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Abstract 

Although the linearized theory of small amplitude synchrotron oscillations 

and the instability thresholds derived from it have long been understood, 

there is no satisfactory description of the large amplitude highly non-linear 

synchrotron motion of a bunched beam. With an appropriate tuning of 

the RF cavity impedance, large amplitude, low frequency, self-sustained re- 

laxation oscillations of this synchrotron motion are generated. This paper 

presents detailed experimental data of such behavior, tracking code results 

that reproduce the important characteristics, and a simple analytical model 

that explains the key features of the relaxation oscillation: growth of the 

instability, saturation of the oscillation, breakup of the bunch, and subse- 

quent damping of the system back to the beginning of the next cycle of the 

relaxation oscillation. 

I. INTRODUCTION 

To describe the complicated motion of a charged particle beam in a storage ring, one 

uses equations which can be transformed, with the appropriate sets of variables, to those 

of a perturbed harmonic oscillator. In the transverse planes, this transformation leads 

to a Hill equation [l] and the restoring forces come from external magnetic fields. In the 

longitudinal plane, the exact single particle equation is that of a circular pendulum, with the 

RF electric field providing the restoring force. For sufficiently small amplitudes of motion, 

the systems can be well described by the harmonic oscillator equation. We refer to this as the 

linear regime. Electron machines also have natural damping as a consequence of significant 

synchrotron radiation emission. In addition, particles generate electromagnetic fields which 

act as a driving force, perturbing the focusing and stability of the beam. Depending on 

their characteristics, these perturbations can either provide stability to the beam or drive 

it unstable. The linear theory which explains the threshold of coupled bunch instabilities 
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has long been understood. Large forced oscillations have been studied and described for 

both proton [2] and electron machines [3]. It has also long been observed that, especially 

for synchrotron oscillations, i.e. those in the longitudinal plane, self-excited oscillations can 

become very non-linear [4-61. They can saturate at an amplitude large with respect to the 

bunch size. The envelope of the synchrotron motion can also undergo very low frequency, 

large amplitude oscillations. Such self-excited motion, which oscillates between two different 

dynamic states, is referred to, here, as a relaxation oscillation. The relaxation frequency is 

orders of magnitude slower than the synchrotron frequency. 

This paper presents experimental data taken from a detailed study of such relaxation 

oscillations, computer simulations that give further insights into the details of the oscilla- 

tions, and an analytical model that describes the cyclic behavior of this non-linear system. 

The instability studied is that commonly known as the coupled bunch instability. On the 

SPEAR electron storage ring, such an instability can be produced from a multi-traversal 

effect acting on a single bunch. Most of the data presented in this paper were acquired in 

this case. 

The bunch has qualitatively different characteristics at the different stages of its relax- 

ation cycle. In the initial phase, at low amplitude, the bunch behaves as a single macropar- 

title that follows a harmonic oscillator equation. Its amplitude of oscillation grows toward 

an attractor at infinity. As the amplitude increases, non-linearities manifest themselves 

through the reduction of the self-driving term and in the loss of charge density. These non- 

linearities can account for the saturation of the amplitude, but a dynamic phase transition 

must occur in order for the system to enter its damping phase. During that phase transi- 

tion, a new center of attraction appears. The single macroparticle model cannot explain 

this appearance but a model including the flow of individual particles leaving the macropar- 

title can. Escaping particles lose synchronicity with the macroparticle and are therefore 

no longer driven by it. They then damp towards the origin. The rate of damping of the 

system is determined by the rate at which the current flows away from the macroparticle. 

The macroparticle oscillation amplitude decreases, and the second center now accumu- 
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lates charge and starts to grow. This second center now becomes the new macroparticle 

and the cycle repeats. Models which use symmetric modes to describe this instability are 

inappropriate because of the observed asymmetry of the phase space distribution. This 

asymmetry starts with the growth as a macroparticle and continues throughout the cy- 

cle. For certain conditions of this self-interaction, the second macroparticle is visible at a 

fixed point approximately ;ry out of phase with the first macroparticle. These phase-locked 

particles are also not symmetric. 

II. EQUATION OF MOTION 

A. Unperturbed oscillator 

In electron storage rings, RF cavities are high Q resonant structures which provide the 

electric field necessary to compensate for the energy lost by the electrons. The energy gained 

by a particle in the RF cavity depends on its arrival time in the RF cavity. Its longitudinal 

phase space coordinates are (7, S), where r is the delay and S is the relative energy deviation 

of that particle with respect to the synchronous particle. The synchronous particle is the 

virtual particle that has energy, Ec, and that enters the cavity at t = nTc, where To is the 

revolution period of the machine. This particle loses an amount of energy, Uc, per turn, 

primarily from its emission of synchrotron radiation. The synchronous particle exactly 

recovers that amount of energy from the electric field in the RF cavity. 

The evolution of the parameters (7,s) of a particle after one revolution of the ring from 

turn n to turn n+l is given by 

6 e K-f 
n+1=&+ E - sin(cp, + wrf rn+l) - J$ 

0 0 

(1) 
(2) 

where 

cx is the momentum compaction of the ring 
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p is the relativistic coefficient, very close to 1 for ultra-relativistic electrons 

w7’f is the RF angular frequency 

cps the synchronous phase defined by Uc = eVw sin cps 

The phase is referred to the zero crossing of sinusoidal voltage, and cos cps < 0. The 

variation over one turn can be replaced by a time derivative. 

6=“T” _ e Kf sin(cp, + wf 7) - & n 

EoT, 0 
ATn f=-= 
TO 

aS 

(3) 

The equation of motion of a single particle can then be written as a second order differ- 

ential equation 

. . 
7 = & IS-f sin(p, + wrf T) - U,] (4 

For small amplitudes this equation is that of a harmonic oscillator 

The natural synchrotron angular frequency wsO is then defined by 

In general, the motion is that of a circular pendulum. The frequency of oscillation is 

reduced quadratically with amplitude with respect to the natural synchrotron frequency. 

This amplitude dependence is of major importance in the description of the relaxation 

mechanism. 

Since the particle energy loss per turn is itself energy dependent, the synchrotron motion 

is naturally damped. The equation of motion now has the form 

YE & [eKf sin(p, + wrf 7) - U,] - 2arad i 

with the radiation damping decrement 

1 dUo 

cyTad = E -xc E=E, 

(5) 
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B. Wakefield 

While passing through the RF cavity, the bunch can excite a High Order Mode (HOM 

in accelerator physics jargon). The electromagnetic fields produced by a particle can give 

longitudinal kicks to subsequent particles or incoming bunches, accelerating or decelerating 

them, depending on the phase of the field. 

The potential generated by a unit particle is commonly referred to as a wake potential, 

or wakefield. Wakefields from HOMs can be represented by the impulse response of an RLC 

circuit. The wakefield generated at time r and observed at time t, due to an HOM whose 

characteristics are R,, CYR, f~, is given by [7] 

W(t - T) = 2 CUR R, U(t - ~)emffRctwT) cos(~(t - T)) - “f” 7 sin (i;j(t - r))] (6) 

1 t>o 

with U(t) = l/2 t = 0 

0 t<o 

and w = IJ w;-CX; 

R, is the shunt resistance (10 MR in this study ) 

oR is the damping rate of the HOM related to the quality factor Q by 

oR = $ (Q is 20000 in this study) 

fR is the resonant frequency (358 MHz in this study) 

The length of the cavity is much smaller than the circumference of the ring and can be 

assumed to be pointlike. The voltage V(T) induced by a bunch containing Ne particles is 

-Ne W(T). 

This term adds a perturbing driving force to the harmonic oscillator equation. Eq. (5) 

becomes 

7 + 2aT’,ad i - & 
0 0 

[e&f sin(cp, + wrf 7) - U,] = -aNiy(T) 
0 0 

(7) 
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III. EXPERIMENTAL RESULTS 

A. Motivations 

Small dimensions and stability of the bunch in time and energy are essential for high 

performance of storage rings, both for collider rings and synchrotron radiation sources. 

Particles are lost from the accelerator, when the amplitude of their synchrotron oscillations 

exceeds the acceptance of the machine. 

The voltage induced by the beam on the cavity impedance, at the upper synchrotron 

sideband of the revolution harmonics has a destabilizing effect on the beam. This instability 

commonly known as the coupled bunch instability occurs when this force exceeds the net 

damping force. 

While characterizing the RF cavities in order to improve the stability of SPEAR [8], 

much of our attention was paid to the growth of the HOM induced instabilities. A regular 

modulation about the saturation level was observed (Fig. 1) [9]. Its period is always 

longer than a radiation damping time. This modulation is often small, but certain machine 

parameters can make it very large, regular, and quite striking (Fig. 2). The possibility of 

adjusting the HOM frequency, by positioning a moveable RF cavity tuner in the passive RF 

cavity, made such observations very repeatable and convenient to study on the SPEAR ring. 

B. Time scales 

The experimental parameters are presented in Table I. At 2.3 GeV, the natural radiation 

damping time is 10 ms, but the total damping time was measured to be 5 ms (at 2 mA). 

This figure was used for the analysis. The resonance studied is the fundamental resonance, 

flop = fRF. (Improper tuning of the fundamental resonance, as studied here, in a powered 

RF cavity results in the instability known as the Robinson instability [lo] .) The large variety 

of time scales involved in the relaxation mechanism is presented in Table II. 
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The wide range of these time scales means that these phenomena occupy different ranges 

of the frequency spectrum. Discrete series can be approximated by continuous integrals. 

Synchrotron oscillations can be averaged to give simplified equations of motion for the 

relaxation oscillation. 

C. Description of measurements 

Since the amplitude of the driving force depends on the HOM strength, the largest 

RF cavity impedance was chosen for the study. SPEAR has two RF cavities, but needs 

only one powered for normal operation. Therefore, the largest available impedance is the 

fundamental mode of the idle RF cavity. The HOM impedance produces a strong long-range 

wakefield at currents for which the short-range effects of the total ring impedance can be 

neglected. 

Liberty has been taken with the term HOM in this paper. In all storage rings, the 

fundamental cavity mode is tuned to be stable, and stability problems from narrow band 

impedances come only from true HOMs. But the physics of the instability depends only 

on the characterisitcs of the resonator; it does not depend on whether the mode is the 

fundamental or of higher order. In this paper, HOM will also refer to the fundamental 

mode in the idle cavity. 

The independent variables in the study are machine current, energy, and HOM center 

frequency. Of those three, the HOM center frequency has the most striking effect on the 

dynamics of the problem. This frequency can be accurately tuned by positioning a movable 

RF cavity tuner. 

1. Spectrum analyzer 

The first series of data were taken on an RF spectrum analyzer and downloaded via 

a GPIB program to a PC for data analysis. (All software for data collection, analysis, 

and simulation is a combination of codes written internally at SSRL in the C programming 

8 



language and MATLAB@ [ll].) The signal came from a probe in the RF cavity. The 

spectrum analyzer was used as a narrowband receiver, in zero-span mode, tuned on the 

upper synchrotron sideband of the fundamental RF harmonic. Its resolution bandwidth, 

10 kHz, allowed reasonable rejection of the RF harmonic while preserving the ability to 

see fast dynamic changes in the amplitude of the sideband. In particular, the value of the 

synchrotron frequency varies by several kHz over a relaxation cycle. 

The evolution of crucial parameters of the relaxation oscillation as a function of the 

resonator frequency is summarized in Fig. 3. From the amplitude information, one sees that, 

at the instability threshold, the amplitude of the oscillation quickly reaches its saturation 

value. Beyond that threshold, the maximum amplitude does not significantly increase, but 

the large amplitude relaxation oscillations start almost immediately. The growth rate, as 

a function of frequency, is symmetric with respect to the center frequency. It matches the 

resistive part of the resonator impedance. The damping rate is not nearly as symmetric. 

It is very small over the second half of the resonance curve (Fig. 3(c)). Because of this 

asymmetry, the frequency of the relaxation oscillation as a function of the HOM frequency 

is also asymmetric. 

The variation and/or spread of the synchrotron tune during these oscillations was also 

measured. These data were obtained by frequency demodulating a signal from a pickup 

in the storage ring. The demodulated signal was then input into a digital spectrum ana- 

lyzer. Since the analyzer averaged over many relaxation periods, this measurement could 

not resolve the difference between a tune variation and a spread of tune within the bunch 

over the oscillation. The frequency deviation showed a decrease of 15% from the nominal 

synchrotron frequency, corresponding to the shift for large amplitude pendulum oscillations 

(Fig. 3(d)). 



2. Streak camera 

All of the spectrum analyzer data only give information about the dipole moment of 

the beam. The next set of data was taken with a streak camera, an instrument, which 

gives information about the internal structure of the beam. Previous attempts to explain 

these oscillations have used mode coupling techniques [12,13], but the streak camera images 

show that this technique is not appropriate to compactly describe this behavior. The great 

advantage of using a streak camera was that the data obtained gave us key clues to build a 

simple and accurate model. 

Synchrotron radiation emitted by the electron beam in the dipole is the incident signal to 

the streak camera. A photocathode in the camera transforms the time dependent radiation 

into a beam of electrons, which are then rotated by an angle of 90” inside the camera 

before striking a photoanode. The photoanode r-e-emits photons that are then imaged on 

the camera’s CCD array. This rotation transforms the longitudinal temporal distribution 

of the bunch into a vertical photon distribution (or “streak”) which can be read out of the 

camera (Fig. 4). The streak camera data were taken with the same machine parameters 

as the spectrum analyzer data. Again, the resonator frequency was the main independent 

variable. Data were taken both at a slow scan rate, one slow enough to see the entire 

relaxation oscillation cycle, and at a fast rate, one short enough to see a single streak every 

third revolution period. 

On the slow scan range, the entire relaxation oscillation cycle was captured. While 

growing, the envelope visible in the slow scan shows the bunch to be concentrated near the 

extremes of the oscillation. But its charge density decreases with time (Fig. 5(a)). The 

maximum amplitude of oscillation reached is about 7r/2 radians. In the damping phase, 

this macroparticle still exists and damps, but it has a much reduced intensity compared to 

its initial value. At the end of this phase, particles have accumulated around the center. In 

the particular case of flop slightly above h fo + fso, when the damping is very slow, a second 

accumulation point clearly forms near the origin (Fig. 5(b)). The charge at this point grows 
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in both amplitude and intensity as the original macroparticle continues its decay. 

The slow data confirm the periodic nature of the phenomenon and allow fast scan data to 

be taken and correctly interpreted. These data show the distribution of the bunch at every 

third turn, so that many distinct images are displayed along each synchrotron oscillation 

period. By comparing the envelope of these images with that of the slow scan images, the 

proper stage in the relaxation cycle can be identified. These data show that the bunch 

behaves as a single macroparticle during its growth, oscillating between extremes and slowly 

losing particles (Fig. 6). The second accumulation point, when seen, is phaselocked to the 

initial macroparticle, but approximately 7r out of phase with it (Fig. 7). It stays locked 

with the macroparticle and grows in amplitude, as the original macroparticle damps. These 

Streak Camera images clearly show the two dynamic phases of the system. One center 

grows exponentially, then saturates (Figs. 5,6(b)). It continues to lose particles which 

accumulate at a second center. The second center grows in amplitude as it accumulates 

more particles. Meanwhile, the first center damps. The two centers have now exchanged 

roles in this oscillation, giving the system a bistable character. 

IV. SIMULATIONS 

A. Simulation program 

As the streak camera images show a loss and an asymmetric variation of charge density, 

a multiparticle simulation program was written to determine the evolution of the bunch 

phase space distribution, turn after turn, in the presence of a perturbing long term wakefield. 

Individual particles obey a second order difference equation with a driving force proportional 

to the wake term W(r) of Eq. (6). The driving force is the combination of the wakefield 

generated by particles ahead of it in the same bunch, and of all the wakefields generated 

from each particle on all previous turns. 

The turn by turn difference equation of the code includes the synchrotron radiation 
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emission through losses, radiation damping, and quantum fluctuations. The long memory 

of the high Q cavity is retained by the use of propagators. They enable the accurate 

retention of the phase information of the rapidly oscillating wake over the comparatively 

long time scale of one revolution period. To get more than an entire relaxation cycle, 

lo5 turns were commonly computed for a population of 20000 particles, distributed over 

300 x 300 cells covering the area spanned by the 27r size of the RF bucket and 4~20 standard 

deviations of the natural energy spread . Each run calculating one second of evolution of 

the distribution of 20000 particles takes only a few hours on a standard PC. Details on the 

wakefield computation are presented in the appendix. 

B. Simulation results 

The results of the simulations are in good agreement with experimental results. They 

reproduce the very low frequency of the relaxation oscillation (always below 100 Hz in our 

case). They confirm qualitatively the evolution of frequency and amplitude as a function of 

the induced voltage. These simulations reproduce the 7r/2 limit cycle amplitude observed 

with the streak camera. Finally, the simulations corroborate the streak camera data, 

discussed above, that show that the bunch grows as a macroparticle which loses charge 

density to an attractor at the center (Fig. 8). 

Based on these results, the predictions of the simualtions could be viewed with confidence. 

They were used to gain further insight into the details of the oscillation too sensitive to be 

seen with our experimental setup. The tracking code phase space distribution shows that 

the filamentation starts from the head of the bunch. Particles spiral from the head of the 

bunch towards the center of phase space (Fig. 8(b)). 0 ne can observe that these particles 

perform synchrotron oscillations at a higher frequency than those still attached to the main 

body. These results gave important clues for the theoretical model. 

Additional comparisons such as formation of the second stable fixed point when fHoM 

is slightly above pfo + fso remain to be studied. 
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V. ANALYTICAL MODEL 

A. Introduction 

A simple analytical model of this system, explaining the main features of the experimental 

data and simulations, has been developed. It takes advantage of the greatly different 

time scales of the mechanism. The series of discrete, impulsive forces on the system are 

approximated by a continuous expression, allowing a closed form solution of the equations 

of motion to be developed. Another simplification can be made because of the slowly 

varying changes of the oscillation amplitude and frequency with respect to the synchrotron 

oscillation frequency. The expression of the driving force presented here reduces to a single 

infinite sum that rapidly converges. The two particle version of this model reproduces the 

main characteristics of the system. 

B. Continuous approximation 

As given in section II B, the impedance of the cavity resonance can be modeled as a 

resonator with a wake function (potential per unit charge) acting at time, t and due to a 

source particle present at time, 7, 

w (t - 7) = u (t - 7) 2o!&9e-~R(t-.‘) cos [WR (t - 7) + $Q] 

The total wake can then be represented by an infinite sum of wakes generated during 

previous traversals of the cavity. The decelerating wake potential seen at time, t, is then 

W(t) = 2aRRs 2 emcYRctvu) cos [WR (t - u)] 
?A=-cm 

where a!R s z. If the bunch revolution period were constant at TO, t would be replaced 

by nTa, u would be replaced by INTO, and the wake potential would be 

w (d?o) = %!R& 2 e-aR(n-k)To COS [‘dR (7l - k) To] 
k=-oo 
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Since the revolution period is almost, but not exactly constant, in order to keep the physics 

of the equation, one needs to keep a term, small compared to To, that represents the variation 

of arrival time. Therefore 

u=kT,+rk. 

Now 

w (t) = 2Cq& 2 ,-aR((n-k)To+(Tn-Tk)) COS [‘dR ((n - k) To + (7, - Tk))] 
k=-w 

Representing WR = pwe + wz as an integral multiple and a fractional part of the revolution 

harmonic, the sum becomes 

w (t) = 2a~Rs 2 e-aR[(n-kE)To+(T,-r)] cos [@do + wz) ((n - k) To + (7, - TV))] 
k=-co 

= %2&s 2 e --(2R[(n-k)To+(Tn-Tk)1 cos [p (n - k) woTo + wz (n - k) To + wR (7, - Tk)] 

k=-cm 

z 2o& 2 f?-aR(n-k)To COS [Wz (n - k) To $- WR (7, - rk)] 

k=-co 

where in the last line the small difference in the monotonic damping due to the deviations 

of the revolution period have been ignored and multiples of 27r have been removed from the 

argument of the cosine term. Using the representations t = nTo, u = INTO, r, = T (nTo), 

rk = r (kTo), and the identity 1 E $ $rTIJTo du, the time dependent part of the wake can 

be represented by the continuous convolution integral 

w(t) = 2C&+ o~f~)Tok~ e-crRc~-k’~oCoS[W~(n--)To+WR(~~-7k)]du 
co 

1 t 
= ~~RRsT, --oo e 

J 
-aR(t-U) cos [wz (t - u) + WR (T (t) - 7 (U))] du 

When the bunch has N particles of charge, e, the electrical potential V (t) generated by the 

wake is 
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v(t) = 2n&+ t J (Ne) emaRCtmu) cos [wz (t - u) + WR (7 (t) - T (U))] du 
0 co t = 2Cx& J Ie-“R(t-“) cos [wz (t - u) + wR (T (t) - r (u))] du 
-CO 

where I is the current in the bunch. 

C. Evaluation of the integral 

The continuous approximation of the synchrotron motion is that of common pendulum 

motion. Even for large amplitude oscillations observed in these data, the motion is still very 

close to sinusoidal. r (t) and r (u) can be represented as slowly varying sinusoidal functions 

rt (t) = 5 cos(w,tt + (bt) 

7-u (t) = % cm(w,,t + qL) 

since Ft, ?& wSt, w,,, &, and C& all slowly varying functions of time with respect to the 

synchrotron frequency. The integral V(t) can then be explicitly computed. Even though the 

integral starts at -co, the exponential damping of the HOM means that the only important 

contributions come from times no further back than a few resonator damping times. For 

this system, this resonator damping time is also comparable to the synchrotron period so 

that with the slowly varying approximation, Fu, w,,, and & can be considered as constants 

in the integration. 

The potential term can be expressed as 

J 
t v (t) = kq&~ e--aR(t-u) cos [wz (t - u) -I- wR (Tt - T,)] du 

-w 

(s 
t 

= %xRR~I Re e --aR(t--21)ej(w,(t--U)+WR(~~-T”u))dU 

-cm 1 

t 
= 2a~&IRe e- &-t+j[d+%JR co+,tt+dt)] J e&+jWe-j%~R C+,U’IL+&&~ 

-cm 

Using the expansion, 
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and the notation rt = +twR and T, = +,@R, this integral can be expressed as the doubly 

inhnite sum 

00 

V (t) = 2cr~RsI Re c 
jP-“Jp(Tt)Jm(TU)$(PJ.t+mW,,)t,jpdt+~~~~ 

QT + j (~su - wz) 
(8) 

p,m=-co 

D. KBM method 

The averaging method of Krylov, Bogoliubov, and Mitropolskii [14-161, is well suited to 

such an oscillatory problem with slowly varying parameters [17]. To solve a driven harmonic 

oscillator 

a: + wiox = & (x, 2) 

new variables, (T, +), are defined in terms of (z, 2) by the equations 

x = r (t) cos (wsot + 4 (t)) 

j: = -wso r (t) sin (wsot + C$ (t)) 

By equating 

dx 
x=z 

one obtains the differential equations for the amplitude and phase of the oscillation 

+ = ---J- sin (wsot + 4) f (7’, 4) 
so 

&- & cos (Got + 4) f (7’> 44 
so 

where f (T, 4) is the driving force expressed in terms of (r, 4). The KBM approximation 

involves taking the average value of the force over the period of oscillation. Denoting the 
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time averaged values of T and 4 by r and 4, respectively, the desired equations of motion 

are 

L 1 t 
r=-%r t-& J sin (wsor + 4) f (r, 4) dr 

WdO 

(9) 

~0s (ws,~ + 4) f (r, 4) dT (10) 

Us0 

If f (r, 4) is expanded in a Fourier series with respect to the oscillation frequency, wso, 

f(r,4) = Fo(r,$) + ~[F~,(r,0)cm(~~~t + 4) + F2.n (r,dJ)Sin(~s~~ + +)I 

n=l 
(11) 

then the averaged evolution equations of the oscillation amplitude and phase become 

E. Application of KBM method 

The evolution of the amplitude and frequency of the synchrotron oscillation due to the 

wakefield force can now be extracted from Eq. (8). Contributions to Fsl and Fcl will 

only occur when p = -m f 1. After some algebra, one obtains the Fourier coefficients of 

sin (w,tt + &) and cos (wstt + &), respectively, as 

do 
Fsl = -v, lcos cps) 2aRRSI fJ Jm (ru) [Jm-1 (rt) + Jm+l (rt)] 

m=l 

X 
Q!R aR 

43 + (~MI - w,)2 - ai + (mwsu. + w,)~ 1 cos (mA4) 

( ma, - 4 - _ (m(hL+wz) 
a; + (mJ-4u - wJ2 4 + b-w, + wz> 2] sin (m&9} 

do 
Fc1 = v, (coscps(2aRRs1 2&w; w,2 Jo (r;l) Jl (rt) 

(12) 

(13) 

+ C Jm (ru) [Jm-1 (rt) - Jm+l (rt>I 
m=l 
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X 
I 

(ws, - wz) (ws, + 4) _ 

a; + (~su - a)2 a; + (m%,+ wz)2 I 
cos (mA4) 

+ 
QR 

aR - 

a; + (m&u - wJ2 a; + (m4u + a> 
2] sin (m&9] } 

where A4 = & - &. These terms describe the force on a test particle, t, due to a 

macroparticle, u, carrying current I. This paper concentrates on a two particle model. To 

generalize to a distribution, the total force on a particle at (rt, &) is calculated from the 

integral of the forces generated by particles distributed in (rU, &) and weighted by their 

charge. 

The wakefield is not the only effect that must be included to describe the behavior of this 

system. The radiation damping can be considered constant over the energy range of interest. 

The radiation damping term contributes only to the r’ equation. The pendulum frequency 

decreases with increasing amplitude. To first order, this decrease can be approximated by 

a term quadratic in r [16]. Since these terms all satisfy the slowly varying approximations, 

the KBM method can be applied by treating the three terms as independent contributions 

to the equations of motion of 7 and 4. 

The final, averaged equations of motion for a test particle at (rt , &) due to a macroparticle 

at (r,, 4J are 

VI. ANALYSIS OF RELAXATION OSCILLATIONS 

A. Description of equations of motion 

Eqs. (14) and (15) contain the key features of the dynamics of the system. These 

equations are expressed in a rotating coordinate system in which the source particle moves 

radially along the C#J = 0 axis. The angular position of the test particle is given by its 
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deviation in phase, A4, from the source. For small and slowly varying differences in the 

frequencies of the two particles, A4 s (wst - w,,) t. One term which affects the frequency 

of the test particle in Eq. (13) is independent of 4. All other terms have a harmonic 

dependence on it and average to zero as the test particle rotates by 27r. In particular, the 

growth generated by the wakefield on a test particle with a synchrotron frequency different 

from that of the source is nearly zero. 

For amplitudes of r within the RF bucket size, the Bessel coefficients make the infinite 

series in Eqs. (12) and (13) converge rapidly. When the impedance is such that w, = wsU, 

the dominant terms in those equations are the coefficients of cos (mA$) and sin (mA$), 

respectively. Consequently, these terms have a similar distribution in this coordinate system, 

but one is rotated by 7r/2 with respect to the other. In this case, the line of maximal growth 

and the line of zero frequency shift both lie near A4 = 0. 

For the case of a single macroparticle model, rt = r,, and A4 = 0. Each term of Eqs. 

(12) and (13) are antisymmetric under the interchange of (mw,, - wZ) with (mwsU + w,). 

This shows that tuning the resonance from an upper (wZ = +w,) to a lower (w, = -w,) 

synchrotron sideband changes a growth rate to a damping rate of the same magnitude. 

This general result confirms the well-known property first reported by Robinson [lo]. In 

most cases, the m = 0 and m = 1 terms of the series give a good approximation to the total 

sum. 

Fslw = - do 
VRF lcos PSI 2aRRs1 

x Jl (Q [Jo (rt) + J2 b-t)] a2 + (zR w )2 - cyR 
R su- z Q$ + (wsu + %)2 

] 

Fclz = 
Go 

VRF lcos 9s 1 
2aj&I 2 

I 
,;w; w2 Jo b-4 Jl (4 

+J1b> [Jo (4 - J2 WI [ a2 iw - wz> 
R 

+; w )2 - a2 i”,’ w;l, ,2]} 
su- .z R SU z 
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Using the narrowband resonator impedance approximation 

B. Linear regime 

Z (wR + Aw) = (IIRRS 
aR+jAw 
CL; + Aw2 

and the small amplitude expansion of the Bessel functions, one recovers the formulae for 

growth and frequency shifts given in [18,7]. 

z W 

r = 2v&T ,;s p,j 
IRe (2 (Lo + wso) - 2 (hwo - wso)} r - CX,,~F 

&= Wso 

2vRF 1 cos 9s 1 
1 Im (22 (hw0) - Z (hwo + w,,) - 2 (hwo - w,,)} 

When Re (2 (LO + wso) - Z (hwo - w,,)} is sufficiently large, the bunch amplitude grows 

toward an attractor at infinity. 

C. Growth as a macroparticle 

A bunch has gaussian distributions along the two dimensions of the phase space. Its 

thermal distribution is the result of an equilibrium between quantum excitation and radiation 

damping. But despite its finite dimensions, the bunch can be treated as a macroparticle 

since it keeps its cohesion during the first stage of its growth. This property can be deduced 

from the representations of Eqs. (12) and (13) in Fig. 9. These equations give the expression 

of the driving force acting on a test particle located at (rt, A+) and produced by the main 

body, or source, located at (r,, A$ = 0). For convenience in expansions around the main 

body, Ar is defined as Ar = rt - r,. 

In Fig. 9b, the representation of the frequency shift induced by the macroparticle wake 

shows that: 

l particles delayed with respect to the main body (A+ < 0) will experience a greater 4 

than the main body and will therefore catch up to it 
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l particles ahead of th e main body will be decelerated 

it. 

and will fall back to 

The wakefield induced frequency shift provides an azimuthal attracting force. 

In Fig. 9a, the representation of the growth rate induced by the macroparticle wake 

shows that: 

l particles with Ar < 0 and A4 = 0 will see more growth than the main body and will 

be drawn out to it 

l particles with Ar > 0 and A4 = 0 will see less growth than the main body and will 

be drawn back to it. 

The main body is an attractor for all the particles of the bunch. 

D. Filamentation 

Until now, the pendulum frequency shift was negligible compared to the shift induced by 

the wakefield. In the experiment performed on SPEAR, with the parameters described in 

Table I, the position of the bunch at which the pendulum frequency shift starts to dominate 

that induced by the wake is at r = 0.2 radians, for particles at A4 = 0. At these amplitudes, 

the quadratic radial dependency of the pendulum frequency shift causes an asymmetry in 

Ar that allows the test particle to escape from the front of the bunch. 

l Particles with (Ar = 0, Ac$ > 0) and (Ar = 0, A4 < 0) will undergo the same growth 

as the main body, and will tend to get pulled back towards it as during the early stage 

of growth. As before, the wakefield induced frequency shift provides an azimuthal 

attracting force. 

l A particle with (Ar > 0, A$ = 0) will experience a larger pendulum frequency shift 

than the main body and acquire a A4 < 0. This shift in angle leads it to a re- 
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gion of smaller radial growth, decreasing Ar, and therefore of increasing synchrotron 

frequency. This sequence of events will lead it back to the main body. 

l A particle with (Ar < 0, A+ = 0) will experience a smaller frequency shift, due to 

the pendulum effect, than that induced by the wakefield from the main body. Since 

the pendulum term now dominates over the wakefield term, the test particle acquires 

a A$ > 0. Because the main bunch is near the angle of maximum growth, the test 

particle at positive A$ also sees a driving force smaller than that seen by the main 

body and so moves even further away radially from it, intensifying the pendulum effect. 

The particle will therefore escape from the front of the main body. 

The escape of particles from the head of the bunch and compression of particles at the 

tail of the bunch is exactly what is observed with the tracking code. The loss of density of 

the main body is also in good agreement with what is seen on the streak camera images. 

The amplitude of the limit cycle (maximum amplitude of the main body) is found to be 

near 7r/2 on the streak camera images. This value corresponds to the value of it at which 

the driving force, Fs~, is cancelled by the damping term in Eq. (14). If all of the charge 

were in the main body, our machine parameters would predict a larger limiting value for 

it. Since the 2 mA bunch loses substantial current during its growth, the driving force is 

correspondingly reduced (Fig. 10). 

The linear growth and the non-linear effect leading to saturation have now been de- 

scribed. The relaxation of the oscillation comes from the reduction of growth due to the 

leakage of particles away from the main body and the formation of a new attractor close to 

the center of phase space. 

E. Damping of system 

During filamentation, an escaping particle spirals towards the center, with a resultant 

increase in its synchrotron frequency. As derived using the KBM method, the net force on 
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any particle is the average over one of its synchrotron periods, 2. During each integration 

time, the escaping particle precesses in A+, and the forces acting on it vary in amplitude. 

When the particle is 7r out of phase with the main body, for example, it is strongly damped 

by the wakefield. As it spirals toward the center, it alternately experiences positive and 

negative forces from the main body wakefield. Over a rotation of A4 = 27r, the net 

growth due to this wakefield nearly vanishes, so the particle damps in a time longer than the 

radiation damping time, 10 ms in our experiment. The escaping test particle also generates 

a wakefield. Obviously this wakefield provides a growth term to the net force this particle 

experiences. Other escaping particles will enhance this growth term when they are in phase 

with the test particle. Consequently, the larger the charge of the escaping particle, the 

slower its overall damping. 

From Eqs. (13) and (15) 

where fl is a constant. Since there always exists a coordinate pair, (ft, A#), that can 

provide any desired &, there always exist points which are in phase with the main body. 

On the locus of such points exists a fixed point at which the radial growth vanishes. If our 

system were static, this fixed point would be an attractor. Since our system is dynamic, the 

attractor location moves. It moves very slowly, so its r’ is small. Therefore, the attractor 

lies close to the fixed point defined above. This new attractor is initially located very near 

the origin, where the wakefield induced frequency shift varies rapidly. 

The escaping test particle needs to reach the line where the main body exerts no radial 

force, which is about 7r/2 away from the line of maximal growth. For w, = w,,, this line 

is close to 4 = 0, i.e., close to the main body. As this attractor accumulates more charge, 

its self-generated wake increases in strength. To compensate for this, the attractor must 

see more damping from the main body and must move further away azimuthally, i.e., A4 

needs to increase. As it captures more particles, this attractor moves further away from the 
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center. It becomes the new main body in the next relaxation cycle. 

F. Visualization of second attractor 

A particularly interesting case appears when the lower edge of the resonance coincides 

with the synchrotron sideband (wz > wSO). In this case, the second attractor forms away 

from the center nearly K out of phase with the main initial body and the damping time of 

the system is much longer than when w, = ws,. 

Defining 4: such that 

and keeping only the leading terms, Eqs. (12) and (13) can be written as 

Fsl- = - do 
VRF [COS psi 2aRRsI 

x JI h> [JO (rt) + J2 (c)l 
cm (4, + A4) 

.JW 

Fax = do 
VRF lcos ps 1 

,Hw; w2 Jo b-u> Jl b4 2 

+ JI h) [JO (rt) - J2 (rt)] 
sin (4, + A4) 

j/w 

- ~0s (4: + A4) 
j/w 

(16) 

(17) 

(18) 

In our case of interest, i.e. when w, is larger than wsO, the dominant terms of Eqs. (17) 

and (18) are 

Fslw = - do 
v, lcos cps 1 2aRRs1 

x JI (ru> [JO (rt) + JZ (c)l 
COS (4; + A#) 

JW 
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Fclm = do 
VkF lcos %I a;; w‘J Jo (4 Jl (4 72 

+Jl (ru) [JO (rt) - J2 (rt)] sin (” ’ “’ JGGZZ 
The distributions of damping and growth from the Fslm function and of frequency shift 

from the Fcle function are, to first order, the same as those of the case where wZ = wsO, but 

rotated by -4; (Fig. 11). (Note that from its definition in Eq. (16), ~$1 is negative when 

f-d, > Wm.) 

For w, = wsO, the line of maximum growth is defined by A4 = 0. On this line, the wake 

induced frequency shift is close to zero. For w, > wsO, this line of maximum growth is now 

located at A$ = -4;. 

The behavior of a test particle near the main body is now qualitatively examined as in 

section VI D. 

l A test particle attempting to leave the rear of the bunch has smaller growth, so Ar, its 

radial position with respect to that of the main body, decreases. Both the wakefield 

and pendulum frequency shifts move it back towards the main body, as before for 

w, = w,,. This recapture is similar to the cases described in section VI D for Ar = 0 

and Ar > 0. 

l A test particle at (Ar < 0, A$ = 0) now has a more difficult time to leave the head of 

the bunch for two reasons: 

- as the particle acquires some +A$, it moves closer to the line of maximal growth, 

located at -41, where the wakefield pushes it out radially and the pendulum 

slows it down. 

- the test particle will need to precess A+ = 2 14; 1 before its radial growth is less 

than that of the main body. 
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Accordingly, it will take much longer for the particles to escape from the bunch. Longer 

damping times of the relaxation oscillation for w, > w,, have been observed experimentally 

(Fig. 3). 

As discussed in section VIE, a second attractor, which is locked in phase with the main 

body, forms nearly 7r/2 away from the line of maximal growth. Since this line is already 

located at -41, the additional 7r/2 places the second attractor close to x out of phase with 

the main body (Fig. 12). 

This two particle model has described the complicated behavior observed on the streak 

camera in Fig. 7 and described in section IIIC2. The model explains the growth as a 

macroparticle, the filamentation and loss of charge density during this growth, the formation 

of a second attractor near the origin, the flow of particles from the first attractor to the 

second, and the eventual growth of this second attractor while the first is still visible. The 

second attractor is most clearly visible in the case of w, > w,,, when the two attractors are 

phase-locked nearly r apart. 

VII. GENERALIZATION TO ANY HOM 

This analysis also extends to true HOMs. The amplitude of saturation is still determined 

by the decrease of the driving term and the loss of charge density in the main body as the 

radial amplitude increases, as presented in Fig. 13. The arguments of the Bessel functions 

are now changed to rt = ?t WHOM and r, = ?, WHOM. As the angular HOM frequency WHOM 

is greater than WRF, the saturation occurs for smaller radial amplitude. Since the pendulum 

equation still comes from the accelerating voltage, oscillating at frequency WRF, the pendu- 

lum frequency shift at saturation, & (+twm)2 w,,, is much smaller than that observed for 

the case of the fundamental. 

The analytical approach is also valid for multibunch cases. For example, for N equally 

distributed bunches, instead of decomposing WRF in pw, + w,, wm must now be expressed 

as nNw, + (mwO + w,), 0 < m < N, giving the expected N modes of the system. The 
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derivation is straightforward and is omitted here. 

Experimental data was obtained on SPEAR with seven bunches in the presence of a 

strong HOM at 961 MHz. As shown in Figs. 1 and 13, the relaxation oscillation frequency 

is also smaller than 100 Hz. These data verify that this analysis holds for general HOMs. 

As seen in Fig. 13, the saturation amplitude scales with the ratio of WRF/WHOM. 

VIII. CONCLUSION 

This paper has analyzed the characteristics of the longitudinal relaxation oscillations, 

long observed in many machines, generated in the presence of narrow-band impedances. 

Extensive experimental measurements were performed at SPEAR. An enhanced simula 

tion code provided helpful insights into the mechanism involved. An analytical method 

was presented which derives a simple model that explains the important features of the 

oscillation. 

Although this model has been very successful in describing the essential characteristics of 

this relaxation oscillation, it is hoped that further refinements bring even better agreement 

with experimental data. The model likely needs to be extended beyond a two particle 

system, possibly to a continuous distribution. This extension should better explain the 

radial amplitude of the second attractor in the case of large amplitudes of the main body. 

Work on the tracking code continues in parallel. 
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APPENDIX: NUMERICAL COMPUTATION OF WAKE IN SIMULATION 

PROGRAM 

In the multiparticle tracking code, the wakefield must be computed on short time scales, 

i.e many time divisions per r.m.s bunch length, and must be carried over long time scales 

to the next bunch. 

The longitudinal wake for a resonator of resistance R,, frequency W, of damping rate a~ 

and quality factor Q is 

W(t - 7) = U (t - 7) 2a~&e-“~@-‘) 
[ 
cos(Q(t - 7)) - F sin(w(t - r))] for (t - 7) >0 

with QIR = c 
2Q 

and w = tl W+$ 

where U(t) is the Heaviside function: 

1 
1 t>o 

u(t) = l/2 t = 0 

0 t<o 

In the simulation, for the purpose of the calculation of the wake, particles are grouped 

into discrete bins of width, At. The wake is then represented as a set of discrete steps, one 

step per bin. The wake in a given bin t + At is the sum of the wake from the previous bin 

t transported over one bin and the contribution from the particles in the current bin. From 

the fundamental theorem of beam loading, a particle sees only one half of its instantaneous 

wake, whereas all subsequent particles see all of this wake. Since the fields obey the second 

order wave equations, the propagator can be described by 
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Since the bin spacing is fixed, this bin to bin propagator is a constant matrix which can 

be calculated once, and then be used repeatedly. The derivative of the wake must also be 

computed and carried along. 
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FIGURES 

FIG. 1. Spectrum analyzer zero-span output for the cavity signal at 751fo + fs. The first 

0.2 seconds of the scan show the amplitude at the onset of an unstable synchrotron oscillation. 

The rest shows the low frequency relaxation oscillation about the saturation level. 

FIG. 2. Spectrum analyzer zero-span output for the cavity signal at flop + fs. Data such 

as these were fit, as a function of flop, for frequency, maximum and minimum oscillation power, 

growth times, and damping times. 

FIG. 3. Relaxation oscillation parameters vs flop: (a) relaxation oscillation frequency, (b) 

maximum (A) and minimum (V) power of oscillation, (c) growth times (A) and damping times 

(V), (d) vs, showing N 15% deviation over the range of flop. 

FIG. 4. Schematic diagram of a dual sweep streak camera. A: photocathode, B: accelerating 

mesh; C: vertical sweep plates; D: horizontal sweep plates; E: microchanel plate; F: phosphor 

screen. G: CCD camera. 

FIG. 5. Relaxation cycles for two different values of fHOM: (a) fz N fs. (b) fi > fs, showing 

appearance of second center, accumulation of particles there, and its growth Note that (b) has 

much slower damping than (a). 

FIG. 6. (a) Growth of bunch as a macroparticle; (b) saturation of main body with signs of 

filamentation visible. 

FIG. 7. Two centers during damping for fi > fs, with individual streaks now visible. (a) The 

second center has more charge than the original main body, yet its oscillation amplitude is still 

small. (b) The second center now has most of the charge. Its amplitude continues to grow while 

that of the original main body continues to damp. Oscillations are about x out of phase. 
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FIG. 8. Distribution in phase space (charge density levels are plotted in a logarithmic scale): 

(a) Beginning of the relaxation oscillation cycle; (b) initial growth: the bunch starts to filament; 

particles leave the head of the bunch (gain A; > 0 with respect to the main body); (c) filamenta- 

tion: the escaping particles spiral toward the center (second attractor) while the main body reaches 

its limit cycle; (d) damping: the bunch has lost its initial charge density distribution and damps. 

FIG. 9. Amplitude of F and 4 in rotating phase space. The main body, or center of mass 

(CM), is at (rU = 7r/4, & = 0) contains all of the charge; the test particle at (Q, &) has negligible 

charge; w, = w,,. (a) Wakefield component in quadrature with oscillation and proportional to 

J’s1 (it, &) function; particles in the (+) region are strongly driven by the force generated by the 

CM; particles in the (-) region are damped. (b) Wakefield component in phase with synchrotron 

motion of CM and proportional to Fcl (Q, &); particles in the (+) region undergo an increase in 

synchrotron frequency, w,t , 
(I > 
Ad > 0 ; particles in the (-) region undergo a decrease (A$<O). 

(c) same as (a), but includes the radiation damping term, (--a,,d.~t); the region of damping now 

extends over a wider zone. (d) same as (b) but includes pendulum frequency shift; the pendulum 

frequency shift (which reduces wSt with increasing radial amplitude) dominates at large amplitude 

(pU > 0.2 radians). 

FIG. 10. Growth rate of center of mass (i.e., main body), which carries all of the charge, as 

a function of its radial position in the bucket. The distance at which the force acting on a 2 

mA bunch would be cancelled by damping would be at 2.4 radians. However, the bunch loses 

its charge density during the growth as filamentation develops. A current of 0.7 mA remaining in 

the main body is exactly compensated by the incoherent damping when the main body reaches its 

limit cycle 
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FIG. 11. Amplitude of r’ and 6 in rotating phase space. Same conditions as in figure(g), but 

with w, > w,, (wz = 1.4 w,,). (a) Th e quadrature component of the wakefield; (b) The in phase 

component of the wakefield. The amplitude of these terms are nearly identical to those of figure(g), 

but rotated by -41; in particular the rotation of (a) justifies why the damping process takes longer 

than in the case of w, = w,, 

FIG. 12. Phase space contour lines of ?t = 0 (contour levels of -20, 0, 20 displayed) and 

&-&O=O( t con our levels of -200, 0, 200 displayed). The CM at (p, = 7r/8, & = 0) carries 

60% of the 2 mA current; the test particle at (pt, &) carries the rest; wZ = 1.4 wSO. The second 

attractor is near the intersection of the zero level lines; particles at that location do not grow or 

damp and are locked in phase with the main body with a A4 close to K. 

FIG. 13. Relaxation oscillation for h = 751 (fHOM = 961.6 MHz)HCM. 
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TABLES 

Energy 

2.3 GeV 

uo VRF Tdamp R&S 

193 keV 1.68 MV 5 ms 10 MR 

TABLE I. Machine parameters 

f sawtooth 

f so 

QR 

fo 

fRF = fHOM 

P/4 

Frequency Period 

< 100 Hz > 10 ms 

28.4 kHz 35 P 

56 kHz 17.8 p 

1.28 MHz 0.78 p 

358.5 MHz 2.8 ns 

10 GHz 100 ps 

TABLE II. System time scales 

N turns 

> 1280C 

45 

23 

1 

l/280 

l/7840 
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