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Abstract

We show that in supersymmetric extensions of the Standard Model gluino box

diagrams can yield a large �I = 3
2
contribution to s! d�qq FCNC processes, which

may induce a sizable CP-violating contribution to the I = 2 isospin amplitude in

K ! �� decays. This contribution only requires moderate mass splitting between

the right-handed squarks ~uR and ~dR, and persists for squark masses of order 1TeV.

Taking into account current bounds on Im �LLsd from K{ �K mixing, the resulting

contribution to �0=� could be an order of magnitude larger than the measured value.
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The recent con�rmation of direct CP violation in K ! �� decays is an impor-
tant step in testing the Cabibbo{Kobayashi{Maskawa (CKM) mechanism for CP vio-
lation in the Standard Model. Combining the recent measurements by the KTeV and
NA48 experiments [1] with earlier results from NA31 and E731 [2] gives Re (�0=�) =
(2:12 � 0:46) � 10�3. This value tends to be higher than theoretical predictions in the
Standard Model, which center below or around 1� 10�3 [3]. Unfortunately, it is di�cult
to gauge the accuracy of these predictions, because they depend on hadronic matrix
elements which at present cannot be computed from �rst principles. A Standard-Model
explanation of �0=� can therefore not be excluded. Nevertheless, it is interesting to ask
how large �0=� could be in extensions of the Standard Model.

In the context of supersymmetric models, it has been known for some time that it
is possible to obtain a large contribution to �0=� via the �I = 1

2
chromomagnetic dipole

operator without violating constraints fromK{ �K mixing [4]. It has recently been pointed
out that this mechanism can naturally be realized in various supersymmetric scenarios
[5]. In this Letter we propose a new mechanism involving a supersymmetric contribution
to �0=� induced by �I = 3

2
penguin operators. These operators are potentially important

because their e�ect is enhanced by the �I = 1

2
selection rule. Unlike previous proposals,

which involve left-right down-squark mass insertions, our e�ect relies on the left-left
insertion �LLsd and requires (moderate) isospin violation in the right-handed squark sector.

The ratio �0=� parametrizing the strength of direct CP violation in K ! �� decays
can be expressed as

�0

�
= iei(�2��0���)

!p
2 j�j

�
ImA2

ReA2

� ImA0

ReA0

�
; (1)

where AI are the isospin amplitudes for the decays K
0 ! (��)I, �I are the corresponding

strong-interaction phases, and the ratio ! = ReA2=ReA0 � 0:045 signals the strong
enhancement of �I = 1

2
transitions over those with �I = 3

2
. From experiment, we take

j�j = (2:280 � 0:013) � 10�3 and �� = (43:49 � 0:08)� for the magnitude and phase of
the parameter � measuring CP violation in K{ �K mixing, and �2 � �0 = �(42 � 4)� for
the di�erence of the S-wave �� scattering phases in the two isospin channels. It follows
that, to an excellent approximation, �0=� is real.

In the Standard Model, the isospin amplitudes AI receive small, CP-violating con-
tributions via the ratio (V �

tsVtd)=(V
�

usVud) of CKM matrix elements. This ratio enters
through the interference of the s ! u�ud tree diagram with penguin diagrams involving
the exchange of a virtual top quark. According to (1), contributions to �0=� due to the
�I = 3

2
amplitude ImA2 are enhanced relative to those due to the �I = 1

2
amplitude

ImA0 by a factor of !�1 � 22. However, in the Standard Model the dominant CP-
violating contributions to �0=� are due to QCD penguin operators, which only contribute
to A0. Penguin contributions to A2 arise through electroweak interactions and are sup-
pressed by a power of �. Their e�ects on �0=� are subleading and of the same order as
isospin-violating e�ects such as �0{�{�0 mixing.

Here we point out that in supersymmetric extensions of the Standard Model poten-
tially large, CP-violating contributions can arise from 
avor-changing strong-interaction
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processes induced by gluino box diagrams. Whereas in the limit of exact isospin symme-
try in the squark sector these graphs only induce �I = 1

2
operators at low energies, in

the presence of even moderate up-down squark mass splitting they can lead to operators
with large �I = 3

2
components. In the terminology of the standard e�ective weak Hamil-

tonian, this implies that the supersymmetric contributions to the Wilson coe�cients of
QCD and electroweak penguin operators can be of the same order. Speci�cally, both sets
of coe�cients scale like �2

s=fm2 with fm a generic supersymmetric mass, compared with
�s�W=m2

W and ��W=m2
W , respectively, in the Standard Model. These contributions can

be much larger than the electroweak penguins of the Standard Model even for super-
symmetric masses of order 1TeV. On the other hand, supersymmetric contributions to
the Wilson coe�cients proportional to electroweak gauge couplings are parametrically
suppressed and will not be considered here.

We �nd that the relevant �S = 1 gluino box diagrams lead to the e�ective Hamilto-
nian

He� =
GFp
2

4X
i=1

h
c
q
i (�)Q

q
i (�) + ecqi (�) eQq

i (�)
i
+ h.c. ;

where

Q
q
1 = ( �d�s�)V�A (�q�q�)V+A ; Q

q
2 = ( �d�s�)V�A (�q�q�)V+A ;

Q
q
3 = ( �d�s�)V�A (�q�q�)V�A ; Q

q
4 = ( �d�s�)V�A (�q�q�)V�A

are local four-quark operators renormalized at a scale �� fm, eQq
i are operators of oppo-

site chirally obtained by interchanging V �A$ V +A, and a summation over q = u; d; : : :

and over color indices �; � is implied. In the calculation of the coe�cient functions we
use the mass insertion approximation, in which case the gluino{quark{squark couplings
are 
avor diagonal. Flavor mixing is due to small deviations from squark-mass degen-
eracy and is parametrized by dimensionless quantities �ABij , where i; j are squark 
avor
indices and A;B refer to the chiralities of the corresponding quarks (see, e.g., [4]). In
general, these mass insertions can carry new CP-violating phases. Contributions in-
volving left-right squark mixing are neglected, since they are quadratic in small mass
insertion parameters, i.e., proportional to �LRsd �LRqq . We de�ne the dimensionless ratios

xL;Ru =

 
m~uL;R

m~g

!2

; x
L;R
d =

 
m ~dL;R

m~g

!2

;

where m~uL;R and m ~dL;R
denote the average left- or right-handed squark masses in the up

and down sector, respectively. SU(2)L gauge symmetry implies that the mass splitting
between the left-handed up- and down-squarks must be tiny; however, we will not assume
such a degeneracy between the right-handed squarks. For the Wilson coe�cients cqi at
the supersymmetric matching scale fm we then obtain

c
q
1 =

�2
s�

LL
sd

2
p
2GFm

2
~g

�
1

18
f(xLd ; x

R
q )�

5

18
g(xLd ; x

R
q )
�
;
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c
q
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�2
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LL
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2
p
2GFm

2
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�
7

6
f(xLd ; x

R
q ) +

1

6
g(xLd ; x

R
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�
;

c
q
3 =

�2
s�

LL
sd

2
p
2GFm

2
~g

�
�5
9
f(xLd ; x

L
q ) +

1

36
g(xLd ; x

L
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�
;

c
q
4 =

�2
s�

LL
sd

2
p
2GFm

2
~g

�
1

3
f(xLd ; x

L
q ) +

7

12
g(xLd ; x

L
q )
�
;

where

f(x; y) =
x(x+ 1� 2y)

(x� 1)2(y � 1)(x� y)
� xy ln y

(y � 1)2(x� y)2
+
x[2x2 � (x + 1)y] lnx

(x� 1)3(x� y)2
;

g(x; y) =
x[�2x + (x + 1)y]

(x� 1)2(y � 1)(x� y)
+

xy2 ln y

(y � 1)2(x� y)2
� x2[x(x + 1)� 2y] lnx

(x� 1)3(x� y)2
:

The results for the coe�cients ecqi are obtained by interchanging L$ R in the expressions
for cqi .

It is straightforward to relate the quantities cqi to the Wilson coe�cients appearing
in the e�ective weak Hamiltonian of the Standard Model as de�ned, e.g., in [6]. We �nd
(�t = V �

tsVtd)

(��t)C3 =
cu3 + 2cd3

3
; (��t)C4 =

cu4 + 2cd4
3

;

(��t)C5 =
cu1 + 2cd1

3
; (��t)C6 =

cu2 + 2cd2
3

for the QCD penguin coe�cients, and

3

2
(��t)Ci+6 = cui � cdi � �ci ; i = 1 : : : 4 (2)

for the coe�cients of the electroweak penguin operators. The supersymmetric contri-
butions to the electroweak penguin coe�cients vanish in the limit of universal squark
masses. However, for moderate up{down squark mass splitting the di�erences �ci =
cui � cdi are of the same order as the coe�cients c

q
i themselves. In this case gluino

box contributions to QCD and electroweak penguin operators are of similar magnitude.
This conclusion is unaltered when additional contributions to C3:::6 from QCD penguin
diagrams with gluino loops are taken into account. Because the electroweak penguin
operators contain �I = 3

2
components their contributions to �0=� are strongly enhanced

and thus are expected to be an order of magnitude larger than the contributions from the
QCD penguin operators. In this Letter, we focus only on these enhanced contributions.

The renormalization-group evolution of the coe�cients �ci (and �eci) from the super-
symmetric matching scale fm down to low energies is well known. In leading logarithmic
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Table 1: Values of the coe�cients �ci(mc) and �eci(mc) in units of 10
�4 Im �LLsd

and 10�4 Im �RRsd , respectively, for common gluino and down-squark masses of
500GeV and di�erent values ofm~uR . The last column shows the corresponding
values in the Standard Model in units of 10�7.

m~uR [GeV] 750 1000 1500 SM

�c1(mc) �0:05 �0:08 �0:12 0.42

�c2(mc) 2.12 3.19 4.16 �1:90
�ec3(mc) �0:50 �0:76 �1:01 20.64

�ec4(mc) 0.56 0.87 1.17 �7:63

approximation, one obtains [6]

�c1(�) = ��1=�0 c1(fm) ;

�c2(�) +
�c1(�)

3
= �8=�0

"
�c2(fm) +

�c1(fm)

3

#
;

�c3(�) + �c4(�) = ��2=�0 [�c3(fm) + �c4(fm)] ;

�c3(�)��c4(�) = �4=�0 [�c3(fm)��c4(fm)] ;

where � = �s(�)=�s(fm), and �0 = 11 � 2

3
nf . It is understood that the value of �0 is

changed at each quark threshold. We use the two-loop running coupling normalized to
�s(mZ) = 0:119 and take the quark thresholds at mt = 165GeV, mb = 4:25GeV and
mc = 1:3GeV. In Table 1 we give the imaginary parts of the coe�cients �c1;2 and �ec3;4 at
the scale � = mc, obtained for the illustrative choice fm = m~g = m ~dL

= m ~dR
= 500GeV

and three (larger) values of m~uR . Since the mass splitting between the left-handed ~uL
and ~dL squarks is tiny, we can safely neglect the coe�cients �c3;4 and �ec1;2 in our
analysis. Note that for �xed ratios of the supersymmetric masses the values of the
coe�cients scale like fm�2, i.e., signi�cantly larger values could be obtained for smaller
masses. For comparison, the last column contains the imaginary parts of �c1:::4 in the
Standard Model computed from (2) using Im�t = 1:2 � 10�4 and the next-to-leading
order Wilson coe�cients Ci compiled in [6]. We observe that for supersymmetric masses
of order 500GeV, and for a mass insertion parameter Im �LLsd of order a few times 10�3

(see below), the Wilson coe�cient �c2 can be signi�cantly larger than the value of the
corresponding coe�cient in the Standard Model, which is proportional to C8. This is
interesting, since even in the Standard Model the contribution of C8 to �

0=� is signi�cant.
In estimating the supersymmetric contribution to �0=� we focus only on the (V �A)


(V + A) operators associated with the coe�cients �c1 and �c2, because their matrix
elements are chirally enhanced with respect to those of the (V �A)
 (V �A) operators.
The penguin operators contribute to the imaginary part of the isospin amplitude A2.
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Figure 1: Upper bound on jIm �LLsd j versus the weak phase j�Lj (in degrees) for
m ~dL

= 500GeV and (m~g=m ~dL
)2 = 1 (solid), 0.3 (dashed) and 4 (short-dashed).

The real part is, to an excellent approximation, given by the matrix elements of the
standard current{current operators in the e�ective weak Hamiltonian. Evaluating the
matrix elements of the four-quark operators in the factorization approximation, and
parametrizing nonfactorizable corrections by hadronic parameters B

(2)

i as de�ned in [6],
we obtain

ImA
susy
2

ReA2

� 3

2

m2
K

m2
s(mc)�m2

d(mc)

Im [�c2(mc) +
1

3
�c1(mc)]B

(2)

8 (mc)

jV �

usVudj z+(mc)B
(2)

1 (mc)
:

Following common practice we have neglected a tiny contribution proportional to the
di�erence B

(2)

7 � B
(2)

8 . In the above formula z+ is a combination of Wilson coe�cients.

The product z+B
(2)

1 = 0:363 is scheme independent and can be extracted from experi-
ment. Note that at leading logarithmic order the scale dependence of the combination
�c2 +

1

3
�c1 cancels the scale dependence of the running quark masses, and hence the

hadronic parameter B
(2)

8 is scale independent.
Putting everything together, we �nd for the supersymmetric �I = 3

2
contribution to

�0=�

�0

�
� 19:2

"
500GeV

m~g

#2 "
�s(fm)

0:096

# 34

21

"
130MeV

ms(mc)

#2
B

(2)

8 (mc)X(xLd ; x
R
u ; x

R
d ) Im �LLsd ; (3)

where

X(x; y; z) =
32

27
[f(x; y)� f(x; z)] +

2

27
[g(x; y)� g(x; z)] :
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Figure 2: Supersymmetric contribution to j�0=�j (in units of 10�3) versus

m~uR, for ms(mc) = 130MeV, B
(2)

8 (mc) = 1, m ~dL
= m ~dR

= 500GeV, and
(m~g=m ~dL

)2 = 1 (solid), 0.3 (dashed) and 4 (short-dashed). The values of

jIm �LLsd j corresponding to the three curves are 0.011, 0.005 and 0.027, respec-
tively (see text). The band shows the average experimental value.

The existence of this contribution requires a new CP-violating phase �L de�ned by
Im �LLsd � j�LLsd j sin�L. The measured values of �mK and � in K{ �K mixing give bounds
on Re (�LLsd )

2 and Im (�LLsd )
2, respectively, which can be combined to obtain a bound on

Im �LLsd as a function of �L. Using the most recent analysis of supersymmetric contribu-
tions to K{ �K mixing in [7], we show in Figure 1 the results obtained for m ~dL

= 500GeV

and three choices of m~g. It is evident that the bound on Im �LLsd depends strongly on the
precise value of �L. To address the issue of how large a supersymmetric contribution to
�0=� one can reasonably expect via the mechanism proposed in this Letter, it appears
unnatural to take the absolute maximum of the bound given the peaked nature of the
curves. To be conservative we evaluate our result (3) taking for Im �LLsd one quarter of
the maximal allowed values shown in Figure 1, noting however that a larger e�ect could
be obtained for the special case of j�Lj very close to 90�.

Our results for j�0=�j are shown in Figure 2 as a function of m~uR for the case
m ~dL

= m ~dR
= 500GeV and the same three values of m~g considered in the previous

�gure. The choice m ~dL
= m ~dR

is made for simplicity only and does not a�ect our
conclusions in a qualitative way. Except for the special case of highly degenerate right-
handed up- and down-squark masses, the �I = 3

2
gluino box-diagram contribution to

�0=� can by far exceed the experimental result, even taking into account the bounds from
�mK and �. Indeed, even for moderate splitting Figure 2 implies substantially stronger
bounds on jIm �LLsd j than those obtained from K{ �K mixing. This �nding is in contrast to
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the commonly held view that supersymmetric contributions to the electroweak penguin
operators have a negligible impact on �0=�. In this context, it is worth noting that a
large mass splitting between ~uR and ~dR can be obtained, e.g., in GUT theories without
SU(2)R symmetry and with hypercharge embedded in the uni�ed gauge group, without
encountering di�culties with naturalness [8].

The allowed contribution to �0=� in Figure 2 increases with the gluino mass (for �xed
squark masses) because the K{ �K bounds become weaker in this case. If all supersym-
metric masses are rescaled by a common factor �, and the bounds from K{ �K mixing are
rescaled accordingly, the values for �0=� scale like 1=� modulo logarithmic e�ects from the
running coupling �s(�fm). Therefore, even for larger squark masses of order 1TeV the
new contribution to �0=� can exceed the experimental value by a large amount, implying
nontrivial constraints on Im �LLsd .

Before concluding, we note that in the above discussion we have made no assumption
regarding the mass insertion parameter Im �RRsd � j�RRsd j sin�R for right-handed squarks.
In models where j�RRsd j is not highly suppressed relative to j�LLsd j, much tighter constraints
on Im �LLsd can be derived by applying the severe bounds on the product �LLsd �RRsd obtained
from the chirally-enhanced contributions to K{ �K mixing. In analogy with Figure 1, we
obtain an upper bound on jIm �LLsd j as a function of �L and �R, which is sharply peaked
along the line �L + �R = 0 mod � and scales like j�LLsd =�RRsd j1=2. As above, we take one
quarter of the peak value obtained using the results compiled in [7]. Considering the case
m ~dL

= m~g = 500GeV for example, we �nd that the upper bounds on jIm �LLsd j a reduced
by a factor ranging from 3% in the limit where j�RRsd j = j�LLsd j to 8% for j�RRsd j = 0:1j�LLsd j.
In the latter case, the supersymmetric contribution to �0=� can still be of order 10�3, i.e.,
comparable to the measured value. Moreover, signi�cantly larger values can be obtained
for special points in moduli space, where the weak phases obey �L + �R � 0 mod �.

In summary, we have shown that in supersymmetric extensions of the Standard Model
gluino box diagrams can yield a large �I = 3

2
contribution to �0=�, which only requires

moderate mass splitting between the right-handed squarks, i.e., (m~uR�m ~dR
)=m ~dR

> 0:1.
In a large region of parameter space, the measured value of �0=� implies a signi�cantly
stronger bound on Im �LLsd than is obtained from K{ �K mixing.

Acknowledgments: We are grateful to Yuval Grossman and JoAnne Hewett for useful
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