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Abstract

We point out a dramatic new experimental signature for a class of theories

with extra dimensions, where quarks and leptons are localized at slightly sep-

arated parallel \walls" whereas gauge and Higgs �elds live in the bulk of

the extra dimensions. The separation forbids direct local couplings between

quarks and leptons, allowing for an elegant solution to the proton decay prob-

lem. We show that scattering cross sections for collisions of fermions which

are separated in the extra dimensions vanish exponentially at energies high

enough to probe the separation distance. This is because the separation puts

a lower bound on the attainable impact parameter in the collision. We present

cross sections for two body high energy scattering and estimate the power with

which future colliders can probe this scenario, �nding sensitivity to inverse

fermion separations of order 10-70 TeV.
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I. INTRODUCTION

Any extension of the Standard Model (SM) with a low fundamental scale M� has to

explain why it does not predict rapid proton decay through higher dimensional operators

suppressed by M�. In the SM proton decay is not a problem as the lowest-dimensional

baryon number violating operator is dimension six and is harmless when suppressed by the

enormous value of the Planck mass. However this becomes a serious problem in theories

which attempt to nullify the hierarchy between the Planck scale and the weak scale by

postulating that the fundamental scale of gravity really is at or near a TeV, and that the

apparent weakness of gravity is due to a large extra-dimensional volume into which the

gravitational �eld can spread [1{6].

One approach to this problem is to forbid proton decay by postulating a new symmetry.

This symmetry would have to be gauged as gravitational e�ects involving virtual black

holes and worm holes violate global symmetries and generate dangerous M�-suppressed

proton decay operators. But anomaly cancellation conditions for gauge symmetries make

it di�cult to �nd consistent theories. The only known example is baryon triality [7] which

stabilizes the proton but has baroque charge assignments.

A di�erent solution to the proton decay problem which does not rely on symmetries but

rather exploits the new space in the extra dimensions was proposed in Ref. [8].� The idea

is to separate quarks from leptons in the extra dimensions. Consider for example a model

where the SM gauge and Higgs �elds live in the bulk of one extra compact dimension of

radius TeV�1 while the quarks and leptons are localized at di�erent positions with narrow

wavefunctions in the extra dimension.y This separation of the fermion �elds suppresses

proton decay because direct couplings of quarks to leptons are forbidden by �ve dimensional

locality; the proton decay rate is exponentially suppressed by the overlap of the quark and

lepton wavefunctions.

At low energies (E � TeV), experiments cannot resolve the size of the extra dimension

and its substructure. One observes fermions coupled to the lightest modes of the gauge �elds

with couplings exactly as in the SM. Experiments at energies above TeV would discover a

whole tower of Kaluza Klein (KK) excitations of the gauge and Higgs �elds, proving that

Higgs and gauge �elds propagate in the bulk of an extra dimension. Measurements of the

�The solution proposed in [4] does not stabilize the proton. Ref. [4] proposes an orbifold Z2

symmetry which does not allow GUT gauge interactions to contribute to proton decay. However,

this symmetry does not forbid any of the fatal higher dimensional operators such as QQQL which

lead to disastrous proton decay. These operators are the major problem for theories with a low

fundamental scale, even in the absence of GUT symmetries.

yThe gauge �elds may also be con�ned to a brane of thickness TeV�1 in much larger extra

dimensions. Then the fermions would be stuck to thin parallel \layers" within the brane.
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couplings of the various KK �elds to the fermions can be used to map out the locations

of the quarks and leptons in the extra dimensions. But even at lower energies virtual KK

mode exchange leads to small deviations in precision measurements. For example, as shown

in [8], quark lepton separation leads new contributions to the prediction for atomic parity

violation with the correct sign to account for the measured deviations [9] from the SM value.

Even though we motivate the quark-lepton separation from proton decay we note that

fermion separation can be more general with all fermions separated in the extra dimensions.

In any realistic model the locations of all the fermion �elds are determined by potentials

which depend on the various parameters of the theory. Since the di�erent SM fermion �elds

have di�erent gauge and Yukawa couplings we expect their potentials to di�er, leading to

splittings in their positions.

In this paper we point out a dramatic and model independent experimental signature of

this scenario which follows simply from locality in the extra dimensions: At energies above

a TeV , the large angle scattering cross section for fermions which are separated in the extra

dimensions falls o� exponentially with energy. This is easily understood from the fact that

the fermion separation in the extra dimensions implies a minimum impact parameter of

order TeV�1. At energies corresponding to shorter distances the large angle cross section

falls o� exponentially because the particles \miss" each other. The amplitude involves a

Yukawa propagator for the exchanged gauge boson where the four dimensional momentum

transfer acts as the mass in the exponential. More precisely, we �nd exponential suppression

in any t and u channel scattering of split fermions. However, s channel exchange is time-

like, and therefore the fermion separation in space does not force an exponential suppression.

Nevertheless, s channel processes also lead to interesting signatures as the interference of

the SM amplitude with KK exchange diagrams depends on the fermion separation.

The remainder of this paper is structured as follows: Section 2 reviews the basic setup

and explains how quark lepton separation suppresses proton decay. In Section 3 we develop

the necessary formulae to calculate scattering cross sections in our framework. In Section

4 we apply the results of section 3 to di�erent physical systems (deep inelastic scattering,

e+e� and �+�� scattering) and show the reach and physics potential of various colliders.

Section 5 contains �nal discussion.

II. FRAMEWORK: EXTRA DIMENSIONAL GEOGRAPHY

In this section we describe our framework and review the ideas which lead to it. Our

starting point is the observation that simple compacti�cations of higher dimensional the-

ories typically do not lead to chiral fermions. The known mechanisms which do lead to

chiral spectra usually break translation invariance in the extra dimensions and the chiral

fermions are localized at special points in the compact space. Examples include twisted

sector fermions stuck at orbifold �xed points in string theory, chiral states from intersecting

D-branes, or zero modes trapped to defects in �eld theory. Given that fermions generically
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are localized at special points in the extra dimensions we are motivated to consider the

possibility of having di�erent locations for the di�erent SM fermions. In such a scenario

locality in the higher dimensions forbids direct couplings between fermions which live at

di�erent places. This suppression of contact terms between fermions is very generic and

leads to approximate symmetries in the e�ective four dimensional theory. In our framework

the observed approximate global symmetries of the SM (such as baryon (B) and lepton (L)

number) are not accidental, they follow from non-trivial geography in the extra dimensions.

The gauge and Higgs �elds are necessarily bulk �elds because they need to couple to all the

SM fermions. Gauge and Higgs �eld exchange does generate non-local interactions but the

e�ective operators obtained in this way preserve B and L and cannot lead to proton decay.

Let us discuss corrections to the above picture in detail. There are two possible sources

of interactions between quarks and leptons: direct local couplings (contact terms), or quarks

and leptons could both couple to a new de-localized \bulk" �eld which would act as mes-

senger and lead to couplings which are non-local in the extra dimension.

Direct local interaction require the wave functions of quarks and leptons to overlap. The

resulting e�ective four dimensional coupling is proportional to this overlap. If, as in the

model of [8], the wave functions of the fermions are Gaussian in the extra dimensions then

the e�ective four dimensional couplings are Gaussian in the distance between quarks and

leptons. A quark-lepton separation of 8 in units of the fermion wave function's width leads

to a factor � exp(�50) which suppresses proton decay to safety.

What about non-local interactions via bulk messengers? Generating proton decay re-

quires a bulk messenger with B and L violating couplings. In addition, this messenger has to

be a fermion as the proton's fermion number has to be transferred to the �nal state leptons.

If the theory does contain a bulk fermion with B and L violating couplings, we can esti-

mate the strength of the resulting e�ective proton decay operator. The relevant Feynman

diagram (in position space) involves the Yukawa propagator of the messenger �eld from the

quarks in one location in the extra dimension to the leptons. For a messenger of mass M

and a quark-lepton separation d the propagator contains an exponential exp(�Md). Thus,

in order to avoid the proton decay bounds we require that all bulk fermions with B and L

violating couplings be heavier than the inverse quark-lepton separation by a factor of about

50. Note that even much lighter bulk fermions can be harmless if B � L is imposed as a

gauge symmetry. Then the messenger fermion also needs to carry the B � L charge of the

proton in order to be dangerous.

While it will not be of central importance for this paper we would like to mention a

particularly satisfying picture for the origin of the fermion separations in the context of

fermion zero modes stuck at defects: Assume that the SM is uni�ed into SO(10) in the �ve-

dimensional theory at energies near � 10 TeV. Then splitting between quarks and leptons at

lower energies has a natural explanation if the fermion �elds' localization potential contains

terms which couple to a GUT symmetry breaking vacuum expectation value in the B � L

direction [10].
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We note that in addition to quark-lepton separation there may also be splittings between

the generations. The separation of left- and right-handed components of the SM quarks and

leptons could then explain the hierarchies in the SM Yukawa couplings [8]. The separations

needed to produce realistic quark and lepton masses are in the range (0::5) in units of the

wave-function width in the case of Gaussian wave functions [8]. Explicit examples that

reproduce the observed femion masses were worked out in [11].

Let us summarize the scales involved in the theory. The lowest experimentally allowed

radius is about (3TeV)�1 [12]. (In [12] no seperation was assumed. While their results do

not directly apply to our case, the order of magnitude of the bounds should be the same.)

At energies above a few TeV the theory becomes e�ectively higher dimensional, but we can

continue to use a four dimensional description by including KK excitations for the bulk

gauge and Higgs �elds. The loop expansion parameter in this e�ective theory is

g2NKK

16�2
; (2.1)

where g stands for any of the SM gauge couplings and NKK is the number of KK excitations

contributing in the loop. Our perturbative description of physics breaks down when this

parameter is of order unity which occurs for NKK � 100 or M� � 100TeV. The width of

the fermion wave functions in the extra dimension is more model dependent. In the �eld

theoretic construction of [8] it must be at least a factor of 10 narrower than the separation

in order to su�ciently suppress proton decay.

It should be clear from this discussion that the scale of quark-lepton separation is well

below the scale where the theory becomes strongly coupled, and where quantum gravity or

stringy e�ects may become important. The fermion separation serves as an energy cut-o�

and suppresses incalculable high energy contributions from the unknown theory of quantum

gravity.

III. SCATTERING OF FERMIONS LOCALIZED AT DIFFERENT PLACES

A. One extra dimension

Let us now imagine colliding fermions which are localized at two di�erent places in a

circular extra dimension of radius R. Motivated by the solution to the proton decay problem

discussed above, we will begin by considering the scattering of electrons on protons, although

we can imagine more generally that any set of the (Q;U c;Dc; L;Ec) �elds are split in the

extra dimensions; indeed our most interesting experimental signatures will be for the case

of separations in the lepton sector.

In the context of our model there are three potentially relevant mass scales for this

collision: the momentum transfer of the t-channel scattering
p�t, the inverse of the quark-

lepton separation d�1 which we take to be of order of the inverse thickness R�1 of the
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extra dimension, and the inverse width of the fermion wave functions ��1. However, as

discussed above proton stability requires quarks to be well separated from leptons and we

will approximate the fermion wave functions by delta functions for the calculation. At the

end of this section we will compute the corrections which arise from the �nite width of the

wave functions and verify that they are negligible for practical purposes.

To calculate the scattering though intermediate bulk gauge �elds we can either choose to

work with a �ve-dimensional propagator directly or else add contributions from an in�nite

tower of KK excitations in a four dimensional context. It is instructive to do it both ways.

The �ve dimensional propagator in momentumspace is (t�p25�m2)�1 where we separated out

the �ve dimensional momentum transfer p5. As we are interested in propagation between

de�nite positions in the �fth dimension it is convenient to Fourier transform in the �fth

coordinate

Pd(t) =
1X

n=�1

eind=R

t� (n=R)2 �m2
; (3.1)

where d = xq � xl and xf is the location of fermion f in the extra dimension. The Fourier

transform is a sum and not an integral since momenta in the �fth coordinate are quantized

in units of 1=R.

This propagator can also be understood in the four dimensional (4d) language as arising

from exchange of the 4d gauge boson and its in�nite tower of KK excitations. To see this

expand the KK excitations of the gauge �eld in plane waves, exp(inx5=R). Each of these KK

modes has a four dimensional propagator (t� (n=R)2 �m2)�1. Furthermore, the couplings

to the fermions di�er for the various KK gauge bosons. They follow from expanding the �ve

dimensional actionZ
dx5 d

4
x �(x5 � xf) g 	(x) 6A(x; x5)	(x) =

Z
d4x

X
n

g einxf=R 	(x) 6An(x)	(x) : (3.2)

Thus the modi�ed couplings are gn = geinxf=R. We can now write the \KK-tower propaga-

tor" which is a sum over the propagators of the KK modes, including phase factors from the

modi�ed couplings. The �nal expression is the same as eq. (3.1).

This propagator can be simpli�ed by performing the sum. To this end one rewrites it as a

contour integral with a cigar-shaped contour that encircles the real axis and then deforming

the contour

Pd(t) =
I

dn

2�i

�

sin(�n)

ein(d=R��)

t� (n=R)2 �m2
: (3.3)

Performing the integral we �nd

Pd(t) = � �Rp�t+m2

cosh[(d� �R)
p�t+m2]

sinh[�R
p�t+m2]

: (3.4)

The Feynman rules for diagrams involving exchange of bulk gauge �elds are now identical to

the usual four dimensional SM Feynman rules except for the replacement of 4d gauge boson
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propagators by the corresponding 5d propagators. Before we proceed with calculating cross

sections we note a few properties of the propagator we just found.

It is easy to understand the two limits
p�t� R�1 and

p�t� R�1. In the former case

we obtain

Pd(t) ' � �Rp�t e
�
p
�t d ; (3.5)

which vanishes exponentially with the momentum transfer in the process as we anticipated

from �ve dimensional locality. In the limit of small momentum transfer we obtain

Pd(t) ' 1

t�m2
�R2

 
d2

2R2
� d�

R
+
�2

3

!
; (3.6)

which is the four dimensional t-channel propagator plus a correction term whose sign and

magnitude depends on the fermion separation. For small separation d < �R (1� 1=
p
3) the

correction enhances the magnitude of the amplitude, while for larger separation it reduces

it.

It is also instructive to expand the propagator in exponentials (ignoring the mass m)

Pd(t) = � �Rp�t
�
e�

p
�td + e

p
�t(d�2�R)

� �
1 + e�

p
�t2�R + e�

p
�t4�R + : : :

�
; (3.7)

which can be understood as a sum of contributions from �ve dimensional propagators. The

two terms in the �rst parenthesis correspond to propagation from xq to xl in clockwise and

counter{clockwise directions, and the series in the other parenthesis adds the possibility of

also propagating an arbitrary number of times around the circle.

For later use we note that the expression for the u-channel KK-tower propagator Pd(u) is

identical to eq. (3.4) with the obvious replacement t! u, and Pd(s) is obtained by analytic

continuation

Pd(s) =
�Rp
s�m2

cos[(d� �R)
p
s�m2]

sin[R�
p
s�m2]

: (3.8)

The poles at
p
s�m2 = n=R are not physical and can be avoided by including a �nite width

�. Note also that for s � R�2 (but s > m2) the relative sign between the SM propagator

and it's �rst correction is opposite to the corresponding sign in the t channel exchange case.

Namely for small (large) separation the amplitude is smaller (larger) than the SM one.

Armed with this propagator it is easy to evaluate any KK boson exchange diagram in

terms of its SM counterpart. For example, a pure t channel exchange diagram becomes

M = (t�m2)Pd(t)�MjSM ; (3.9)

whereMjSM is the SM amplitude and the factor (t�m2)Pd(t) replaces the SM gauge boson

propagator 1=(t �m2) by the 5d propagator Pd(t).
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We now compute P fw
d (t), the propagator between fermions which have a �nite width

in the extra dimension. The result is most easily obtained by integrating the propagator

eq. (3.4) over the wave functions of the initial and �nal fermions

P
fw
d (t) =

Z
dydy0jfq(y)j2Pjy�y0 j(t)jfl(y0)j2 ; (3.10)

where fq (fl) is the quark (lepton) wave function. For demonstration, we perform the

integrations for the special case of Gaussian wave functions

ff(y) =
1

�1=4�1=2
e�(y�xf )

2=(2�2) ; (3.11)

as in the model of [8]. We assume that the wave functions are narrow compared to their

separation and have common width. We present below the result in two relevant limits. In

both cases we assume
p�t � R�1 (and therefore also neglect m). In the �rst case, in an

intermediate momentum regime we �nd

P
fw
d (t) = e�t�

2=2 Pd(t) for
p�t� d=�2 : (3.12)

Not surprisingly, the amplitude is still exponentially suppressed, but it is enhanced relative

to the delta function approximation by a factor which is signi�cant for momenta large

compared to the inverse width. For much larger t we �nd

P
fw
d (t) =

�p2�R
� t

e�d
2=(2�2) for

p�t� d=�2 : (3.13)

In that limit the scattering is dominated by direct local scattering through the small but

non-vanishing overlap of the fermion wave functions. The propagator has the normal 4d

momentum dependence but the coupling is suppressed by the exponentially small wave

function overlap. Since the energies attainable at upcoming colliders do not allow us to probe

distances shorter than the fermion wave function width the corrections to the propagator of

eq. (3.4) can be ignored for all practical purposes.

B. n extra dimensions

In the case of n > 1 extra dimensions of equal radius R, a straightforward extension

of the above tells us that the propagator is that of the Yukawa propagator in n (compact)

dimensions. Let the separation be a vector di. If d � jdij � R and
p�t� 1=R, then the

e�ects of the compactness of the space are negligible and we �nd the KK-tower propagator

by a simple Fourier transform of the momentum space propagator

P 0
di
(t) =

Z 1

�1
dnp

eidipi=R

t� p2i =R
2
: (3.14)
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The result is just the volume (2�R)n times the Yukawa potential in the n transverse dimen-

sions, with mass
p�t

P 0
di
(t) = �(2�R)

n

(2�)n=2

 p�t
d

!(n�2)=2
K(n�2)=2(

p�td) ; (3.15)

where Kp is the modi�ed Bessel function. For large
p�td, we use the large argument limit

of the Bessel function to see the exponential suppression explicitly

P 0
di
(t)!�

 
2�R2

p�t
d

!(n�1)=2
�Rp�t e

�p�td : (3.16)

Including the e�ects of the �nite size R of the dimensions is easily done using the method

of images,

Pdi(t) =
1X

ki=�1
P 0
di+2�kiR

(t) ; (3.17)

generalizing eq. (3.7). While this sum is not given by a simple closed form expression as

in the case n = 1, for all practical purposes only the �rst few images make a signi�cant

contribution.

There is an important feature for the case of two or more extra dimensions that deserves

comment here. For unseparated fermions, the sum over tree-level exchange of KK gauge

bosons is found to be UV divergent; the relevant sum is of the form

X
ni

1

t� (ni=R)2
� Rn

Z
dnk

1

t� k2
; (3.18)

which is clearly UV divergent for n � 2, reecting the singularity of the Yukawa potential

at short distances in two or more dimensions. This is usually dealt with by cutting the sum

o� at the fundamental scale M�, but there is considerable uncertainty in doing this [13].

It is easy to see that when the gauge boson exchange is between fermions separated in the

extra dimensions, the separation acts as a natural cuto� and allows an unambiguous result

to be obtained. The result is just given by replacing the SM propagator with Pdi , which is

manifestly �nite. The usual UV divergence is seen in the singularity of Pdi as di ! 0.

Note that even in the absence of fermion separation, the width of the fermion wave func-

tion acts as a natural UV cuto�. Indeed, the integrand of eq. (3.18) should be multiplied by

fermion wave functions in the higher-dimensional momentum space. As it stands, eq. (3.18)

corresponds to delta function wave functions in position space. Replacing the delta functions

with Gaussians of width � cuts o� the UV divergence of eq. (3.18) at momenta of order ��1.

Explicitly we calculate the leading term for small � (and d = 0) using eqs. (3.10), (3.15)

and (3.11)

P
fw
0 (t) � �(2�)

n=2

n� 2

Rn

�n�2
n > 2 (3.19)

P fw
0 (t) � 2�R2 log(

p�t�) n = 2 :
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These expressions are similar to the hard cut o� results [14], with ��1 playing the role of

the cut o� scale MS.

IV. COLLIDER SIGNATURES

Having calculated the 5d propagator, the calculation of di�erential cross sections is a

simple generalization of SM results. The general SM results can be found in Ref. [15]. To

compute the di�erential cross section for deep inelastic scattering we sum over contributions

from neutral current exchange (photon and Z plus KK towers)z between the electron and all

partons of the proton. Happily, each term in the sum is simply equal to the SM term times

tPd(t) which can be factored so that our �nal expression for the di�erential cross section of

deep inelastic scattering becomes

rt� �
d�=dt

d�=dt jSM = jt Pd(t)j2 ; (4.1)

where Pd(t) is given in eq. (3.4) and t is the measured di�erence between initial and �nal

electron momentum squared. The e�ect of the KK tower would be seen as a dramatic

reduction of the cross section at large �t = Q2. To illustrate this point in Fig. 1 we plot

the ratio rt� of eq. (4.1) as a function of t for R = 1 TeV �1 and representative values of d.

While an exponential suppression of the cross section would be an unambiguous signal

of fermion separation in the extra dimension, we can still probe d if a small deviation of

r� from unity is found. The sensitivity can estimated from eq. (3.6). Assuming maximum

separation, d = �R, there is a reduction in the cross-section (rt� < 1), and we obtain a

sensitivity

R �
s
3�ra�
�2Q2

; (4.2)

where �ra� is the combined theoretical and experimental error on ra�. For d = 0 one should

�nd rt� > 1 with a factor of
p
2 higher sensitivity. At HERA, which is the only e�pmachine

at present, we have �rt� at the few percent level. Thus, we cannot obtain a strong bound

from the HERA data. In the future a more energetic machine may be built. In the most

optimistic scenario that is being discussed we may expect a machine with �rt� � 10% at a

maximum Q2 � (4TeV)2 which will be able to probe down to R � (18TeV)�1.

Let us now switch gears and consider the predictions of our model for high energy e+e�

or �+�� machines. The doublet and singlet components of the charged leptons may be

split by a distance d in the extra dimensions. This would naturally suppress the Yukawa

zIn the formulae in this section we neglect mZ . It is easy to reintroduce it, and in our numerical

plots we keep it.
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couplings of the leptons and might be the origin of the hierarchy me=mtop [8]. In this case

the wave functions of the fermions cannot be arbitrarily narrow as the Yukawa coupling

is proportional to the overlap of the wave functions of the doublet and singlet fermion.

The �nite width of the wave functions ultimately cuts o� the exponential suppression of

t-channel scattering amplitudes as discussed at the end of the previous section. This cut-o�

is somewhat model-dependent as it depends on the shape of the fermion wave functions.

But if the separation of left and right handed �elds is responsible for at least part of the

suppression of the muon and electron Yukawa couplings then we can safely ignore the �nite

width of the wave functions at energies relevant to experiments.

Again, to obtain any amplitude, we simply replace all SM gauge boson propagators by

their corresponding 5d propagators eqs. (3.4) and (3.8). If a given cross section has only

contributions in one channel (s, t or u), then it is given by the SM cross section multiplied

by the corresponding ratio of propagators as in the case of electron proton collisions. A

particularly clean measurement of d would be possible at a lepton collider with polarizable

beams, as we could study l+L l
�
R �! l+L l

�
R to isolate t channel exchange. In that case the

deviation from the SM predictions is given by eq. (4.1).

We can get more information by combining the above with the processes e+Ne
�
N ! �+N�

�
N

(N = L or R). (The same considerations also apply to scattering into quark pairs, but this

case is more di�cult to study experimentally.) This process is a pure s channel between

unseparated fermions so that

rsN� � d�=dt

d�=dt jSM = jsP0(s)j2 : (4.3)

For
p
s small compared to the inverse size of the extra dimension the cross section is reduced

independently of d. An extra dimensional theory without fermion separation predicts rsN� <

1 and rt� > 1. Thus, a measurement of rsN� < 1 together with rt� < 1 would be evidence for

fermion separation in the extra dimension.

Another interesting probe of d using s channel has been suggested recently [13]. Suppose

that the �rst KK mode has been produced and its mass 1=R measured. The case of d = 0 can

be distinguished from d 6= 0 by looking at the cross-section at lower energies. In particular,

for d = 0, the �rst KK exchange exactly cancels the SM amplitude at
p
s = 1=(

p
2R),

whereas for d 6= 0 the cross-section can still be large. Therefore, a beam scan at energies

beneath the �rst resonance can be an e�cient probe of d.

Even if beam polarization is not available, one can still probe the nature of the extra

dimensions by looking at several processes and using angular information. First consider an

unpolarized e+e� ! `+`� scattering. (The same holds for incoming muons.) We get the

tree level cross section

d�

dt
=
��2

s2

"�
1 +

1

16 sin4 �w

�
u2(P0(s) + P0(t))2

cos4 �w
+
t2P 2

d (s) + s2P 2
d (t)

2 cos4 �w

#
: (4.4)

When ` = e both s and t channels are possible, while for ` 6= e only the s channel is present,

and in the above formula one should set Pd(t) = P0(t) = 0. We also de�ne, as before, the
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ratio of the 5d cross section to the SM one as rs� (r
st
� ) for the e

+e� ! �+�� (e+e� ! e+e�)

reaction. In Figs. 2 and 3, we presented rs� and r
st
� as a function of the scattering angle. As

we can see, the cross sections depend in a non trivial way on the separation. This is because

the helicity changing amplitude depends on d, while the helicity conserving one does not. By

looking at angular distributions, one can separate the di�erent contributions, and extract

both R and d.

Another interesting collider mode which allows a very clean measurement of fermion

separations is e�e� scattering. The advantage of the e�e� mode is that both beams can

be polarized to a high degree which allows for a clean separation of the interesting t and u

channels from s channel. We �nd for e�Le
�
R scattering to e�e� (summed over �nal polariza-

tions)

rtu� �
d�=dt

d�=dt jSM =
u2jPd(t)j2 + t2jPd(u)j2

u2=t2 + t2=u2
: (4.5)

Last, we estimate the sensitivity of lepton colliders. Assuming �r� � 1% and using

eq. (4.2) we conclude that we get sensitivity down to R � (27TeV)�1 at a 1:5TeV linear

collider and R � (72TeV)�1 at a 4TeV muon collider.

A hadron machine could also be used to probe extra dimensional separations. Here, the

situation is somewhat more complicated as there are many subprocesses that contribute, the

theoretical predictions are more uncertain and the experimental situation is more compli-

cated. However, the higher energy of the hadron machine compensates for these drawbacks.

One possible probe is to look into dijet production, in particular, for high pT jets. This

process occurs via qq, q�q and gg scattering that occurs via s, t and u channels. In our

framework the �rst two will be modi�ed in a way similar to what we described for the

leptons. In general, the invariant mass of the two jets can be measured and thus one can

�nd ŝ, the parton center of mass of the event. Combining it with the angular information one

can determine both s and t for each event. This double di�erential cross section is sensitive

to the size of the extra dimension and the fermion separation. Another possible probe of our

scenario is Drell-Yan processes. Here, while one has less statistics, the accuracy is higher. In

contrast to the dijet case, this is a pure s channel. Of course, for both of these cases a more

detailed study needs be done to see exactly what kind of sensitivity is attainable. Assuming

�r� � 10% at a maximum Q2 � (7TeV)2 and using eq. (4.2) we estimate that one will be

able to probe down to R � (40TeV)�1.

We have so far contented ourselves to putting limits on the model, in some cases noting

that the di�erence between extra dimensional models with and without fermion separation

could be resolved. It is more exciting to consider how large a positive signal for exponentially

dropping cross-sections could reasonably be expected at future colliders. The direct limits

from searching for the KK gauge bosons (and Z 0 searches) imply 1=R � 800GeV. On the

other hand, precision electroweak bounds on higher-dimensional operators generated by KK

exchange place a far more stringent limit 1=R >� 3TeV [12]. If we take these precision bounds

seriously, then a 1:5TeV NLC could still observe a drop in the cross-section by as much as
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a factor of 2 for backscattering. However a 4TeV muon collider could see a reduction by

as much as a factor of 60. More optimistically, we can imagine that there are extra states

in the bulk whose exchange modi�es the precision electroweak analysis. If these bounds are

ignored, the direct bounds are weak enough that spectacular drops in the cross-section can

be observed, by as much as a factor of 1000 at a 1:5TeV NLC.

V. DISCUSSION

Our signal displays a remarkable fact about scenarios with fermions split in the extra di-

mensions. Traditionally, when fermion �elds are either delocalized in the extra dimensions or

when they are localized without any splitting, at energies above the compacti�cation scale all

the amplitudes grow faster than in 4-dimensions. This reects the non-renormalizable nature

of higher-dimensional gauge theories. Here, we instead see that for t and u channel interac-

tions between fermions localized at di�erent points, the cross-section decreases exponentially.

The separation acts as a physical \point-splitting" regularization of the non-renormalizable

theory, allowing essentially exact computations for some amplitudes completely independent

of the physics at the ultimate UV cuto� (which is smaller than the separation).

This result, that fermion separation allows us to make unambiguous predictions for some

quantities in non-renormalizable theories which are exponentially insensitive to physics at

the cuto� M�, is very general. We have already discussed how fermion separation provides

a physical UV cuto� for the KK gauge boson exchange. As another example, in the context

of large extra dimensions with low fundamental Planck scale, several groups have considered

the e�ects of tree-level graviton exchange in the higher dimensions [16]. For two or more

extra dimensions, the sum over the graviton KK excitations is UV divergent. Cutting o�

this divergent sum at the scale M� generates an operator of the form

O = �
T��T

��

M4
�

(5.1)

where T�� is the 4d energy momentum tensor, and � is an unknown constant dependent

on the details of how the KK sum is cut o�. The analysis then proceeds by examining the

e�ect of this particular higher-dimension operator on various observables. Even if deviations

consistent with this operator are seen experimentally, however, this does not provide direct

evidence for extra dimensions. For instance, the operator may be generated by integrating

out a single massive spin 2 particle of mass � M�. On the other hand, if the quarks and

leptons are split by some distance d, the UV divergence is automatically cut-o� and we can

write essentially the exact expression for the cross section of e.g., electron proton scattering

including the graviton exchange. The expression will only depend on the unknowns d,

the number of extra dimensions n and the higher-dimensional Newton constant GN(4+n).

The only in principle incalculable corrections come from the higher-dimensional operators

suppressed by M�, but these will be suppressed by � e�100 for the same reason that proton

decay is suppressed to acceptable levels.
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It is also important to note that the scattering of split fermions remains small even above

the scale of quantum gravity M�, say the string scale. The reason is still the same; as long

as the fermions remain localized apart from each other at these energies, all the new heavy

states which come in at M� still need to propagate from one fermion to the other, providing

a still further suppression of the amplitudes. It is interesting that in this scenario, we could

in principle have the best of all worlds in super-Planckian physics. The usual expectation

is that above M�, all sorts of new physics hit us at once with a rich and (at least initially)

chaotic set of signals. We retain this possibility in the s channel. But in the t and u

channels, the interactions between split fermions provide an antiseptic environment where

the properties of all modes lighter than the inverse fermion separation (which can include

fascinating objects such as bulk gravitons) can be unambiguously studied.

Finally, we comment on di�erent possible physics that leads to exponentially small cross-

sections at large t, possibly faking our most dramatic signal. Consider some composite object

with some fuzzy size �. For
p�t smaller than �, we expect that the cross-sections decrease

with
p�t. Of course, if these are composite objects like the proton, consisting of point-like

partons, then for
p�t > � we expect the usual power-law fall-o� with t expected from

scattering o� the point-like constituents, so this can not fake our signal. On the other hand,

if the fuzziness is like that of a string, we may expect that the exponentially decreasing cross-

sections persist above �. However, in this case we do not expect the decreasing amplitude to

have any simple relationship to the SM amplitudes, whereas for us the new cross-section is

directly related to the SM as in e.g., eqs. (4.1), (4.3), (4.4) and (4.5). This direct correlation

between the exponentially falling amplitudes with the SM ones is the smoking gun for the

observation of fermion separation in extra dimensions at future colliders.
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FIG. 1. rt� (the cross section for t channel exchange in the 5d theory normalized by the corre-

sponding SM cross section) as a function of
p
�t in units of TeV. We assume R�1 = 1TeV. The

dotted, dashed and solid curves are for separations of d=R = 1, �=2 and � respectively.
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FIG. 2. rs� (the cross section for s channel exchange, e.g. e+e� ! �+��, in the 5d theory

normalized by the corresponding SM cross section) as a function of the scattering angle, cos �. We

assume R�1 = 4TeV and
p
s = 1:5TeV. The dotted, dashed and solid curves are for separation of

d=R = 0, 1 and � respectively.
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FIG. 3. Same as �g. 2 for rst� (the cross section for s and t channel exchange, e.g. e+e� ! e+e�,

in the 5d theory normalized by the corresponding SM cross section).
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