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Abstract

In many future collider and FEL designs intense, short
bunches are accelerated in a linear accelerator. For exam-
ple, in parts of the Linac Coherent Light Source (LCLS)
a bunch with a peak current of 3.4 kA and an rms length
of 30 microns will be accelerated in the SLAC linac. In
such machines, in order to predict the beam quality at the
end of acceleration it is essential to know the short range
wakefields or, equivalently, the high frequency impedance
of the accelerating structure. R. Gluckstern[1] has derived
the longitudinal, high-frequency impedance of a periodic
structure, a solution which is valid for a structure with a
small gap-to-period ratio. We use his approach to derive a
more general result, one that is not limited to small gaps.
In addition, we compare our results with numerical results
obtained using a field matching computer program.

1 INTRODUCTION

Let us consider the infinitely periodic, cylindrically sym-
metric structure depicted in Fig. 1. R. Gluckstern has de-
rived the high frequency behavior of the impedance of such
a structure, to order(kg)�1=2 relative to the leading term,
with k the wave number andg the gap, as[1]

ZL(k) =
iZ0

�ka2

�
1 + (1 + i)

�L

a

r
�

kg

��1
; (1)

with� = 1. Note thatZL is the average impedance per unit
length (averaged locally over frequency to give a smooth
function, and averaged over a distance in the structure large
compared to the periodL), Z0 = 120�
, and a is the
iris radius. Gluckstern's result was meant to be valid for
g=L � 1. In this report, following Gluckstern's method,
we will show that Eq. 1 is still valid in the general caseg=L
not small, but with� a function ofg=L.

Other authors have investigated the high frequency be-
havior of the same structure. Their results agree in the
leading order term (iZ0=�ka

2), but not in the constant
� in the higher order term. E. Keil, describing the so-
called Sessler–Vaynstein optical resonator model of high
frequency impedance, obtains a constant� = 0:67[2] and
S. Heifets and S. Kheifets give� = 8=� � 2:55[3]. G. Stu-
pakov, considering the limiting case of a structure with in-
finitesimally thin irises (i.e. g=L = 1), finds that, in this
case,� � 0:46[4].
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Figure 1: Two cells of the geometry under consideration.

2 ANALYTICAL STUDY

Let us begin by briefly summarizing Gluckstern's method:
He divides the geometry of Fig. 1 into two regions, the pipe
region (r � a) and the cavity regionr � a. The fields
are expanded in terms of Bessel functions in the pipe re-
gion and in term of the cavity eigenfunctions in the cavity
region with the (perfectly conducting) metallic boundary
condition on the iris surfacer = a. He obtains a relation
(Eq. 2.14 in the first of Ref. [1]) between the azimuthal
magnetic field and the axial electric field alongr = a.
Then, by matching the fields in the pipe and cavity regions
alongr = a, he obtains an integral equation for the axial
electric field alongr = a (normalized byZ0I0=ka

2e�ikz,
with I0 the arbitrary driving current),F (z) (we follow his
notation):

Z g

0

dz0

" bKc(z; z
0) +

1X
m=�1

bKp(mL+z0�z)
#
F (z0) = �i:

(2)

The kernels in this equation are those of the cavity regionbKc and of the pipe regionbKp, with the bKc term and the
m = 0 term involving bKp giving the contribution to the
impedance of the cell that includes the pointz, and them 6=
0 terms giving the contribution of the other cells. Once we
knowF (z) the impedance is simply given by

ZL(k) =
Z0

ka2L

Z g

0

dzF (z) : (3)

For our purposes we do not need to know the details of
the kernelsbKc and bKp, but only their high frequency be-
havior. Gluckstern found that the high frequency behavior
of the cavity kernelbKc is independent of the details of the
cavity shape, and is given by

bKc(z; z
0) = � (1 + i)

p
�

a
p
k(z � z0)

�(z � z0) ; (4)

where�(z) is the step function (0 forz < 0 and 1 for
z � 0). The kernel in the pipe regionbKp is given by
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bKp(z) = �2�i

a
eikz
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1
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eibsjzj=a ;

bs = (k2a2 � j2s )
1=2 ; [=m(bs) � 0] ;

(5)

with js the s-th zero of the Bessel functionJ0. Gluck-
stern shows that, at high frequencies, them = 0 pipe ker-
nel, bKp(z0 � z), is equal to the cavity kernelbKc(z; z0),
as given in Eq. 4. As for them 6= 0 terms in bKp,
Gluckstern points out, that those withm > 0 oscil-
late rapidly at highk, and therefore do not contribute to
the average impedance. The sum over negativem gives

Ks(v) �
�1X

m=�1

bKp(mK + z0 � z)

=
2�i

a

1X
s=1

1
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ei(���s)v

1� ei(���s)v
;

(6)

with v = (z0 � z)=L, � = kL, �s = bsL=a. Noting that
up to orderk�1=2, (� � �s) can be replaced byj2sL=2ka

2,
this becomes
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The first term in square brackets can be summed:P
1=j2s = 1=4; the second term can be approximated by

an integral:
P1

s=1 f(js) � (1=�)
R
1

0
f(x)dx, for k !1.

Thus, we obtain
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with
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where� is the Riemann zeta function (�(1=2) = G0(0) =
�1:460). Note that it is the second term in the brackets of
Eq. 7 that Gluckstern has let go to zero, which will account
for the difference in his final result and ours.

The original integral equation, Eq. 2, thus becomes

(1� i)p
�kL

Z g=L

0

dv0 �G(v0 � v)F (v0)

� ia

L

Z g=L

0

dv0F (v0) =
a

�L
; (10)

with

�G(v) =
2�(�v)p�v + G0(v) : (11)

This equation can be rewritten in the form

Z g=L

0

dv0 �G(v0 � v)F0(v
0) = 1 ; (12)

with

F0(v) = F (v)=A ; (13)
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Note that Eq. 12, withF0(v) the unknown, contains only
one parameter
 � g=L. The equation for the impedance,
Eq. 3, becomes

ZL(k) =
Z0

ka2
A
Z 


0

dv F0(v) : (15)

Finally, the solution to this equation is an impedance of the
form Eq. 1, with

�(
) =

p



�

�Z 


0

dv F0(v)

��1
; (16)

a result that can be verified by substitution.
We find that for small
, � = 1+G0(0)=�

p

+O(
3=2),

and for
 = 1, � � �1 = �G0(0)=� � 0:4648. The
numerical solution of Eq. 12 gives� in general (see Fig. 2).
A polynomial fit in

p



�(
) = 1� �1
p

 � (1� 2�1)
 ; (17)

given by the dashes in Fig. 2, agrees to within 1.5% with
the numerical result. Note that�(0) is in agreement with
the result of Gluckstern, and�(1) with that of Stupakov.

Figure 2: The coefficient�(
). The dashed curve gives the
analytical fit, Eq. 17. The plotting symbols are numerical
results discussed in the next section.
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3 NUMERICAL COMPARISON

To confirm these results numerically we have used a field
matching computer program working in the frequency
domain[5] (see also Ref. [6]). For the geometry of Fig. 1
and for a givenk, this program matches the tangential
fields atr = a, and then performs normalizing integrals.
The result is an infinite dimensional matrix equation that
is truncated and inverted to obtainZL(k). In order to bet-
ter study the asymptotic behavior, the program calculates
the impedance along a path slightly shifted off the realk

axis, which has the effect of averaging and smoothing out
the many narrow impedance spikes otherwise found at high
frequencies. (Note that to obtain the short–range wakefield
from this impedance, after performing the inverse Fourier
transform, the result must also be multiplied by the fac-
tor exp[Im(k)s], with s the distance between driving and
test particles.) As example geometry we consider that of
a typical cell of the NLC accelerating structure known as
the damped, detuned structure (DDS)[7]. One simplifi-
cation in our model, however, is that the irises are not
rounded, unlike those in the real structure. The dimensions
area = 4:924 mm, g = 6:89 mm, andL = 8:75 mm
(note that for the average, high–frequency impedance nei-
ther the cavity radiusb, nor the coupling manifolds that
couple through slots atr = b in the DDS, play a role).

The numerical results, giving the real (RL) and imag-
inary (XL) parts of the impedanceZL, when Im(k) =
0:5 mm�1, are given in Fig. 1 (the solid curves). We note
that this impedance is indeed a relatively smooth function
of Re(k) (on the real axis,RL would be a collection of
many infinitesimally–narrow spikes). We should point out,
however, that with this method, to get good convergence in
the solution at high frequencies, the size of the matrix that
needs to be solved becomes very large: atkR = 200mm�1

its size is� 600 � 600. In Fig. 3 the dashed curves give
the analytical result, Eq. 1 with� = 0:52. We see that
agreement is good for frequencieska & 1:5.

The impedance was calculated for several values ofg=L

with the field matching program, keeping the other dimen-
sions fixed. The results, for fixedIm(k), become bumpier
asg=L decreases, due to the shorter reflection time2g=c
of a wave between irises; and for the calculations we let
Im(k) � 2=g. Then to obtain�, the numerically obtained
Re(1=ZL) was fit to the formf(k) + �g(k) (with f andg
known functions taken from Eq. 1). The results of the fit
are given in Fig. 2 (the plotting symbols). The agreement
is relatively good, though, due to residual bumpiness in the
impedance curve, the accuracy of the fit to the numerical
result is limited to� 10%.

Figure 3: The real (RL) and imaginary (XL) parts of the
impedance for the dimensions of the average NLC cell, as
obtained by field matching (solid lines). The dashes repre-
sent Eq. 1 with� = 0:52.

4 CONCLUSIONS

We have extended R. Gluckstern's analytical result for the
high–frequency, longitudinal impedance of a periodic ac-
celerating structure, a result valid for small gaps, to one
valid for all gap to period ratios. We have, in addition,
performed numerical calculations and obtained results that
confirm the analytical result to an accuracy of� 10%.
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