2We could also have additional larger dimensions in which only gravity propagates [14]; such 
purely gravitational dimensions do not alter our framework significantly. 
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FIGURES 

“matter brane” 

MSSM matter fields 

“source brane” 

SUSY breaking sector 

x5 = 0 x5 = L 

FIG. 1. Loop diagram through the bulk, illustrating how scalar masses are acquired (and 
suppressed). 

The basic idea is that supersymmetry breaking couples directly to the gauginos in the 
bulk whereas locality in the extra dimensions forbids direct couplings between matter fields 
and the SUSY breaking sector (see Fig. 1). 

The matter superpartners receive their masses via loop contributions through the bulk. 
Depending on the dimensionality of the bulk and the source brane, as well as the details 
of the supersymmetry breaking sector, their masses are suppressed by varying powers of 
d. This additional suppression of the scalar masses relative to the gaugino masses leads 
to a very predictive low energy theory: after integrating out the extra dimensions at the 
scale l/L we obtain the MSSM with - to a good approximation - only soft SUSY breaking 
gaugino masses. 

As with gauge mediation and anomaly mediation, this framework solves the SUSY flavor 
problem in that the only flavor violation comes from the Yukawa couplings [2,13].3 This is 
because contact terms between MSSM matter and the supersymmetry breaking sector are 
exponentially suppressed due to the fact that these are non-local interactions at the high 
scale as in the anomaly mediated scenario of [6]. The advantage of our scenario over anomaly 
mediation is that all scalar mass squareds (except for the up-type Higgs) receive positive 
contributions from renormalization group running. Also, in gauge mediation, stringent con- 
straints must be imposed on the supersymmetry breaking sector in order to prevent negative 
or logarithmically enhanced scalar masses. Here the scalar masses at the compactification 
scale are small enough to render such concerns irrelevant. In addition, direct couplings 

3We are assuming that the flavor scale, the scale at which the Yukawa couplings are generated, is 
at or above the compactification scale. 
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between fields on the source brane and matter brane are automatically forbidden by local- 
ity, while in gauge mediation, forbidding messenger-matter couplings requires a non-generic 
superpotential. 

Before we go on to describe some specifics of the model, we would like to discuss a few 
general properties of the framework. 
i. strong coupling: One might worry that our theory is non-renormalizable and therefore 
not predictive. In particular, the gauge coupling in five dimensions carries dimensions of 
(mass)-l/’ and the theory becomes strongly coupled at high energies. At lower energies the 
effects of the strong coupling are included in the unknown coefficients of higher dimensional 
operators. We can estimate the scale of strong coupling M in terms of the volume of the 
extra dimensions V by using 

1 V VMn -r-N- 
942 d+n (47r)2 * 

Here g4 and gJSn are the four- and higher-dimensional gauge couplings respectively, and we 
defined M as the scale where the effective dimensionless coupling constant is nonperturbative 

( g4+nMn’2 N 47r). For example, compactifying on a strip of length L gives ML = 167r2/gz N 
O(100). Thus as long as we only consider external momenta < M and use M to cut off 
loop momenta, our effective theory is perturbative and predictive. 
ii. muss scales: The relevant mass scales in our scenario are the compactification scale l/L, 
the cutoff scale M (which - for simplicity - we set equal to the scale at which supersymmetry 
breaking is communicated4), and the supersymmetry breaking VEV @. F is determined 
by the scale at which supersymmetry breaking is mediated and the weak scale by requiring 
that the gaugino masses rnx are of order Mweak. As shown in i., strong coupling appears 
at distances about 100 times shorter than L, thus M 5 100 L-l. Therefore only one scale 
is left undetermined. We take the compactification scale to correspond to this parameter 
and allow it to vary between lo4 - 1016 GeV. The lower limit comes from imposing fine- 
tuning constraints at the weak scale. We also impose L-l 5 MGUT because even higher 
compactification scales lead to essentially the same boundary conditions at MGUT: unified 
gaugino masses and negligible scalar masses. 
iii. unification and proton decay: Our framework is fully unifiable, and even though our 
framework does not require it we do assume gauge unification. This assumption implies 
gaugino mass unification which makes our theory more predictive. Grand unification might 
occur at or below the compactification scale (MGUT 5 l/L) in which case the running and 
meeting of the gauge couplings is entirely four-dimensional. However we could also have 
MGUT > l/L in which case the couplings will exhibit power-law running from the compact- 

4Messengers could appear on the source brane at a scale below the cutoff. In this case the 
messenger scale plays the role of the cutoff, although one must require M 2 5L-i to suppress 
higher dimensional contributions to MSSM scalar masses. 
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ification scale to the unification scale [18]. This would lower the GUT scale, possibly all the 
way down to of order lo6 GeV. For such low scales proton decay via higher dimensional 
operators or X and Y gauge boson interactions represents a potential disaster. A solution to 
this problem which would be very natural in our context is to have quarks and leptons live 
on separate “branes” in the extra dimensions. The separation forbids direct local couplings 
between quarks and leptons, and proton decay via X and Y gauge bosons would be expo- 
nentially suppressed by the massive Yukawa propagators of X and Y propagating between 
the quark- and lepton branes [19,20]. 
iv. Bp wersus tan /3: Naively, our model predicts B,u = 0 at the high scale from which we 
can determine tan /3. However this prediction probably should not be taken very seriously 
because, as it stands, the framework has a p-problem. The mechanism which sets p to 
the weak scale will likely also set Bp. Therefore we treat tan ,B as a free parameter in our 
analysis. We discuss different attempts at solving the p problem in Section V. 

To be more specific let us now specialize to the case of one extra dimension which we 
parameterize by the coordinate x5. For convenience we choose the matter and source branes 
to be located at opposite ends of the the extra dimension. None of the physics we discuss 
depends on this choice, what is important is that the separation is greater than the short 
distance cut-off length scale. Coupling supersymmetric three branes to a supersymmetric 
bulk gauge theory is complicated by the fact that the minimal amount of supersymmetry in 
five dimensions corresponds to N = 2 supersymmetry in four dimensions. Ignoring auxiliary 
fields the minimal five-dimensional vector superfield contains a real scalar 4, a vector AN, 
and a four component spinor X. They decompose as follows when reduced to four dimensions 

(4 AN 4 - (4 XL> + ($+i& AR) 

5 -d vector 4 - d vector 4 - d chiral (2.1) 

where XR,L = f( 1 f y5)X. In order to break the additional supersymmetry and to give mass 
to the unwanted adjoint chiral superfield we compactify the fifth dimension on an orbifold. 
We choose a Z2 orbifold which acts as z5 --+ -x5 on the circle x5 E (-L, L]. The 22 breaks 
half of the supersymmetries by distinguishing the components of the vector superfield. We 
take it to act as 

(A, XL> (x45) --+ (A, XL> (XT -x5) 

(4 + iA bz> (x,x5) - - (4 + iA h> (x, -xti) , (2.2) 
which allows a massless mode for the 4-d vector but not for the 4-d chiral superfield. In 
practice this means that we expand the fields of the vector superfield with cosine KK wave 
functions, whereas the chiral superfield is expanded in sine modes5. 

5For a more detailed description of the orbifold we refer the reader to Ref. [21]. 
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In order to write couplings between the bulk fields and brane fields we note that at the 
boundaries the components of the N = 2 fields which are non-vanishing exactly correspond 
to a 4-d vector multiplet. Therefore, we can couple them to boundary fields in the same 
way as we would couple a four-dimensional N = 1 vector multiplet. The action is then 

C = J d5x[ ~2~ + 6(x,) /Cc, + S(x5 - L) C, ] (2.3) 
where C5 is the bulk Lagrangian for the SM gauge fields 

Here M, N label all five dimensions, P E yfi are the usual four-dimensional gamma matrices, 
lY5 = iy5, D M is the five-dimensional covariant derivative, and we suppressed all terms 
involving the scalar adjoint 4 and auxiliary fields. Note that there is such an expression for 
each of the gauge multiplets in SU(3) x SU(2) x U(1). 

The supersymmetry breaking sector on the source brane at x5 = L can be quite arbitrary. 
It is one of the strengths of our framework that it is compatible with many different SUSY 
breaking sectors. The only requirement of this sector is that the gaugino masses generated 
are not highly suppressed compared to the scale F/M. If there is a singlet chiral superfield 
S with an F at or near the supersymmetry breaking scale squared, then it will give the 
dominant contribution to gaugino masses. Though it is possible to produce a viable spectrum 
even without a singlet, we will assume the singlet exists. We briefly discuss the alternative 
in Section VI. 

A. Source brane action 

The source brane action is in general very complicated and involves all the fields required 
to break supersymmetry dynamically as well as couplings to the bulk gauge fields. However, 
in order to compute the MSSM gaugino and scalar masses only a small subset of the oper- 
ators are necessary. If we assume that the leading supersymmetry breaking VEV is the F 
component of a singlet chiral superfield S, then we only need terms of the effective action 
which couple this singlet to the MSSM gauge fields. The leading superpotential term which 
couples S to the bulk gauge fields and which contains only two field strengths W is of the 
form 

L N J d20 $ WW + h.c. (2.5) 
The gauge field strength superfields W here are five-dimensional with mass dimension two, 
and the S field is four-dimensional with mass dimension one. This term contributes a gluino 
mass 6(x5 -L) Fs/M2 which is localized on the source brane. Terms with more powers of S 
do not give rise to new supersymmetry breaking interactions; they only give higher order (in 
S/M) contributions to the gluino mass and are therefore irrelevant. Next we consider the 
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most general supersymmetry breaking Kahler potential terms with only two Ws, arbitrary 
powers of S and no derivatives. (Note that Lorentz invariance forbids terms of the form - 
WW .) The leading non-vanishing terms contain a single St 

F+ 
L N /-&j&j & s+ww(l + ; + - - .) = J d2Q + WW(1 + ; +. . a) . (2.6) 

Equivalent terms with less suppression are already contained in the superpotential. There- 
fore there are no important supersymmetry breaking terms in the Kahler potential with no 
derivatives. - -& 

Using arguments similar to those given above and the constraint D&W = D” W, it is 
straightforward to determine all Kahler potential terms with two derivatives which give rise 
to new supersymmetry breaking. The most important such terms are non-supersymmetric 
contributions to kinetic terms such as 

G - J d20d28 
s+s FsF; - 
w WD2W ---+ w XL @A,. 

In the next section we will see that this supersymmetry breaking correction to the gaugino 
kinetic term gives rise to (small) scalar masses when inserted into loop diagrams. 

III. THE MSSM SCALAR AND GAUGINO MASSES 

In this section we compute the MSSM soft supersymmetry breaking masses that result 
from integrating out the extra dimensions. We always assume that loop momenta are larger 
than L-l. Smaller loop momenta are more conveniently dealt with by considering the four- 
dimensional effective theory, as we do in Section IV. 

It is straightforward to determine the gaugino masses resulting from the term eq. (2.5) 
on the source brane by expanding the five-dimensional gaugino fields in KK modes. The 
zero mode which corresponds to the light four-dimensional gaugino has an x5-independent 
wave function, which when normalized to produce a canonical kinetic term has height l/a. 
Thus the gaugino mass is 

1 Fs - - mx=ML M- (3.1) 

To calculate the scalar masses more effort is required. The leading contributions come 
from loop diagrams which involve both the scalars on the matter brane as well as super- 
symmetry violating operators on the source brane (Fig. 1). Any of the fields in the five- 
dimensional gauge multiplets can be exchanged. In principle, this leads to a large number 
of diagrams which need to be calculated. However, since we are only interested in showing 
that the scalar masses are small, we only compute two representative diagrams with bulk 
fermion exchange. The other diagrams are of comparable size and therefore also negligible. 
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It is most convenient to compute the five-dimensional Feynman diagrams in momentum 
space in four dimensions and position space in the fifth dimension. This mixed position- 
momentum space calculation is well adapted to the symmetries of the problem (translation 
invariance in four dimensions but broken translation invariance in x5). The necessary propa- 
gators are obtained by partially Fourier transforming normal momentum space propagators, 
whereby care needs to be taken to properly take into account the orbifold boundary con- 
ditions eq. (2.2). For example, the scalar 4 propagator with 4-d Euclidean momentum q2 
propagating from coordinate b to a in the x5-direction is 

s co 
sin( -p,a) nm sin(p,b) - - J dp eW-4 e-lb-4@ 

--=- 
q2+p; -cm 27Tq2 +p2 247 

. (3.2) 

We have implemented the orbifold boundary conditions for 4 by expanding in sine modes 
with Fourier momenta p, = nr/L. By approximating the sum with an integral we have 
assumed large volume (L > l/e). P er orming the sum exactly is straightforward [22] but f 
not necessary for our purposes. 

Analogously the fermionic propagator is obtained by Fourier expanding the momentum 
space propagator in sine and cosine wave functions for the right and left handed components 
respectively 

PL coS(Pna) 
PR sin(P,a) Snm 1 d - iY5Pn + PL sin(p,b) . 

?I2 + Pii 1 
Againp, = nr/L, the factor of fi6”” arises from the different wave function normalization of 
the zero mode, and again we have Wick-rotated the four-momentum to Euclidean space. At 
the boundaries x5 = 0 and x5 = L only the left-handed gaugino component is non-vanishing 
and can be coupled directly to the scalars and the supersymmetry breaking sector. The 
other components require 8,/M derivatives in the couplings and are therefore subleading 
(after regularization and renormalization of the divergent momentum integrals). We only 
keep the leading cosine components of the propagator. Summing over momenta we find 

m;w = PL 8 2PL 4 -qL 

qsinh(qL) - ye ’ (34 

Armed with this very simple formula for the 5-d gaugino propagator it is straightforward 
to compute the diagram with two gluino mass insertions in Fig. 1. Ignoring Casimirs and 
factors of 2 we find 

g: (')2 x J& tr [j pLP(q;o,L) c V(q;L,L) c-l p(y:L.o)] 
952 FS 

( > 
21 942 w- - 

167r2 M2 3 = 167r2 
-mz . (3.5) 
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We see that the scalar masses are suppressed by three powers of the brane separation which 
can be absorbed into the four-dimensional gauge couplings and gaugino masses. Thus we 
find that the scalar mass contributions from this diagram are smaller compared to the gluino 
masses by a loop factor. Note that these small contributions to the scalar masses are flavor 
universal and do not give rise to flavor changing effects. 

As a second example we compute the contribution from a supersymmetry breaking gaug- 
ino wave function renormalization insertion eq. (2.7) on the source brane. We find 

(3.6) 

which is suppressed by an additional power of the separation compared to the contribution 
of eq. (3.5). Note that one could have obtained this result from dimensional analysis: soft 
scalar masses require two insertions of supersymmetry breaking Fi, the powers of M in the 
denominator are determined by the dimensionality of the operators which we insert on the 
source brane, the exponent of the separation L can then be determined by dimensional anal- 
ysis. This dimensional analysis also shows that diagrams involving even higher dimensional 
operators (such as operators with additional 8:,/M derivatives) are suppressed by additional 
powers of (ML)-‘. 

In summary we find that the MSSM scalar mass squareds are suppressed relative to the 
gaugino masses by at least a loop factor, and are therefore negligible compared to the masses 
which are generated from the (four-dimensional) renormalization group evolution between 
the compactification scale and the weak scale. This conclusion also holds for the other soft 
supersymmetry breaking parameters involving matter fields, the A-terms and Bp. Note 
that these contributions to soft parameters are flavor-diagonal and are thus irrelevant with 
regards to bounds on FCNCs. 

A. Example: gauge mediation with branes 

Here we demonstrate the above results with an explicit model for the supersymmetry 
breaking sector on the source brane. We take the source brane action to be identical to the 
ordinary messenger sector of gauge mediation where the SM gauge fields are replaced by the 
boundary values of the bulk gauge fields 

c, = 
J 

& Q+e2gV[Ap,b]Q + &-W’WJLI Q+Jd2esQg. (3.7) 

Here Q + Q are the messenger chiral superfields which we take to transform under the 
SM gauge interactions with the quantum numbers 5 + 5 of SU(5). The vector superfield 
V[Ap, XL] contains the SM gauge fields and gauginos in the normalization appropriate for 
five-dimensional fields. The S field has been resealed to absorb the Yukawa coupling, and 
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as in ordinary gauge mediation we assume that it acquires supersymmetry preserving and 
violating expectation values 

S = M + Fs02 . 

Then the messenger fermions obtain the Dirac mass M whereas the messenger scalars in Q 
and Q acquire the (mass)2 M2 f Fs. Note that role of the cut-off (or new physics) scale 
in our more general effective theory of the source brane is played by the messenger mass in 
this example. 

The bulk gauginos obtain a mass which is localized on the source brane from a one-loop 
diagram with messenger scalars and fermions in the loop as in ordinary gauge mediation. 
Since the messengers are stuck to the brane this calculation is entirely four-dimensional and 
we find the effective gaugino mass 

‘2 - 
L- bls 
167r2L M . (3.8) 

The gauge couplings g5 here are five-dimensional (and in the GUT normalization); they are 
related to four-dimensional couplings by gg/L = g4. 2 We see that our gaugino masses are 
identical to ordinary four dimensional gauge mediation gaugino masses. 

The computation of the scalar masses is more involved. We simply quote the result 
obtained by Mirabelli and Peskin [al] who computed the scalar masses at two loops for 
arbitrary separation. Expanding to second order in Fs and to leading order in (LM)-l < 1 
their result reduces to 

(3.9) 

Here rn; is the scalar mass in the five-dimensional theory, rni is the ordinary four-dimensional 
gauge mediation result, and C is a group theory factor of order one which depends on the 
quantum numbers of the matter and source fields. The important conclusion is that the 
scalar mass squareds are suppressed relative to gaugino masses by a factor of 1/(ML)2. 
Again assuming a distance which is at least a factor of 5 larger than the messenger scale, 
we find that eq. (3.9) is negligible compared to the masses which are generated from four- 
dimensional running. 

To compare this to our general analysis of the previous section note that the scalar mass 
squared scales as l/L4 when expressed in terms of five-dimensional quantities. This is in 
agreement with the scaling found for eq. (3.6). The scalar mass contribution scaling as l/L3 
eq. (3.5) corresponds to a three loop diagram in the gauge mediation model. We see that 
the scalar mass squareds are suppressed by at least (ML)-2 or a loop factor. 

IV. SPECTRUM AND PHENOMENOLOGY 

To calculate the spectrum in our scenario we use the renormalization group to connect 
the physics near the cutoff scale with the weak scale. In particular, there are two scaling 
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regions that must be considered when evolving masses and couplings: between the cutoff 
scale and the compactification scale, and between the compactification scale and the weak 
scale. 

Above the compactification scale the theory is five-dimensional and we need to evolve 
masses and couplings according to five-dimensional evolution equations. Happily this turns 
out to be rather straightforward. The calculations of the previous section showed that the 
scalar masses which are generated above the compactification scale are negligible. Therefore 
we do not need to evolve either scalar masses or A-terms in the five-dimensional theory. 
The gaugino mass evolution is important however. For this purpose it is most convenient to 
think of the theory as four-dimensional with KK excitations. Across each KK threshold, the 
four-dimensional gauge and gaugino beta functions are modified, and such corrections must 
be included to calculate the low energy spectra. However, the ratio of the gaugino mass 
to the gauge coupling squared is invariant to one-loop, as in the normal four-dimensional 
case6 (for discussion of this, see Ref. [24]). S umming over the towers of KK thresholds up to 
the cutoff M* can be represented by terms that resemble corrections to the renormalization 
group equations to both the gauge couplings [18] and gaugino masses and gives the same 
result [25]. Specifically, assuming gauge coupling unification, the relations 

Ml M2 M3 
-z-z- 

92 922 932 

(4.1) 

hold at any scale to one-loop order in the ,&functions. This means that we can incorporate 
the extra dimensional running of the gaugino masses simply by starting with the boundary 
condition, Eq. (4.1), at the compactification scale. Note that this relation also implies that 
our predictions for gaugino masses will be nearly independent of the compactification scale. 

Just below the compactification scale, our theory is four-dimensional with nonzero gaug- 
ino masses, vanishing scalar masses, and vanishing trilinear scalar couplings. Scalar masses 
and trilinear scalar couplings are regenerated through renormalization group evolution be- 
tween the compactification scale and the weak scale, and this provides the basis to calculate 
the spectrum and phenomenology. The parameters for the model can be chosen to be 

L-l, MI/Z, tan P, 6d-d . 
Here M1i2 is the common gaugino mass at the unification scale. For L-l < 1016 GeV 
the individual gaugino masses at the compactification scale can be determined from 

Ma (L-l) /gz (L-l) = Ml/2/g&if with gunif - 0.7. Imposing electroweak symmetry breaking 

‘This can also be seen by noting that the gaugino mass is in the same supermultiplet as the 

holomorphic gauge coupling r and therefore evolves in parallel. For the usual 4-d arguments [23] 
to go through even in the theory with KK modes, the orbifold boundary conditions must preserve 
4-d N = 1 supersymmetry as in our framework. 
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constraints at the weak scale determines p2, leaving tan ,B and sign(p) unknown7. Generally, 
the scalar masses are proportional to Mlj2 to reasonable accuracy unless Yukawa coupling 
effects are large (i.e., particularly for the up-type Higgs mass), or weak interaction eigenstate 
mixing is important (i.e., stau masses at moderate to large tan,@. 

800 \ 
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-200 
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/ I I I I I I 

3 105 10' log 10” 1o13 1o15 
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FIG. 2. Evolution of several soft masses as a function of the renormalization scale with the 
input parameters L -’ = 1Or6 GeV, Mii2 = 350 GeV, and tanp = 10. The (top, middle, bottom) 

dashed lines correspond to (MS, M2, Ml), while the solid lines from top to bottom correspond to 

m& ’ mHd, %, sign(m&Jjm& 11/2 respectively. (The kink in the up-type Higgs mass is due to 
taking the square-root .) 

As a first example, we take L-l = 1016 GeV, M 1/z = 350 GeV, and tan p = 10, and show 
in Fig. 2 the evolution of the soft masses as a function of the renormalization scale. Several 
generic features are evident from the graph: Gaugino masses evolve in parallel with gauge 
couplings; the ratios MS/M1 and MS/M 2 increase as the renormalization scale is decreased, 
causing larger squark masses relative to slepton and Higgs masses. Initially, m”H, runs toward 
positive values, but is quickly overcome by interactions with the heavy stops and runs to 
negative values at the weak scale. With these parameters, the stau is the lightest sparticle 
of the MSSM spectrum. 

7While Bp is what app ears in the Lagrangian, we choose to parameterize our ignorance by tanp. 
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FIG. 3. The weak scale masses for several sparticles are shown as a function of the compact- 

ification scale L-l with Ml,2 = 500 GeV and tanp = 3. The top dotted line is rn5, the top and 
bottom solid lines are m,, and m?,, and the top and bottom dashed lines are rns3 and mtij,. We 
emphasize that L-l is parameter of our model not to be confused with the renormalization scale. 

The results of the previous analysis are the same as those in “no-scale” supergravity 
models [13]. However, in our framework, the detailed phenomenology depends on the com- 
pactification scale. Obviously the size of the scalar masses depends on the extent of evolution, 
proportional to - MF,2 log(MzL), but also derived parameters such as p are sensitive to the 
compactification scale. In Fig. 3 we show the weak scale masses of several MSSM fields as a 
function of the compactification scale for Ml/2 = 500 GeV and tanp = 3. A generic predic- 
tion of our model is that the stau is the NLSP for most compactification scales. However, 
we note that for very large L- ’ 2 1016 GeV with small tan/3 5 3, the lightest neutralino 
fii becomes the NLSP (or LSP, as discussed below). The kinks in the mass contours of fii 
and fi3 in Fig. 3 indicate a “cross over” in the dominant interaction eigenstate content of 
the neutralinos from bino-like to Higgsino-like as the compactification scale is lowered below 
L-1 N lo5 GeV. This suggests that, for example, a measurement of the gauge eigenstate 
content of the lightest neutralino is sensitive to the compactification scale. 

The scaling of scalar masses proportional to N MF,, log(MzL) is clearly visible from 
Fig. 3; it affects the squarks most dramatically but is also important for sleptons, particularly 
the lightest (mostly right-handed) stau. Note that this allows us to extract significant limits 
on Ml,2 as a function of L-l by requiring that the stau avoids the lower bounds from the 

14 



recent LEP searches for charged sparticles. In Fig. 4 we show the lower bound on Mi/, as 
a function of the compactification scale. The best bound comes from the lower limit on the 
stau mass, although low tan ,8 5 3 is also restricted by the limit on the lightest Higgs boson. 
In addition, notice that for large values of tan /3, the lower bound on Mi,z is considerably 
strengthened. This is due to large mixing in the stau mass matrix from the off-diagonal 
term proportional to m,p tan/3 that reduces the mass of the lightest stau mass eigenstate. 
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FIG. 4. The lower bound on Ml,, as a function of the compactification scale obtained by 

requiring that all charged sparticles and the lightest Higgs are heavier than the current LEP limit 
(of about 90 GeV). The contours correspond to the limits for particular values of tan@. 

As we implied above, the gravitino is the LSP for most of the parameter space. Assuming 
that F, is the largest supersymmetry breaking VEV, its mass is given by m312 - Fs/Adplanck. 
However, for very large compactification scales the mass of the stau which roughly scales 
as Mii2 - F/(M2L) can become smaller than m3i2. Then the stau could become the LSP 
which is probably in conflict with cosmology. The turn over occurs when Mnianck - F/(M2L) 
or L-i - 1014-i6 GeV. We find it amusing that coincidentally the largest compactification 
scales also correspond to the regime where the lightest neutralino can be LSP, which would 
render the stau cosmologically safe again. The viability of this regime clearly deserves further 
study. 

Superpartner production at colliders always results in two or more NLSPs (directly or 
indirectly), each of which then decays into the LSP with a decay length that is expected to 
be at least of order the size of the detector. If the stau is the NLSP one expects clearly visible 
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charged stau tracks in detectors resulting from meta-stable staus that escape the detector’. 
Strategies to extract this signal from the muon background have been explored in Ref. [26], 
with the result that rather significant regions of parameter space can be probed. For very 
small compactification scales L- ’ 5 lo5 GeV, it is possible that the stau decay length could 
be measurable. In the small region of parameter space where the neutralino is the (N)LSP, 
the characteristic signal is missing energy, analogous to gauge-mediation models with a large 
messenger scale, or ordinary supergravity models. 

V. THE p TERM 

As in other models of supersymmetry breaking we appear to have a p problem in our 
framework. The p term is the dimensionful superpotential coupling of H, and Hd and 
is required to be at the weak scale in order to naturally produce electroweak symmetry 
breaking while maintaining agreement with experimental lower bounds on sparticle masses. 

From naturalness [28], one would expect a dimensionful quantity to be of order the fun- 
damental scale in the model, in our case iW. However, it is well known that superpotential 
couplings can easily be non-generic, and p can also be set to zero by imposing a discrete 
version of a Peccei-Quinn symmetry [29]. Allowing the discrete symmetry to break spon- 
taneously with the breaking of supersymmetry, it is easy to produce a weak-scale p term. 
However, it is difficult to produce soft Higgs-mass terms at the same scale (they normally 
come out too large). Here we present some possible solutions to the p problem. This new 
framework may allow for more novel solutions and we leave these for future work. 

Perhaps the most elegant possibility for a solution lies with the Next-to-Minimal Super- 
symmetric Standard Model (NMSSM) [30]. I nserting this mechanism into our framework 
means adding a gauge singlet N to the matter brane and replacing the p term in the super- 
potential by: 

Wiv = XNHuHd -I- ;N3. (5.1) 
As the soft masses are run from the compactification scale to the weak scale, N develops 
a scalar vacuum expectation value of order the weak scale for some range of parameters X 
and Ic. Thus an effective p term is produced. This mechanism was thoroughly analyzed 
by de Gouvea, Friedland and Murayama in the context of gauge mediation with a range 
of messenger scales [31]. They found the NMSSM could produce a p term but only at the 
expense of giving unacceptably light masses to Higgs bosons and/or sleptons. However, our 
boundary conditions are different and may push the results in the right direction. 

A twist on this solution is to put the singlet N in the bulk. The first obvious requirement 
is that the F term of N must be suppressed relative to the supersymmetry breaking scale. 

8A stau NLSP c ould also have interesting interesting implications for cosmology [27]. 
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Otherwise, FN would generically give non-universal scalar masses. If there are fields on the 
source brane charged under the SM gauge group (say, extra vector-like quarks) to which N 
couples, then a solution may be found as suggested in [32,31]. This solution appears to be 
fine-tuned and the fine tuning comes from the same source as the fine tuning in the MSSM. 
So this mechanism could explain the dynamical origin of the p term, but it does not give a 
dynamical reason for the cancellation of large soft parameters. One could also consider more 
than one singlet and could place singlets in the bulk or on either of the branes. This would 
allow certain couplings to be small or vanish, possibly giving the right parameter values for 
a natural 1-1 term as in [33]. 

The suggestion of Chacko et al. [34] to put the Higgs fields in the bulk (while keeping S 
on the source brane) is also interesting. The p term could be produced on the opposite brane 
via the Giudice-Masiero mechanism [35]. The operators in the (5-dimensional) Lagrangian 
would be: 

St ss+ ss+ 
X,,,H,Hd + X,,,H,Hd + m(x,,H,H~ + XddHdH$ + h.c. 1 6(x:, - L) (5.2) 

where the coupling constants Xi are dimensionless. Thus the natural value of p would be 
Fs/(M2L), where as the natural value of the soft parameters BP, rn& and m&, would be 
Fj/(M”L) - p(Fs/M). We find the standard problem of producing soft terms which are too 
large. We could of course set the appropriate couplings to be small (- (ML)-i), however 
we do not have a compelling theoretical reason for doing so. Also we note that placing 
the Higgs fields in the bulk changes the spectrum of the model significantly as their scalar 
masses would be generated above the compactification scale. We have found the resulting 
phenomenology is viable and thus a detailed analysis would be interesting. 

In summary, there exist a number of ways to produce a ,Q term dynamically in our 
scenario. However, they all appear to require small or fine-tuned parameters. Thus finding 
a natural origin for p and BP of the right size is still an open problem. 

VI. DISCUSSION 

We have presented a model of supersymmetry breaking in extra dimensions in which 
only gauginos receive soft masses at a high scale, and scalar masses come dominantly from 
renormalization group running. The model clearly avoids the supersymmetric flavor prob- 
lem, and all scalar mass squareds (except for a Higgs) are positive at the weak scale. The 
model is highly predictive, depending only on three parameters and a sign (Mli2, L-l, tan p, 
and the sign of p), and allows for compactification scales as low as lo4 GeV. 

For simplicity, we required the gaugino masses to unify at or above the compactification 
scale. This comes from the assumption that the theory is unified at a high scale and that 
threshold effects are small. By relaxing either assumption, one could impose more general 
boundary conditions, i.e., with split gaugino masses. As long as the gluino is heavy enough to 
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give squark masses larger than Higgs masses, and the bound in Fig. 4 is respected (properly 
reinterpreted as a bound on Ml), then supersymmetry breaking through transparent extra 
dimensions would still work perfectly. 

The only requirement on the source brane is that there exists a singlet whose F compo- 
nent is comparable to the scale of supersymmetry breaking. However, even this requirement 
may be relaxed. Without a singlet, the main contribution to the gaugino masses is via 
anomaly mediation - a one-loop effect [6,7]. The dominant contributions to the scalars 
would come from the anomaly-mediated contributions and from non-renormalizable oper- 
ators inserted in loops (as in Sec. III), both of which are flavor-blind. For small values of 
ML, the latter may dominate allowing for a (different) realistic spectrum. 

While the size of the compactification scale does not allow for direct detection of KK 
modes, it does leave an imprint on TeV scale phenomenology. The field content of the 
lightest neutralino (bino versus Higgsino) changes with L-l and therefore so do the couplings 
to matter. In addition, while the gaugino spectrum is approximately independent of scale, 
the scalar spectrum is not, thus this model is distinguishable from a minimal supergravity 
model if L-l < Mplanck. In fact, by measuring the scalar spectrum (e.g., at the NLC) one 
may be able to determine the scale at which the scalar masses unify and thus the size of the 
extra dimensions! 

Note added: While this work was in progress we learned that similar ideas are being 
pursued independently by Chacko, Luty, Nelson, and Ponton [36]. 
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