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We show that, in the heavy quark limit, the hadronic matrix elements that enter B meson decays
into two light mesons can be computed from first principles, including ‘non-factorizable’ strong
interaction corrections, and expressed in terms of form factors and meson light-cone distribution
amplitudes. The conventional factorization result follows in the limit when both power corrections
in 1/my and radiative corrections in a; are neglected. We compute the order-a; corrections to the
decays By — 7w, By = n°7° and BT — 77 x° in the heavy quark limit and briefly discuss the
phenomenological implications for the branching ratios, strong phases and CP violation.
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The detailed study of B meson decays is a key source
of information for understanding CP violation and the
physics of flavour. The interest in this field is rein-
forced by the numerous upcoming experiments that will
test crucial aspects of B decay properties with unprece-
dented scope and precision. Among the large number of
B decay channels, two-body non-leptonic modes, such as
B — 7w, B —» wK etc., open a particularly rich field of
phenomenological investigation. A theoretical treatment,
however, is generally complicated owing to the non-trivial
QCD dynamics related to the all-hadronic final state.

In this Letter we describe important simplifications
that occur in the limit my > Agcep, when the b quark
mass is large compared to the strong interaction scale
Agcp. We find that in this limit the hadronic matrix el-
ements for, say, B — mm can be represented in the form

(nm|Q|B) = (x|j1|B)(m|j2|0) -
-[1 + Z rpal + O(AQCD/mb)]: (1)

where ( is a local operator in the weak effective Hamil-
tonian and j; » are bilinear quark currents. Neglecting
power corrections in Agep and radiative corrections in
«s, the original matrix element factorizes into a form
factor times a decay constant (we call this conventional
factorization). At higher order in a, this simple factor-
ization is broken, but the corrections can be calculated
systematically in terms of short-distance coefficients and
meson light-cone distribution amplitudes. This is sim-
ilar in spirit to the well-known framework of perturba-
tive factorization for exclusive processes in QCD at large
momentum transfer [1], as applied, for example, to the
electromagnetic form factor of the pion. An interesting
consequence of (1) is that strong interaction phases are
formally of order as; or Agcp/mp in the heavy quark
limit. If this limit works well, the approach discussed here
allows us to calculate these phases systematically; CP vi-
olating weak phases can then be disentangled. Here we
present a numerical analysis of B — 77 decay amplitudes

based on the heavy quark limit. We also briefly discuss
important power corrections, which should eventually be
estimated in order to obtain a satisfactory phenomenol-
ogy at realistic b quark masses. Details of the argument
that leads to the factorization formula (3) below will be
explained in a forthcoming paper.

The effective weak Hamiltonian describing B decays is
given by [2]

Hepp = % P {01Q§’+02Q§+ > CZQZ}, (2)

p=u,c 1=3...6,8

where A, = V3, Vpp. The Q; are local AB =1, AS =0
operators, and C; the corresponding short-distance Wil-
son coefficients. We neglect electroweak penguin opera-
tors and all terms not relevant to B — 7w decays.

The essential theoretical problem for obtaining the
B — 7 amplitudes is the evaluation of the hadronic
matrix elements (77|Q;|B). Let 71 denote the pion that
picks up the light spectator quark in the B meson, and
w2 the pion whose valence partons are supplied by the
weak decay of the b quark. In the heavy quark limit
both pions emerge with large energy mp/2 (in the B rest
frame). Power counting based on the asymptotic form of
the leading-twist pion distribution amplitude shows that
a leading-power contribution to the (77|Q;|B) matrix el-
ement requires both valence quarks of w3 to carry energy
of order my. The ¢ pair is ejected from the weak inter-
action region as a small-size colour singlet object. As a
consequence soft gluons with momentum of order Agcp
decouple at leading order in Agcp/my, and w2 can be
represented by its leading-twist light-cone distribution
amplitude. On the other hand, the spectator quark in
the B meson carries momentum of order Agcp and is
transferred as a soft quark to 71, unless it undergoes a
hard interaction. The endpoint suppression of the pion
wave function is not sufficient to ensure the dominance of
hard interactions. [We adopt the point of view that for
realistic b quark masses perturbative Sudakov suppres-



sion does not cut off soft contributions efficiently enough
before one enters the non-perturbative regime.] There-
fore m cannot always be represented by its light-cone
distribution amplitude. At leading power in Agcp/ms,
we find that the soft interactions can be absorbed into
the B — m; form factor. On the other hand, any interac-
tion of the spectator quark with the quarks of 75 is hard
at leading power and can be written as a convolution of
three light-cone distribution amplitudes. This discussion
can be summarized by the factorization formula

(") (9)|Q:|B(p)) = fB_’”(q2)/0 dz T (2) @ (2)

T / dededy T/ (6,2, 9) 25 (6B, ()22 (y),  (3)

which is wvalid up to corrections of relative order
Agcep/my. Here fB2™(¢?) is a B — m form factor eval-
uated at ¢> = m2 =~ 0, and ®, (®p) are leading-twist
light-cone distribution amplitudes of the pion (B meson),
normalized to 1. The TiI 11 denote hard-scattering ker-
nels, which are calculable in perturbation theory. T}
starts at O(al); at higher order in «s it contains ‘non-
factorizable’ gluon exchange, including penguin topolo-
gies, see the first two rows of Fig. 1 for the corrections
at order agz. Hard, ‘non-factorizable’ interactions in-
volving the spectator quark are part of T/! (last row
of Fig. 1). Annihilation topologies also exist, but are
power-suppressed in Agcp/myp. The significance of the
factorization formula is that all the non-perturbative ef-
fects in the B — ww amplitudes can be absorbed into the
form factor and the light-cone wave functions.
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FIG. 1. Order a; corrections to the hard scattering kernels
T} (first two rows) and T/! (last row). In the case of T}, the
spectator quark does not participate in the hard interaction
and is not drawn. The two lines directed upwards represent
the two quarks that make up 2.

The following comments are in order:

(i) When ay corrections are neglected T/ is zero and
T} is an z-independent constant. Conventional factor-
ization in terms of the form factor and the pion decay

constant is then recovered as a rigorous prediction in the

infinite quark mass limit. The perturbative corrections
are process-dependent, but calculable. Their inclusion
cancels the scale-dependence of the leading-order factor-
ization result.

(ii) The infrared finiteness of the hard scattering am-
plitude follows because the infrared divergences in the
first four diagrams of Fig. 1 cancel in their sum. This
cancellation is the technical manifestation of Bjorken’s
colour transparency argument [3]. Colour transparency
does not apply to hard gluon interactions. These, how-
ever, are suppressed by as and are calculable.

(iii) The hard scattering contribution to the B — =«
form factor is suppressed by one power of a; relative to
the soft contribution, in which the B meson spectator
undergoes no hard interaction. As a consequence the as-
sumption that B — 7m can be treated entirely in the
hard scattering picture of [1] would miss the leading con-
tribution in the heavy quark limit.

(iv) The decay amplitude acquires an imaginary part
through the hard scattering kernels. In the heavy quark
limit, the strong interaction phases can therefore be com-
puted as expansions in ag. In terms of hadronic inter-
mediate states that saturate the unitarity relation this
implies systematic cancellations among many intermedi-
ate states with potentially large individual rescattering
phases. An estimate of rescattering effects on the basis
of Regge theory is not compatible with the picture that
emerges in the heavy quark limit.

(v) The factorization formula (3) generalizes to the de-
cays into a heavy-light final state, if the heavy particle
absorbs the B meson spectator quark. In this case the
second line in (3) is power-suppressed and only the form
factor term survives. An expression of this form has been
used by Politzer and Wise to compute the 1-loop correc-
tions to the decay rate ratio I'(B — D*7)/T(B — D)
[4]. The factorization formula does not hold for heavy-
light final states, in which the light meson absorbs the B
meson spectator quark, or for a heavy-heavy final state.
In this case, conventional factorization can also not be
justified.

The result of an explicit calculation of the B — =7
decay amplitudes at order a; can be compactly expressed

as (n|Hes¢|B) = Gp/ﬁzp:%c A\ (77| T,|B), where

Tp = ai(7m) (@b)y—a ® (du)y_a
+ ab(7m) (db)y—a ® (Gu)y_a
+ ag(77) (db)v—a ® (qq)v-a
+ af(rm) (qb)v—a ® (dq)v-a
+ as(wm) (db)v— a4 @ (7q)v+a
+ ag(rm) (=2)(qb)s—p ® (dg)s+p- (4)

The symbol ® is defined through (n7|ji ® j2|B) =
(m|71|B)(r]j2|0). A summation over ¢ = u,d is implied.
Note that the term proportional to af(77) results in a
power correction that should be dropped in the heavy



quark limit. We will comment further on this term be-
low.

Together with af(7m) = a§(rm) = 0 and the leading-
order coefficient af(7m) = Cs + C5/N, the QCD coeffi-
cients a? (rm) read at next-to-leading order (NLO)

s C
af(rm) =C1 + — Cz a——F Cy F (5)
a¥(nm) = Cs + 101+ZS%CF (6)
1 s C
as(rm) = Cy + i+ == O F (7)
1 s C 44
af(rm) = Cy + —03 Z ]\? K G+ —03

C4+C6 )111L+< (s,,)—§>01

+( 0+ G0 - f- g+ ) e ®)

+(3G,T(0) + Ga(se) + G,r(l)) (Cy+ Co) + GmsCS] :

s CF

as () = T

Here Cp = (N?> — 1)/(2N) and N = 3 (f = 5) is the
number of colours (flavours). [Note that our definition
of C; and C, differs from the convention of [2], where
the labels 1 and 2 are interchanged.] The internal quark
mass in penguin diagrams enters as s,, where s, = 0 and
s. =m?2/m?. In addition we have used (z =1 — x)

Cs + — Cﬁ + — Cs (—F —12). (9)

F=-12Int — 18+ fL 4§11, (10)
my

fl= [drg@e@). Grs = [deGa@a@), ()

1
= /d:cG(s,:c)‘I),r(:v), (12)
0
with the hard-scattering functions

1-2x
g(fv)=31

Inx — 3ir, Gs(z) = —, (13)

ISR

1

G(s,z) = —4/0du u(l —u)In(s —u(l —u)T —ie). (14)

The hard spectator scattering contribution is given by
11 ﬁ fﬁfB

" TN ROm /5% [/d

where fr (fg) is the pion (B meson) decay constant,
mp the B meson mass, f+(0) the B — 7 form fac-
tor at zero momentum transfer, and ¢ the light-cone
momentum fraction of the spectator in the B meson.
fH depends on the wave function ®p through the inte-

gral fol d¢ ®p(€)/€ = mp/Ap. This introduces one new

] . (15)

hadronic parameter A\g. Since ®p (&) has support only
for ¢ of order Agep/mp, Ap is of order Agep.-

Writing the transition operator 7, in terms of the
QCD coefficients af(7m) is a convenient notation for
phenomenological applications. The notation general-
izes the conventional parameters a; 2 [5], which are seen
to be process-dependent beyond leading order. We em-
phasize that in the present context the af(77) are not
phenomenological parameters, but genuine predictions of
QCD in the heavy quark limit. The Wilson coefficients C};
entering the a? (wm) are to be taken at NLO [2], where we
consistently drop terms of O(a?) in (5)—(9). The physical
amplitudes derived from (4) are independent of the renor-
malization scale (1) and scheme through O(a;). The co-
efficients a; (7m)—as (77) multiply scale and scheme inde-
pendent matrix elements of (axial-)vector currents. Ac-
cordingly for a)(mm)—as(nm) the scale and scheme de-
pendence in the Wilson coefficients C; is canceled by the
O(as) corrections in the hard-scattering amplitudes. In
the case of af(7r), a scale and scheme dependence re-
mains, which is precisely the one needed to cancel the
corresponding dependence in the matrix elements of the
(pseudo-)scalar currents, multiplying af(77) in (4). Be-
sides the In(u/my) terms the hard-scattering amplitudes
contain a scheme dependent constant, which we have ob-
tained in the NDR scheme as defined in [6]. This fixes
the scheme to be used for the NLO coefficients C}.

At NLO the factorization coefficients a?(77) acquire
complex phases, entering through the functions g(z) and
G(s,x) in (13) and (14). Being of order as, these phases
are generically small, except in cases where the lowest
order contribution is numerically suppressed. This hap-
pens e.g. for a¥(mm). Physically, the phases arise from
final state rescattering, which is due to hard gluon ex-
change, and hence perturbative, in the heavy quark limit.
The generation of strong interaction phases through the
penguin function G(s,x) has been discussed many years
ago [7] and is commonly referred to as the Bander—
Silverman—Soni (BSS) mechanism. In the present ap-
proach, the gluon virtuality k> = Zm?% in the penguin
diagram, which has usually been treated as a free phe-
nomenological parameter, has a well-defined meaning.
The z-dependence of G(s, ) is convoluted with the pion
wave function @, (z), leaving no ambiguity as to the value
of k2. In addition we identify a further source of rescat-
tering phases, represented by the function g(x). This ef-
fect corresponds to hard gluon exchange between the two
outgoing pions. Together with the BSS mechanism, it ac-
counts for the complete asymptotic rescattering phases in
B — 7r in the heavy quark limit.

Another novel result is the existence of the contribu-
tion from hard scattering involving the spectator quark
in the B meson, expressed by fi! in (15). This mech-
anism is completely missed in phenomenological mod-
els of factorization. It is particularly important for the
small coefficient a¥(7m), where it leads to a sizable en-



hancement. Using f, = 131 MeV, fz = (180 + 20) MeV,
f+(0) =0.275+£0.025, Ap = 0.3 GeV and the asymptotic
pion wave function @, (z) = 6zz, we find f! ~ 6.4. The
poor knowledge of the B meson parameter Ap makes this
number rather uncertain.

Numerical values for the a} (7m) are shown in Table I,
using the pole masses my, = 4.8GeV, m, = 1.4 GeV,
the MS masses m;(m;) = 167 GeV, (1, +mq)(2GeV) =
9 MeV and A% = 225 MeV as input parameters. af (7r)
multiplies the Agcp/my-suppressed, but chirally en-
hanced combination

2
2m

Ty = [at = me]. (16)
In the following analysis, we give two results, one ne-
glecting af (77) as formally power-suppressed, the other
keeping the leading-order expression for ak (7).

It is now straightforward to evaluate the decay am-
plitudes and branching ratios. The latter are given by
Br(B — wr) = 15/(16mmp) - |A(B — =r)|*S, where
S=1forrr =7t7", 77 7%and S = 1/2 for nm = 7°7°.
7p denotes the B meson lifetimes: 7(BT) = 1.65ps,
T(Bg) = 1.56 ps. The decay amplitudes read

A(By— wta) = z'%m%mmfﬁw et

-[Rbe_” (af(mm) + af (7m) + ag (7m)ry)

— (a§(7m) + ag(rm)ry)],

A(By - 7°7°) = i%m%ﬁr(o)fnl)\cl - (18)
(R (—al(rm) + af () + al (rm)ry)
— (@§(rm) + ag(rmry)],
AB~ 57 n0) = i%mémmfﬁw S )
Ry/VI- e (a () + a ()

Here R, = (1 — A2/2)|Vius/Ves| /A, where X = 0.22 is the
sine of the Cabibbo angle, v is the phase of V;, and we
will use V3| = 0.039 £ 0.002, |Vup/Ves| = 0.085 £ 0.020.
We find the branching fractions

Br(Bg—ntn) =
. . 5 o 2
6.5[6.1]- 10~ ‘e*” +0.09[0.18] eF12-7(67 ‘ . (20)
Br(Bg — %) =

2

5.2[7.7]-10_8‘6_”+0.73[1.11]e_i'137[149]0 . (21

Br(B~ — 71 %) =43[4.3]-10°°, (22)

where the default values correspond to neglecting af (7r)
and the values in brackets use af(77) at leading order.
While the predictions for the 7t7~ and 7~ #° final states
are relatively robust, with errors on the order of +30%

due to the input parameters, the decay into 7°7° depends
very sensitively on the parameter Ap that controls the
hard spectator scattering. If it is significantly smaller
than 0.3 GeV, a branching fraction of order 10~% cannot
be excluded. Eq. (20) can be converted into a result for
the time-dependent CP asymmetry as a function of the
CKM angle a. The direct CP asymmetry in the 7T 7~
mode is approximately 4% - sin .

The approach discussed here allows us to formulate, for
the first time, rigorous predictions of QCD for exclusive
non-leptonic B decays in the heavy quark limit. On the
other hand, as the dependence on the formally power-
suppressed coefficient af, (77) demonstrates, the asymp-
totic limit may be problematic at m, ~ 5GeV and the
applicability of the theory has to be decided on a case-
by-case basis. The most important power corrections are
those that depend on the chirally enhanced combination
(16). The a, corrections to all such terms can in fact
be identified. However, the factorization formula breaks
down in this case, because the relevant twist-3 wave func-
tions do not fall off fast enough at the endpoints. A
detailed discussion of this point, and of its phenomeno-
logical consequences, will be given elsewhere.
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TABLE I. The QCD coefficients a? () at NLO for three
different renormalization scales p. Leading order values are
shown in parenthesis for comparison.

u=mpy/2 = my = 2my
af (mm) 1.047 +0.033: 1.038 +0.018  1.027 + 0.0102
(1.038) (1.020) (1.010)
ay(mwm) 0.061 — 0.106:  0.082 — 0.080¢  0.108 — 0.064%
(0.066) (0.140) (0.200)
as(mm) 0.005 4+ 0.003:  0.004 +0.002:  0.003 + 0.001¢
(0.004) (0.002) (0.001)
ay(rm)  —0.030 —0.0197 —0.029 — 0.015¢ —0.026 — 0.0134
(—0.027) (—0.020) (—0.014)
af(mwm) —0.038 — 0.009: —0.034 — 0.008: —0.031 — 0.007%
(—0.027) (—0.020) (—0.014)
as(mm) —0.006 — 0.0042 —0.005 —0.002: —0.003 — 0.001¢
(—0.005) (—0.002) (—0.001)
aB (s : : :
(—0.036) (—0.030) (—0.024)




