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Abstract

The concept of the surface impedance is applicable to the case,

when obstacles on the surface of a vacuum chamber are small

compared to characteristic dimensions of the problem. We apply

this concept to the calculation of a synchronous mode that can

propagate in a tube with slightly corrugated walls. We also show

that such a mode can propagate in a pipe with a rough surface,

or a perforated pipe with a large number of holes.

Presented at the Workshop on Instabilities of High Intensity Hadron Beams

in Rings, Brookhaven National Laboratory, June 28 to July 1, 1999

�
Work supported by Department of Energy contract DE{AC03{76SF00515



1 Introduction

There are cases in practice, when the impedance of a vacuum chamber of

accelerator is determined by a small obstacle located on the surface of the

wall. We call an obstacle small if its characteristic size g is much smaller

then both the transverse size of the chamber a and the wavelength �=2�

associated with the frequency ! for which the impedance is calculated. For

the case of a single small axisymmetric obstacle, a general treatment of the

problem was given in Ref. [1]. It was shown that in this case the obstacle

is characterized by an electric and magnetic moments, which can be found

from the solution of the respective electrostatic and magnetostatic problems,

and both contribute to the interaction with the beam.

There are situations however, when many small obstacles densely pop-

ulate the surface of the wall. Examples are: a rough perfectly conducting

surface with a random pro�le of roughness [2, 3]; a corrugated wall of vacu-

um bellows; and a wall perforated by a large number of small pumping holes

[4]. To describe the interaction of such wall with the electromagnetic �eld, on

can introduce an averaged characteristic of the surface in terms of the surface

impedance �(!). If this surface impedance is known, it is easy to calculate

the longitudinal and transverse impedances for the beam propagating in the

chamber.

The concept of the surface impedance has been previously used by V.

Balbekov [5, 6] in the treatment of small obstacles on the pipe surface. More

recently, M. Dohlus discussed the application of this concept to the calcula-

tion of the impedance of rough surfaces [7].

In this paper we will consider how the concept of surface impedance

can be used to simplify calculations of the impedance for an ultrarelativistic

beam. Following [7], we will show how the surface impedance can explain the

appearance of a synchronous wave that propagates with the phase velocity

equal to the speed of light, and can be excited by a relativistic beam. We

will also apply this concept to a rough surface, and, directly from Maxwell's

equations, will �nd � for a corrugated wall in the limit of shallow corrugations.

For simplicity, in this paper, we will consider the longitudinal impedance

only, although most of our results can be easily generalized for the transverse

impedance as well.
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2 Longitudinal impedance of ultrarelativistic

beam in circular tube

Consider an in�nitely thin beam, traveling with the speed of light along the

axis of a circular pipe of radius a. The only nonzero components of the

�elds generated by the beam are Er(r; z; t), Ez(r; z; t), and H�(r; z; t), where

r and z are cylindrical coordinates. We want to calculate the longitudinal

impedance for such beam at frequency !.

In Fourier representation, the beam current is given by I(z; t) = I0e
�i!t+ikz;

where k = !=c, corresponding to v = c. The Maxwell's equations in vacuum,

that is for 0 < r < a, are

r�H = � i!

c
E; r�E =

i!

c
H: (1)

It follows from Eqs. (1) that

@

@r

1

r

@

@r
rH� = 0; (2)

whose solution is

H� =
A

r
+
1

2
Br; (3)

where A and B are unknown constants. Using the relation

Ez =
i

k
(r�H)z =

i

k

1

r

@

@r
rH�; (4)

one �nds from Eq. (3) Ez = iB=k. It is important to emphasize here the

the longitudinal electric �eld in the pipe does not depends on radius r (this

is only true in the limit v = c).

Using Ampere's law, one can relate the constant A to the beam current,

A = 2I0=c, and express the magnetic �eld in the pipe in terms of the (yet

unknown) longitudinal electric �eld

H� =
2I0

rc
+ Ez

kr

2i
: (5)

We see that the whole solution is now determined by a single constant {

the electric �eld Ez. To �nd this constant, we need to specify a boundary

condition on the surface of the pipe.
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After the problem is solved, we can �nd the longitudinal impedance per

unit length of the pipe with the help of the following relation

Z = �Ez

I0
: (6)

3 Surface impedance

There are situations when the longitudinal electric �eld on the surface of the

pipe can be directly related to the magnetic �eld H� at the same point. A

well known example of such relation is the Leontovich boundary condition [8]

on the surface of the metal when the skin depth associated with the frequency

! is much smaller than the tube thickness.

In general case, let us assume that a relation between the longitudinal

electric �eld and the tangential magnetic �eld holds on the wall, r = a,

Ezjr=a = ��(!)H�jr=a; (7)

where the complex variable �(!) is the surface impedance of the tubey. For

the case of the Leontovich boundary condition (see [8], Eq. (87,6)) � =

(1� i)
q
!=8��; where � is the conductivity of the metal.

Using Eq. (7) we can now solve equation (5) to obtain

Ez = ��
2I0

ac

1

1 + ka�=2i
: (8)

Let us consider �rst a situation when the second term in the denominator

of Eq. (8) can be neglected, which is valid for small frequencies, ka� j�j�1.
In this case, neglecting the second term in the denominator of Eq. (8) yields

Ez = ��
2I0

ac
; (9)

and the longitudinal impedance becomes

Z = �Ez

I0
=

2�

ac
=

Z0�

2�a
: (10)

y
In the general case, � is a function of two variables, � = �(k; !). In this paper, however,

we consider only the application of � to ultrarelativistic beams, when k = !=c, and hence

� can be considered as a function of frequency.
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For the conducting wall, using the Leontovich boundary condition, one

immediately obtains the well known result Z = (1� i)
q
!=2��=ac:

As a second example, consider a thin dialectric/magnetic layer of thick-

ness h� a covering the surface of a perfectly conducting metal [9, 10]. As it

follows from the Maxwell's equation, inside the layer the following equation

holds
@Ez

@r
= ik(��1 � �)H�; (11)

where � is the dielectric constant, and � is the magnetic permeability of the

layer. Because the layer is thin, we can integrate this equation using the

boundary condition on the surface of the metal, Ezjr=a = 0, and assuming

that the magnetic �eld is approximately constant within the layer,

Ezjr=a�h = �ikh(��1 � �)H�: (12)

Since in vacuum Ez does not depend on r, we can move the boundary con-

dition (12) from a � h to a and impose it on the surface of the wall { this

will produce a small error of the order of h=a. Eq. (12) is then equivalent to

the surface impedance that is purely imaginary with the negative imaginary

part (assuming �; � > 1),

� = �ikh(�� ��1): (13)

In the small-frequency approximation this gives the inductive impedance

(per unit length of the pipe), Z = �iL!, where

L =
2h

bc2
(�� ��1): (14)

4 Synchronous mode

If we do not neglect the second term in the denominator of Eq. (5), we �nd

for the impedance the following formula

Z(!) =
2�(!)

ac

1

1 + ka�=2i
: (15)

An important feature of this impedance is that for a purely imaginary � with

Im� < 0, there is a singularity at the frequency ! = !0 that satis�es the

following equation

!0�(!0) = �
2ic

a
: (16)
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This singularity is due to the wave that can propagate in the tube with

the phase velocity equal to the speed of light. Indeed, it is easy to check

by going back to the derivation of Sec. 1, that if Eq. (16) is satis�ed, an

electromagnetic wave

Er = H� = H0

r

a
e�i!0t+ikz; Ez = H0

2i

ka
e�i!0t+ikz; (17)

satis�es both the Maxwell's equations and the boundary condition (7). For

a thin dielectric layer, with � given by Eq. (13), !0 = c
q
2=ah(�� ��1).

This mode will be excited by the beam resulting in the wake�eld that can

be found by integration of the contribution from the pole of the impedance

(15)

w(s) =
2Z0c

�a2
�(!0)

(!�)0j!=!0

cos(!0s=c): (18)

In the case of linear dependence, � / !, Eq. (18) reduces to w(s) =

(Z0c=�a
2) cos(!0s=c).

5 Rough surface

In a simple model [2], a rough surface can be considered as a collection of s-

mall densely packed bumps sitting on a plane perfectly conducting substance.

As was pointed out in [1], a small obstacle on the surface is characterized

by dipole and magnetic moments. A dense collection of such obstacles can

be considered as an arti�cial dielectric layer, if the inverse wavenumber k�1

is much larger then the size of obstacles (bumps). Not surprisingly, it was

found that, similar to the dielectric layer, the rough surface is characterized

by an inductive impedance, and can support propagation of a synchronous

wave [11, 12].

A quantitative theory of the rough wall impedance, applicable (within

some limitations) for arbitrary random pro�le, was developed in Ref. [13].

The approach is based on the assumption that the angle between the normal

to the rough surface and the radial direction is small compared to unity. If

we assume that the rough surface is given by the equation y = h(x; z), then

the small-angle approximation means that jrhj � 1 : It is also required that

the height of the bumps and their characteristic width g be small compared

to the radius of the tube b, g; jhj � b ; and the frequency ! is small compared

to c=g, ! � c=g :
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To describe a rough surface with a random pro�le, we assume that h(x; y)

is a random function with zero average, hh(x; z)i = 0. Statistical properties

of such a surface are characterized by the correlation function K(x; y),

K(x� x0; z � z0) = hh(x0; z0)h(x; z)i ; (19)

where the angular brackets denote averaging over possible realizations of

h(x; z). Equation (19) implies that statistical properties of h(x; z) do not

depend on the position on the surface. An important statistical characteristic

of the roughness is the spectral density (or spectrum) R(�z; �x), de�ned as a

Fourier transform of the correlation function,

R(�x; �z) =
1

(2�)2

Z
dx dz K(x; z)e�i�xx�i�zz : (20)

The main result of Ref. [13] is that the longitudinal impedance (per unit

length) of a circular tube of radius a with a rough perfectly conducting sur-

face characterized by the spectral function R(�x; �z) in the frequency range

limited by the condition ! � c=g, is Z(!) = �i!Lrs with the inductance

Lrs =
Z0

2�ca

Z
d�z d�xR(�x; �z)

�2
z

�
: (21)

The presence of the factor �2
z
in the integrand of Eq. (21) means that the

contributions to Lrs of roughness in longitudinal (z) and azimuthal (x) direc-

tions are di�erent. For example, bellow-type variations on the surface have

spectral components with �z 6= 0 and �x = 0, and result in nonvanishing

Lrs. On the other hand, grooves of all sizes in the longitudinal direction,

as described in the previous Section, generate a spectrum with �x 6= 0 and

�z = 0, and according to Eq. (21) do not contribute to Lrs.

Using Eq. (10), valid in the limit of small frequencies, we can infer the

roughness surface impedance �rs from Eq. (21)

�rs = �ik
Z
d�z d�xR(�x; �z)

�2
z

�
: (22)

As was pointed out in the previous section, this kind of impedance allows

for the propagation of a synchronous mode at some frequency !0. Indeed,

such a mode was found in Ref. [11] (see also [12]), where its existence was

explained in analogy with a mode in a pipe coated by a dielectric layer.
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6 Surface Impedance for Corrugated Pipe

In a simple case of a corrugated pipe, the surface impedance can be found

directly from Maxwell's equations, even when the wavelength is compared to

the period of corrugation.

Let us assume that the pipe surface is given by

r = a� h sin�z; (23)

where 2�=� is the period of corrugation, and h is its amplitude. We assume

that both the wavelength and the amplitude are small, h � a and �a � 1.

This allows us to neglect the curvature e�ects and to consider the surface

locally as a plane one. We will also assume a shallow corrugation

h�� 1; (24)

that is the amplitude of the bumps is much smaller then their period.

Introducing a local Cartesian coordinate system x, y, z with y = a � r

(directed from the wall toward the beam axis), and x directed along �, the

surface equation becomes y = y0(z) � h sin�z. The magnetic �eld near the

surface Hx(y; z) does not depend on x (that is �) due to the axisymmetry of

the problem. It satis�es the Helmholtz equation

@2Hx

@y2
+
@2Hx

@z2
+ k2Hx = 0 (25)

with the boundary condition

(nrH)jy=y0
= 0; (26)

where n is the normal vector to the surface, n = (0; 1;�h� cos �z).
Note that the longitudinal electric �eld Ez can be expressed in terms of

Hx,

Ez = �
i

k

@Hx

@y
: (27)

Using the small parameter h=a, we will develop a perturbation theory for

calculation of Hx near the surface and �nd how Ez is related to Hx.

In the zeroth approximation, the z dependence of Hx is dictated by the

beam current periodicity,

Hx(y; z) = H(y)eikz: (28)
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Putting Eq. (28) into Eq. (25) we �nd that d2H=dy2 = 0, hence H(y) =
H0 + Ay, where the constant A can be related, through Eq. (27), to the

electric �eld on the surface, and hence �, A = ikEz = �ik�H0. We will see

below that A is of the second order in h.

For a 
at surface, for which n = (0; 1; 0), from the boundary condition

(26), we would conclude that A = 0, however, the corrugations result in a

nonzero A, and hence Ez. Substituting the magnetic �eld (28) into the right

hand side of Eq. (26) one �nds

nrH = �1

2
ihk�H0

h
ei(k+�)z � ei(k��)z

i
� ik�H0e

ikx: (29)

Clearly, the boundary condition is not satis�ed in this approximation. To

correct this, we have to add satellite modes to the fundamental solution (28)

Hx(y; z) = H(y)eikz +H1(y; z); (30)

where

H1(y; z) = B+(y)ei(k+�)z +B�(y)ei(k��)z: (31)

The dependence of B� versus y can be found from the Helmholtz equation,

B = B�
0 e

�y
p
�2�2�k; (32)

where B�
0 are constants. In order for B� to exponentially decay in y, we

have to assume here that k < �=2.

Substituting H1 terms into the boundary condition (26) generates �rst

order terms that have x-dependence exp i(k � �)x, and second order terms

proportional to exp(ikx). From the former one �nds that

B�
0 = � ik�H0h

2
p
�2 � 2k�

; (33)

and the latter gives an expression for the surface impedance �,

�(k) = �1

4
ikh2�

p
�2 + 2k�+

p
�2 � 2k�p

�2 � 4k2
: (34)
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7 Synchronous wave in corrugated pipe

First, consider the case of small frequencies, k � �. In this limit, Eq. (34)

reduces to

� = �1

2
ikh2�: (35)

Being purely imaginary with the negative imaginary part, this � allows for a

propagation of the synchronous mode. Its frequency is given by Eq. (16)

!0 =
2c

h
p
a�

: (36)
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Figure 1: Frequency !0 (solid curve) and the loss form-factor f (dashed

curve) for the synchronous mode as a function of height h.

For the general case, when k can be comparable with �, one has to

solve the exact dispersion relation. The result is shown in Fig. 1, where

we also plot the formfactor f that gives the wake�eld of the mode w(s) =

(2fZ0c=�a
2) cos(!0s=c). We see that decreasing the height of the corrugation

results in smaller wakes, and hence leads to the suppression of the interaction

of the synchronous wave with the beam.

We have to mention here that our theory breaks down for very small

values of h. Indeed, we implicitly assumed that the satellite harmonics in

Eq. (32) are localized near the surface, otherwise our approximation of plain
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surface becomes invalid. Hence, we have to require that ��2k � a�1, which

gives the following condition of applicability

h > a�1=4��5=4: (37)

This condition explains why this mode has not been found in earlier papers

[14, 15] that treated the problem of a corrugated pipe: being purturbative in

parameter h the approach developed in those papers is applicable only when

h can be made arbitrarily small.

8 Perforated pipe

The notion of the surface impedance can be also applied to the case of a pipe

with a large number of small holes perforated in the pipe wall. Again, we

have to assume that the wavelength c=! is much larger then the hole size b

and the average distance between the holes d, c=! � b; d.

The value of � can be found from the correspondence between magnetic

and electric properties of a thin dielectric layer considered in Section III and

a large collection of small holes.

Indeed, the electric polarizability �e of a single round hole of radius b is

�e = �b3=3�, and its magnetic permeability �m is �m = 2b3=3�, see [16], Sec.

9.5. Assuming that the holes do not interact with each other, we conclude

that a tangential magnetic �eld H� on the wall induces in holes the magnetic

moment per unit area equal to �m�H� where � = d�2 is the number of holes

per unit area. For a magnetic layer of thickness h the magnetic moment per

unit area in the tangential �eld would be H�(� � 1)=4�, hence we �nd the

correspondence between the product (� � 1)h and �m, (� � 1)h ! 4���m.

Similarly, a radial electric �eld Er induces in the holes the radial dipole

moment per unit area equal to �e�Er, whereas in the dielectric layer it would

induces the dipole moment Er(�� 1)=4��, hence (1� ��1)h! 4���e. These

two relations allow us to convert the surface impedance of the dielectric layer

(13) into the surface impedance of holes

�holes = �4��ik(�e + �m) = �
4

3
�ikb3: (38)

This result has been also recently found in Ref. [17].
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Again, we see that this kind of surface impedance allows propagation of

synchronous modes in the perforated pipe with the frequency

!0 = c

s
3

2ab3�
: (39)

This formula is applicable in the limit of noninteracting holes when the wave-

length of the mode is much larger than the distance between the holes.
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