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1. Introduction

D-branes are destined to play a fundamental role in the formulation of nonperturbative

string theory. Nevertheless, despite much work, and a good understanding of examples

such as toroidal compacti�cation, there is as yet no general formulation of the D-brane

spectrum applicable to an arbitrary closed string background. In this note we point out

one simple aspect of D-branes which, we conjecture, is quite general. Namely, the square

of the tension of a D-brane is proportional to the regularized dimension of some in�nite

dimensional algebra. We show that this is indeed true for the wide class of D-branes

associated to rational and quasi-rational conformal �eld theories.

While the general construction of the D-brane spectrum has yet to be carried out,

much is indeed known thanks to recent vigorous development of boundary conformal

�eld theory, and the boundary state formalism. A partial list of references includes

[1,2,3,4,5,6,7,8,9,10,11,12,13,14]. One point which is well-established is that boundary

states jBii are linear functionals on the closed string statespace Hclosed preserving confor-

mal invariance

(Ln � ~L�n)jBii = 0 (1:1)

where Ln; ~Ln are the left and right Virasoro generators.

One might think that (1.1), which imposes conformal invariance on the string world-

sheet, is the only condition one needs to impose to �nd physically acceptable boundary

states in string theory. Taking this point of view immediately leads to problems: there

are far too many solutions to (1.1) for an acceptable D-brane spectrum. Indeed, (1.1) is

a linear equation and solutions are in one to one correspondence with spinless Virasoro

primaries ��
h;~h

in the closed string spectrum [15](here h = ~h and � is a degeneracy index.)

This result is most naturally understood as follows [5,14]. We can decompose Hclosed

in terms of Virasoro irreps Vh as

Hclosed = �(h;~h)2SpecVh 
 ~V~h (1:2)

where the spectrum of the closed string theory is determined by the set Spec of pairs of

conformal dimensions. We can then solve (1.1) in each component of Hclosed as

jBiih;~h =
X
m; ~m

am; ~mjh;mi 
 j~h; ~mi 2 Vh 
 ~V~h: (1:3)
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Using the inner product on ~V~h under which Lyn = L�n, jBiih;~h is equivalent to a homo-

morphism Bh;~h : ~V~h ! Vh given by

Bh;~h =
X
m; ~m

am; ~mjh;mi 
 h~h; ~mj (1:4)

obeying LnBh;~h = Bh;~h
~Ln. That is, Bh;~h is an intertwiner between Vh and

~V~h. Since these

are irreps it follows from Schur's lemma that that jBiih;~h vanishes if h 6= ~h and that Bh;~h

is proportional to the identity when h = ~h (the fact that we need h = ~h is already clear

from the n = 0 component of (1.1)). Choosing the proportionality constant to be one, we

can take B acting on Hclosed to be the projection operator onto Vh
 ~V~h=h. We denote the

corresponding \states" in Hclosed by jh; ~h = hii. There is a natural generalization of this

construction to arbitrary chiral algebras [16,12,14] and in this context the states are often

referred to as \Ishibashi states." We will refer to them as \character states."

One problem with these Virasoro character states is that most of them do not couple

to the graviton at leading order in string perturbation theory. This follows because the

overlap with the graviton state of a primary or descendent in another irrep (not containing

the graviton state as primary) is zero. Therefore, if one wrapped these \branes" on cycles

the resulting particles would have string scale O(g0s) masses and one would expect severe

problems with unitarity.

On the other hand, it has been well appreciated for some time that in addition to

(1.1) various sewing and locality conditions should be imposed [4,6], at least if one desires

a description in terms of local boundary conformal �eld theory on the string worldsheet.

An especially important role is played by the Cardy condition [3]. To state this condition

consider possible boundary states j�ii, j�ii, and compute the partition function (cylinder

amplitude)

Z�� = hh�jq
1
2
(Lc0+

~Lc0� c
12
)

c j�ii (1:5)

where Lc0;
~Lc0 are the left and right-moving closed string Hamiltonians and qc = e�2�tc .

This can be given a Hamiltonian interpretation in the open string channel by viewing the

cylinder as an annulus with Euclidean time running around the annulus. After a conformal

rescaling of coordinates we should thus be able to write (1.5) as

TrH��
q
L
open

0
�c=24

o (1:6)

where H�� is the Hilbert space of open strings with boundary conditions de�ned by �; �

and qo = e�2�to = e�2�=tc . Cardy's condition follows from the equality of (1.5) and (1.6).
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In other words, the modular transform of (1.5) to the variable qo should have a qo expansion

with non-negative integer coe�cients for all possible pairs of boundary states j�ii; j�ii.
We will call such a set of boundary states a Cardy set.

In the following we demonstrate that imposing the Cardy condition reduces the solu-

tions to (1.1) down to an acceptable few: boundary states satisfying the Cardy condition

must couple to the graviton at leading order in string perturbation theory, and therefore

have tensions of order O(g�1s ).

Moreover, we �nd that the tensions are given by the (suitably regularized) dimension

of an associated open string statespace as in equations (2.3) and (3.13) below. We believe

that the generality of this result has not been appreciated previously, although many of

the elements of our argument are not new. In particular, the regularized dimension has

appeared previously in the literature on boundary CFT as the boundary entropy of A�eck

and Ludwig [17]. The connection between D-brane energy and boundary entropy was made

in [18] for D-branes moving in 
at space. Furthermore, we discovered after completing this

work that our computation of the boundary entropy for torus compacti�cations in sec 2.2

below appeared earlier in [19].

2. The general argument: Bosonic string

We consider a spacetime de�ned by a closed conformal �eld theory of the type

C(IR1;25�d) 
 C2. The �rst factor is the usual conformal �eld theory of 26 � d free un-

compacti�ed bosons and ghosts. For our purposes it su�ces to work in light-cone gauge

in which case we can drop the ghost �elds and view the �rst factor as the CFT of 24� d

free bosons. The second factor is an arbitrary unitary CFT of c = �c = d. We will choose

d su�ciently large so that we can view the Dp-brane we are interested in as a D-particle

in 26� d spacetime dimensions.

2.1. D-brane Tension

We consider D-brane boundary states of the form:

jxii 
 j�ii (2:1)

Here j�ii is a boundary state for C2 which is assumed to be part of a Cardy set. It

corresponds to an open string channel statespace H�� as in (1.6). The �rst factor jxii is
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a standard position eigenstate D-brane state constructed from coherent states of lightcone

gauge oscillators.

jxii := Ns:t:
Z
d24�dkeikxe�

P
1
n
��n~��n jki (2:2)

Here jki denotes a momentum eigenstate in the closed string Hilbert space; the normal-

ization Ns:t: can be gleaned from [8] and involves powers of 2; �; `s.

The D-brane state (2.1) describes a particle in the (26 � d)-dimensional spacetime

theory. The formula for the mass of this particle in terms of H�� is:

(`sM)2 =
1

(64�)2
(2�`s)

24�d

G26�d
dimH�� (2:3)

where G26�d is the Newton constant in 26-d dimensions, `s is the string length (�0 = `2s)

and dimH�� is the regularized dimension, de�ned by

dimH�� = lim
�!0

e2�ic=24(�1=�)TrH��
qL0�c=24 (2:4)

where q = e2�i� .

In order to prove (2.3) we will assume that C2 is described by rational conformal �eld
theory (RCFT). We believe that this is only a technical assumption and that (2.3) holds

more generally. Some evidence for this will be given later where (2.3) will be seen to hold

in quasirational theories.

In RCFT we have isomorphic left and right-moving chiral algebras AL = AR = A
which contain the Virasoro algebra and which may in general be subalgebras of a larger

chiral algebra. We denote the moments of the chiral �elds generating A by Wn. By

de�nition, the Hilbert space can be decomposed into a �nite set of irreps Vj of A

Hclosed = �(j;~j)2SpecVj 
 ~V~j (2:5)

with Spec labelling the irreps in the spectrum, possibly with multiplicities Nj;~j . The

characters

�i(� ) = TrViq
L0�c=24 (2:6)

transform under modular transformations � !�1=� according to

�i(�1=� ) =
X
j

S
j
i �j(� ) (2:7)
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For each irrep Vi there is a primary �eld �i obeying the fusion algebra

�i � �j = Nij
k�k (2:8)

with structure constants related to the S matrix by the Verlinde formula

Nijk =
X
`

S `
i S

`
j S

`
k

S `
1

: (2:9)

Demanding that A act in the RCFT with boundary requires that

(Wn � (�1)hW
( �W�n))j�ii = 0 (2:10)

where hW is the conformal dimension (spin) of W and 
 is an automorphism of A. Char-
acter states jjii solving (2.10) can be constructed by a slight variant of the argument given
earlier [16,14]. The character states jjii of A do not in general form a Cardy set. Since

character states form a basis, we can write possible elements of a Cardy set as

j�ii =
X
j

 j�q
S
j
1

jjii (2:11)

where the factor in the denominator has been put in for later convenience. It is positive,

see below.

Using

hhjjq
1
2
(L0+~L0� c

12
)

c jkii = �jk�j(qc) (2:12)

we then have

Z�� =
X
j

 j�( 
j
�)
�

S
j
1

�j(qc) =
X
j;k

 j�( 
j
�)
�

S
j
1

S k
j �k(qo) (2:13)

On the other hand, since A acts on the open string Hilbert space, we can also decom-

pose H�� into A irreps so that

TrH��
qL0�c=24o =

X
i

(ni)���i(qo) (2:14)

with ni�� non-negative integers. Equating (2.14) and (2.13) then gives Cardy's condition

in the context of boundary RCFT:

(ni)�� =
X
j

S
j
i

S
j
1

 j�( 
j
�)
� (2:15)
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The solution originally given by Cardy has � running over the irreps of A and (ni)�� =

N i
��,  �j = S�j , which clearly solves (2.15) using (2.9). However, in general other solutions

will exist [6,11,14] (this happens for as simple a system as the rational circle) and we will

only assume (2.15) in what follows.

We are now ready to prove (2.3). The key observation is that the mass is measured by

the one-point function with the graviton. The graviton vertex operator ���@X
� �@X�eik�X


1 is the unit operator in the internal theory C2. Thus we need only know the coupling of

j�ii to the character of the representation with the unit operator in order to compute the

mass of the D-brane.

The unit operator is in a unique character state j1ii and uniqueness of the vacuum

implies h0j1ii = 1. Therefore, the dependence of the tension on the internal conformal

�eld theory is exactly  1
�=
p
S11. On the other hand, the regularized dimension of H�� is

dimH�� = lim
qo!1

qc=24c TrH��
qL0�c=24o

= lim
qo!1

qc=24c

X
j;k

S
j
k

S k
1

j k�j2�j(qo)

=
j 1
�j2
S11

(2:16)

where we have used (2.14),(2.15), and the fact that �k(qc) goes like q
hk�c=24
c as qc ! 0 so

that the dominant contribution comes from the identity representation with h1 = 0 in the

limit. This then proves (2.3) up to overall factors which can be determined by working on

the torus (see below) and comparing to [20].

It is easy to show that the dimension (and hence the tension) is nonzero, at least in

RCFTs. In the Cardy condition we impose positivity (nj)�� � 0 and the vacuum must

appear in (n0)�� � 1. Moreover, the matrix element Sj1 � 0. This latter fact is easily

proved since the regularized dimension of the representation j of the chiral algebra is given

by the modular matrix [21]:

dimHj = lim
t!0

TrHj
e�2�tH

TrH1
e�2�tH

=
Sj1

S11
(2:17)

This is a limit of positive quantities and hence nonnegative.2 In fact, in RCFT the Sj1

cannot vanish because that leads to inconsistencies in the modular representation. Indeed

2 We are assuming unitarity of the internal CFT C2 here, which is reasonable for string theory

applications.
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the interpretation of this quantity as a positive dimension is crucial to the general picture

of RCFT as a generalization of group theory [22,23].

Remarks:

1. The derivation is valid to leading order in string perturbation theory, which makes it

an exact statement for BPS branes. It would be interesting to see if there is a sense

in which it is true beyond leading order. Because the result seems very natural to us,

we conjecture that it will continue to hold even for nonrational backgrounds.

2. Note that (2.3) behaves nicely upon inclusion of Chan-Paton spaces

q
dim
�H�� 
MatN (IR)

�
= N

p
dim(H��) (2:18)

Actually, in string theory we impose a reality condition on Chan-Paton factors in

MatN (C) so that Chan-Paton factors take values in the Hermitian matrices, HN , but

the real dimension is again dimHN = N2.

3. As mentioned earlier, the quantity
 1
�p
S11

is what A�eck and Ludwig call the \nonin-

tegral groundstate degeneracy" in boundary CFT. It has been conjectured, and es-

tablished in conformal perturbation theory, that this quantity descreases along renor-

malization group 
ows. See [17,24,14] for further discussion.

2.2. Example: Compacti�cation on Tori

A simple example of the above rule is provided by the Gaussian model on T d with

constant background metric G�� and two-form B��. We set E = G + B. (If we pick

rational values for the Narain moduli, this case �ts simply into the framework discussed

above; in the general quasirational case we will take some shortcuts below in showing that

the squared tension is given by a regularized dimension, given boundary states satisfying

the Cardy condition.) The closed conformal �eld theory is characterized by a Narain

lattice �(E) � IRd;d. The isomorphism of u(1)d left and right chiral algebras is given by

�n = R � ~��n, where R 2 O(d; IR) is some rotation matrix [1,11,12].

Let

� = �(E) \ f(pL; pR) : pL = R � pRg (2:19)

We denote the rank of � by r and the metric tensor on � by Gij. By this we mean the

metric appearing in the (Euclidean) inner product p2L + p2R = nTGn for a d dimensional

vector of integers n. Note that � depends on both E and R.
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Let � be a character of �. Cardy states will be of the form

j�;E;Rii = N�
X
�2�

e2�i���e�S(R)j�i (2:20)

where S(R) =Pn ��nR~��n=n and we use the discrete measure for the momentum eigen-

vectors. Let us ask that the single state j�;E;Rii form a Cardy state. We compute

hh�jq
1
2
(L0+~L0�c=12)

c j�ii = jN�j2
�(qc)d

X
�2�

q
1
2
�2L

c =
jN�j2
�(qc)d

X
n2ZZr

e��tcn
iGijnj (2:21)

From Poisson resummation we get

hh�jq
1
2
(L0+~L0�c=12)

c j�ii = td=2�r=2c

jN�j2p
detGij

1

�(qo)d

X
n̂2ZZr

e��ton̂
i(G�1)ij n̂j (2:22)

and we thus conclude that r = rank(�) = d. We interpret this to mean that D-branes

wrapped on foliating subtori of T d cannot form Cardy states. Moreover, the minimal

normalization is N� = (detGij)1=4 and therefore, the overlap with the unit u(1)d character

is N� = (detGij)1=4. Equivalently, picking the tension out of the leading piece as qc ! 0

in the closed string channel,

dimH�� = (det Gij)1=2 (2:23)

For example, choosing the diagonal torus with Narain lattice �(E) = f 1p
2
( ni
Ri
�

miRi;
ni
Ri

+miRi)g and rotation R = diagf�1p; +1d�pg corresponding to a wrapped p-

brane then one easily �nds:

dimH�� =

pY
i=1

Ri

dY
i=p+1

1

Ri
(2:24)

If one adds a 
at B-�eld and considers a d-brane wrapping T d then R = E�1Etr. In

this case one �nds

dimH�� = (detGij)1=2 = jdet(G�� +B��)j(detG��)�1=2: (2:25)

Both of these agree with standard formulae for the mass of a wrapped brane when

one recalls that 1=G26�d =
p
detG��=G26. In particular, (2.25) gives the sensible result

that the tension is given by the Born-Infeld action
p
jdet(G�� +B��)j, a result which is

essentially already to be found in [1].
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3. The general argument: Superstrings

3.1. Cardy condition for N = 1 superconformal �eld theory

To de�ne the superconformal algebra we need to pick a spin structure. The index set

I of characters divides into NS and R sectors which we denote as: I+ := INS , I� := IR.
Similarly, we must consider both characters and characters twisted by (�1)F :

��i(q) := TrHi
(�F qH) (3:1)

where � = �1. The transformation � !�1=� acts in a standard way on the spin structures,
so we can de�ne several modular matrices:

�+i (qc) =
X
j2I+

S++
ij �+j (qo) i 2 I+

��i (qc) =
X
j2I�

S+�
ij �+j (qo) i 2 I+

�+i (qc) =
X
j2I+

S�+ij ��j (qo) i 2 I�

��i (qc) =
X
j2I�

S��ij ��j (qo) i 2 I�

(3:2)

Note that (S++)2 = C is the conjugation matrix (and for simplicity we will now assume

reps are self-conjugate). S��ij = �ij because the Witten index is modular invariant. 3

We can form character states ji; �ii in the standard way. � denotes the choice of

isomorphism between left and right supercurrents so the character basis gives a basis of

solutions to the linear equations

(Gr � i� ~G�r)j�ii = 0 (3:3)

where r 2 ZZ in the R sector and r 2 ZZ + 1=2 in the NS sector.

We can form Cardy states in the usual way:

j�; �; �ii =
X
i2I�

 i
� (�)q
S
�;+
i1

ji; �ii (3:4)

3 Warning: We are using a possibly confusing piece of notation. �
+

i
for i 2 I+ is the path

integral for the spin structure commonly denoted (�;�)!
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The Cardy condition becomes

hh�; �; �jq
1
2
(L0+~L0� c

12
)

c j�; �; �0ii = TrH��0

��

�F qHo

o =
X
j2I��0

(n
�;��0

j ) �
� ��j(qo) (3:5)

In a standard unitary theory we will require that (n
�;��0

j ) �� � 0.

In particular, focusing on the (�;�) spin structure, which is invariant under � !
�1=� , we have:

(n++
i ) �� =

X
j2I+

S++
ij

S++
1j

 j�(�)( 
j
�(�))

� (3:6)

We �nd again that

dimHNS
�� = dimH�;�

�;� =

0
@  1

� (�)q
S++
11

1
A

2

=
X
j2I+

(n++
j ) �

� S++
j1 (3:7)

Remarks:

1. Equation (3.3) is only one of several choices one must make in the isomorphism of left

and right chiral algebras.

2. In (3.4) we are considering a Cardy set with states with �xed � and which are either

purely NS or purely R. To make GSO invariant states it is necessary to combine states

with di�erent � as described below. We can also form Cardy sets with states which are

linear combinations of character states from the R and NS sector, and this is required

in order to obtain BPS boundary states. There are only minor modi�cations to the

analysis.

3. In (3.7)  1
� (�) is independent of �.

4. In (3.7) n++
j � 0, and if the unit operator is present then n++

j is positive de�nite for

j = 0. Thus, as for the bosonic string, we can conclude that the right hand side is

positive.

3.2. Tension and dimension for the superstring

We begin with a product of superconformal theories C1(IR8�d) 
 C2 where C1(IR8�d)

is the lightcone superconformal �eld theory of 8 � d free bosons and fermions X�;  �. C2
is a unitary superconformal �eld theory with ĉ = �̂c = d. The closed string is a subtheory
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because (a) we restrict to the subspace with the same spin structures on both factors and

(b) we GSO project. The statespace has the form:

(H1
NS 
H2

NS)
+ � (H1

R 
H2
R)

+: (3:8)

where the + superscript indicates the need to take a GSO projection. We will take the

brane to be a point particle in the uncompacti�ed dimensions. The general form of the

boundary state is then [10]

C�;NS;+jx;NS; �ii(1) 
 j�;NS; �ii(2) + C�;NS;�jx;NS;��ii(1) 
 j�;NS;��ii(2)

+C�;R;+jx;R; �ii(1) 
 j�;R; �ii(2) + C�;R;�jx;R;��ii(1) 
 j�;R;��ii(2)
(3:9)

Here we will assume the state is made from a Cardy set of boundary states of the in-

ternal theory, although this is probably not necessary (i.e., only the combined theory really

needs to obey sewing axioms). The constants are determined by imposing the GSO projec-

tion, by choosing BPS or anti-BPS branes,and by Cardy's condition. In supersymmetric

type II theory the GSO projection requires C�;NS;� = �C�;NS;+ and C�;R;+ = C�;R;�.

Note that the GSO projection does not project out the unit operator in the internal the-

ory. Other choices of GSO projection will lead to other conditions on the coe�cients. For

example, in type 0 theory where one has a diagonal GSO projection, C�;NS;+ and C�;NS;�

are independent, re
ecting the doubling of the number of D-brane states [25].

The graviton vertex operator is ��� 
� ~ �eikX 
 1 so the coupling of the state (3.9) to

the graviton is, up to a phase,

(C�;NS;+ � C�;NS;�)
 1
� (�)q
S++
11

(3:10)

We can obtain a quantization condition on the coe�cient CNS in order to ensure that

the combined state continues to satisfy the Cardy condition. The condition depends on

whether or not we want to enforce the GSO projection in the open string channel (i.e.

whether or not we consider a BPS or a non-BPS type brane). If we do not enforce the

condition then CR = 0 and 2jCNSj2 2 ZZ+. Taking the minimal value allowed we get the

open string NS sector is

TrHNS
��
qHo

o =
1

�(8�d)=2

�
#3

�

�(8�d)=2 X
i2I+

ni���
+
i (qo) (3:11)
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If we want to have the usual GSO projection then we take a bilinear form for the cylinder

amplitude 4 and impose 2(CNS12 )2 = �(CR12)2=8 = n
2
and taking the minimal value n = 1

we have

TrHNS
��
qHo
o =

1

�(8�d)=2
1
2

"�
#3

�

�(8�d)=2 X
i2I+

ni���
+
i (qo) +

�
#4

�

�(8�d)=2 X
i2I+

ni���
�
i (qo)

#

(3:12)

In either case, taking into account (3.10) and �xing the overall normalization from

the torus case we get the superanalog of (2.3):

(`sM)2 =
1

16�2
(2�`s)

8�d

G10�d
dimHNS

�� (3:13)

Here HNS
�� is the open string channel NS sector of the full string theory. In particular, this

result holds for BPS and nonBPS, the di�erence of a factor of
p
2 in the tension between a

BPS and non-BPS brane [26] is due to the factor of 1=2 in the projection operator which

reduces the dimension of HNS
�� by a factor of two.

4. Discussion

We conclude with two speculative remarks on possible future applications of this work.

First, it is natural to speculate that the mass formula derived here in terms of the

A�eck-Ludwig degeneracy g

M2 � jgj2 = TrH��
(1) (4:1)

could play a role in extensions of the attractor mechanism [27] to nonsupersymmetric,

spherically symmetric charged black holes. In the context of BPS black holes in N = 2

supersymmetric compacti�cations to four dimensions, it is clear that g can be identi�ed

with the central charge jZj. The attractor mechanism tells us that we should associate

spherically symmetric extremal RR charged black holes with gradient 
ow on the moduli

space using the Zamolodchikov metric and the potential logjZj � log(g) [28,29]. Since g

is intrinsically well de�ned in string theory without any reference to supersymmetry, one

can conjecture that in general compacti�cations, one can associate spherically symmetric

extremal RR charged black hole solutions with gradient 
ows using the Zamolodchikov

4 Thus changing the orientation so that we have two ingoing circles. This is necesary to get

the spacetime fermion minus sign.
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metric and the potential log(g). The \doubly extremal" solutions (with constant values

of the closed string moduli as a function of the radius) then arise when one chooses the

moduli to sit at a (local) minimum of g. It would also be interesting to see if the dynamical

evolution of couplings on a test 3-brane falling into a black hole is related to renormalization

group 
ow of the boundary entropy.

Second, our result �ts in well with the currently emerging interconnections between

D-branes, K-theory, and noncommutative geometry. In the framework of noncommutative

geometry formulae have been derived for the energy of wrapped D-branes in [30] and

subsequent papers. See [31] for a recent discussion. In order to account for the mass M
of a wrapped D-brane in its groundstate one must add to the noncommutative Yang-Mills

action a term proportional to TrE(1), where E is the projective module of sections of the

(noncommutative) Chan-Paton bundle. On the other hand, in the present paper we have

derived a relation of the form M2 � TrH��
(1). The two results are compatible if we can

identify (at least in the �0 ! 0 limit corresponding to the NCSYM theory) H�� = End(E),

and such an identi�cation in this limit is strongly suggested by the behavior of the �nite

dimensional Chan-Paton factors. Clearly, this connection deserves closer scrutiny.

It is also worth noting that in the theory of operator algebras one can de�ne the

Murray-von Neumann dimension,5 which assigns a continuous dimension to certain Hilbert

spaces of operators. It is well-known that, at least in some RCFTs, the regularized di-

mensions (2.17) are indeed given by ratios of such Murray-von Neumann dimensions. In

this way the Jones index of subfactors appears in RCFT. On the other hand, these same

dimensions can be related to traces of projection operators on towers of �nite-dimensional

multimatrix algebras [32]. Analogous constructions applied to the \algebra" of open string

vertex operators might lead to interesting new ways of formulating D-branes, and, perhaps,

even M-theory.
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