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Abstract

We present a general analysis of the e�ective potential for neutrinos propa-

gation in matter, assuming a generic set of Lorentz invariant non-derivative

interactions. We �nd that besides the known vector and axial vector terms, in

a polarized medium also tensor interactions can play an important role. We

compute the e�ective potential arising from a tensor interaction. We show

that the components of the tensor potential transverse to the direction of

the neutrino propagation can induce a neutrino spin-
ip, similar to the one

induced by a transverse magnetic �eld.

Research at SLAC is supported by the U.S. Department of Energy under contract DE-AC03-76SF00515

1



I. INTRODUCTION

Neutrino physics currently provides the strongest experimental evidence for physics be-

yond the Standard Model (SM). The atmospheric neutrino anomaly [1] and the solar neu-

trino [2] problem are best explained by neutrino oscillations.

Neutrino oscillations occur when the produced neutrinos are not eigenstates of the Hamil-

tonian that describes their propagation. In vacuum, this is the case if the 
avor eigenstates

are non-trivial linear combinations of di�erent mass eigenstates. This requires massive neu-

trinos that mix. It is well known that the neutrino propagation in matter can be very

di�erent from that in vacuum. The crucial fact is that coherent interactions with the back-

ground give to the neutrino an \index of refraction" which depends on its 
avor. This

is because normal matter, that contains only �rst generation fermions, is 
avor asymmet-

ric. For example, for standard weak interactions, only electron neutrinos can have charged

current interactions with the background electrons. Thus, in matter the e�ective electron

neutrino mass depends on the electron density and is enhanced with respect to the other


avors. This allows for the possibility of level crossing between di�erent neutrino eigenstates

in matter. If the electron neutrinos are produced with an e�ective mass above the level cross-

ing (the \resonance") an adiabatic transition through the resonance can induce a signi�cant

ampli�cation of neutrino oscillations. This is known as the Mikheyev-Smirnov-Wolfenstein

(MSW) e�ect [3]. If light sterile neutrinos exist, then also neutral current interactions are

important since only the active neutrinos are subject to it [4]. In a polarized medium the

neutrino e�ective mass also depends on the average polarization of the background, and on

the angle between the neutrino momentum and the polarization vector [5,6].

Many extensions of the SM imply massive neutrinos. It is important to stress that these

new physics models often predict also new neutrino interactions. In this case the SM picture

can be signi�cantly changed [7], since the neutrino e�ective mass will depend on both the

SM and the new interactions. For example, non-universal interactions may give rise to

matter e�ects that distinguish between muon and tau neutrinos. Lepton 
avor violating

interactions can induce an e�ective mixing in matter, allowing for a resonant conversion

even in the absence of vacuum mixing. The two e�ects combined together could induce

neutrino 
avor transitions even for massless neutrinos.

Most of the discussions of neutrino oscillations in matter are based on the e�ective

Hamiltonian

H(V;A) =
GFp
2

X
a=V;A

(�� �a �)
h
� f �

a (ga + g0a

5) f

i
+ h:c: ; (1.1)

where �V = 
�, �A = 
�
5,  f are the �eld operators for the background fermions

f = e; p; n; � and ga, g
0
a are suitable coupling constants parametrizing the strength of the

interactions.
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Clearly, the standard neutral current and the Fierz rearranged charged current

(V �A) (V �A) structures are included in (1.1). However, H(V;A) describes in fact a larger

set of interactions. For example, several models where neutrinos couple to new heavy scalars

(like supersymmetric models without R-parity and left-right symmetric models) imply low

energy e�ective interactions of the form ��(S � P ) f � f (S � P )� that, after Fierz rearrang-

ment, are also accounted for by (1.1). The interactions in (1.1) only induce transitions

between neutrinos of the same chirality. Therefore the couplings between di�erent helicity

states that would 
ip the neutrino spin are suppressed by the ratio between the neutrino

mass and its energy, m=E , and can be safely neglected. Thus the matter e�ects induced

by (1.1) only allow for 
avor transitions that conserve the neutrino spin. (Note that tran-

sitions into sterile neutrinos [4] are no exception. The sterile neutrino is a SM singlet, but

the state that is produced via oscillations has negative helicity.)

In contrast, neutrino transitions induced by a magnetic �eld result in a spin-
ip [8]: a

left-handed neutrino is rotated into a right-handed one. The rate of this transition depends

on the neutrino magnetic moment and on the strength of the component of the magnetic

�eld orthogonal to the direction of the neutrino propagation. If the SM is extended just by

introducing right-handed neutrinos, the resulting neutrino magnetic moment is vanishingly

small, and spin-
ipping transitions are negligible even for the largest conceivable magnetic

�elds. Therefore, spin-
ipping transitions can be relevant for solar or supernova neutrinos

only in the presence of new physics that induce a very large neutrino magnetic moment.

While the couplings in (1.1) account for the SM weak interactions as well as for some

new physics interactions they are clearly not the most general ones. In this paper we sys-

tematically study the e�ects of all Lorentz invariant non-derivative interactions of neutrinos

with the background fermions. Namely, we add scalar (S), pseudoscalar (P ) and tensor (T )

interactions, to the vector (V ) and axial-vector (A) interactions in (1.1). In our analysis

we reproduce the known results for V and A interactions [5]. The S and P interactions

that couple states with opposite chirality but the same helicity are suppressed by m=E and

therefore are negligible. Our main result is that transverse tensor interactions induce e�ects

which are not helicity suppressed, because they couple states of both opposite chirality and

opposite helicity. We �nd that in a polarized medium these interactions can 
ip the neu-

trino spin. The overall e�ect depends on the strength of the interaction, on the density of

the background and on the average polarization of the medium. The physics is similar to

the electromagnetic spin-
ip, however in this case spin-
ipping transitions can be e�ective

even for a vanishing neutrino magnetic moment. We note that an e�ective tensor poten-

tial does not need to arise from a fundamental tensor interaction. It can also result after

Fierz reordering from some speci�c scalar and pseudoscalar couplings of the neutrinos to the

background fermions.
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II. NEUTRINO PROPAGATION IN MATTER WITH GENERAL

INTERACTIONS

In this section we derive the neutrino propagation equation in matter in the presence

of the most general pointlike and Lorentz invariant four-fermion interaction with the back-

ground fermions (f = e; p; n; �). That is, we generalize (1.1) to

Hint =
GFp
2

X
a

(�� �a �)
h
� f �a (ga + g0a


5) f
i
+ h:c: ; (2.1)

where �a = fI; 
5; 
�; 
�
5; ���g, ��� = i

2
[
�; 
�] and a = fS; P; V;A; Tg. Here the neutrino

� is assumed to be of the Dirac type (we will comment on the Majorana case later). In

general, � is a vector of the di�erent neutrino types, and ga; g
0
a are 10 matrices in the space

of neutrino 
avors that describe the coupling strengths. In (2.1) the Fermi constant GF

has been factored out so that all the couplings are dimensionless. From the hermiticity of

Hint in (2.1) it follows that all ga as well as g0V ; g
0
A are hermitian while g0S ; g

0
P and g0T are

antihermitian. In particular, the diagonal elements in ga and g0V ; g
0
A are real while those

of g0S; g
0
P and g0T are imaginary. We stress that new interactions in general include both


avor diagonal and o�-diagonal couplings. The SM charged current interactions of a �e with

background electrons correspond to gV = �g0V = gA = �g0A = 1 for the �e��e entries, while
all the other couplings vanish.

The derivation of the equation of motion describing the neutrino propagation in a medium

proceeds as follows. First we average the e�ective interactions over the background fermions.

We are not interested in incoherent e�ects that become negligible after averaging. Therefore,

while we do allow for neutrino spin-
ipping interactions, we require that the background

fermions do not undergo spin-
ip. That is, we select coherent transitions that leave the

many-fermion background system in the same state. Next we add the e�ective neutrino

interaction to the free Lagrangian, and we derive the equation of motion for neutrino prop-

agation in matter. Finally, we study the neutrino dynamics described by the equation of

motion, under the assumption that the masses and potential terms are much smaller than

the neutrino energy.

A. Computing the e�ective neutrino potential

The e�ect of the medium on the neutrino propagation in the presence of the general

interactions (2.1) can be described by the Lagrangian

�Lint =
X
a;f

(�� �a �)V f
a ; (2.2)

where
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V f
a =

GFp
2

X
�

Z
d3p

(2�)3
�f (p;�)Mf

a ; (2.3)

is given by the expectation value of the background fermion current Mf
a, averaged over

the fermion distribution �f (p;�). Here p and � denote, respectively, the momentum and

polarization vectors of the background fermion f . According to the requirement of leaving

the many-fermion background system unmodi�ed, the matrix element

Mf
a � hf;p;�j � f �a (ga + g0a


5) f jf;p;�i (2.4)

is taken between initial and �nal states with the same quantum numbers. The computation

of the various Mf
a is straightforward and is given in the Appendix. We �nd

V S =
GFp
2
nf gS

*
mf

Ef

+
; (2.5)

V P =
GFp
2
nf g

0
P

*
mf

Ef

+
; (2.6)

V V
� =

GFp
2
nf

"
gV

*
p�

Ef

+
+ g0V mf

*
s�

Ef

+#
; (2.7)

V A
� =

GFp
2
nf

"
g0A

*
p�

Ef

+
+ gAmf

*
s�

Ef

+#
; (2.8)

V T
�� =

GFp
2
nf

"
�gT �����

*
p�s�

Ef

+
+ ig0T

*
p�s� � p�s�

Ef

+#
; (2.9)

where the spin-vector s , which satis�es s2 = �1 and s� p
� = 0 , is given explicitly in (A5),

and

nf =
X
�

Z
d3p

(2�)3
�f (p;�) ; hxi = 1

nf

X
�

Z
d3p

(2�)3
�f (p;�)x(p;�) (2.10)

denote, respectively, the number density of the fermion f and the average of some function

x(p;�) over the fermion distribution.

We can now perform the contractions �a V f
a in (2.2), which yield

�SP � �0
h
V S + V P 
5

i
=
GFp
2
nf

*
mf

Ef

+ �
gS + g0P 


5
�

(2.11)

�V A � 
�
h
V V
� + V A

� 
5
i

=
GFp
2
nf

"*
p=

Ef

+ �
gV + g0A 


5
�
+mf

*
s=

Ef

+ �
g0V + gA 


5
�#

(2.12)

�T � �i
h
V B
i + iV E

i 
5
i
=
GFp
2
nf

*
[s=; p=]

Ef

+ �
g0T + gT 


5
�

(2.13)

where �� � diag (��; ��) with �� = (�0 ; �i) and �0 = I , and we have used �ij = �ijk �k

and �0i = i�i
5. In (2.13) we have decomposed the tensor term V T
�� , in analogy to the

electro-magnetic �eld tensor F��, as V
B
i = �ijk V

T
jk and V E

i = 2V T
0i . Note that the second

equality in (2.13) makes apparent that the tensor interaction can contribute only in the

presence of a polarized background.
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B. Equations of Motion

We turn now to study the e�ects of the potential on the neutrino propagation. The

equation of motion can be deduced from the neutrino Lagrangian

L = Lfree + Lint = ��(i@=�m��)� (2.14)

where the matrix of the potentials

� � �SP + �V A + �T (2.15)

depends on the background density and polarization, and in general will vary along the

neutrino propagation path. In the general case both � and m are matrices in the space of

neutrino types. It is instructive to write the interaction part in (2.14) explicitly in the chiral

basis, see (A12)

� Lint = �� � � =

 
�yL
�
y
R

!T  
V LL
� ��� V LR

� ��

V RL
� �� V RR

� ��

! 
�L

�R

!
; (2.16)

where ��� = (�0 ;��i) and

V LL
� � V V

� � V A
� ; V RR

� � V V
� + V A

� ; (2.17)

V RL
0 � V S � V P ; V LR

0 � V S + V P ; (2.18)

V RL
i � V B

i � i V E
i ; V LR

i � V B
i + i V E

i : (2.19)

The explicit form (2.16) makes apparent that the (axial)vector potentials (contained in

V LL and V RR) couple neutrinos of the same chirality, while the (pseudo)scalar and tensor

potentials (in V RL and V LR) couple neutrinos of opposite chirality.

From (2.14) it follows that the equations of motion for neutrinos and antineutrinos are,

respectively,


0(k= �m� �)u = 0 ; 
0(k= +m+ �)v = 0 : (2.20)

We note that the signs of m and � are opposite for the antineutrinos. The dispersion

relations for the neutrino propagation are given by the solutions of

det [O] = det [
0(k=�m� �)] = 0: (2.21)

Solving (2.21) is simpli�ed by working in the following approximation. Let us chose the

neutrino momentum along the z-axis (k = kẑ ). Then �0;3 couple between states of the

same helicity while �1;2 couple neutrinos of opposite helicity. Hence, for ultra-relativistic

neutrinos, V LL
1;2 and V RR

1;2 in the chirality conserving diagonal blocks in (2.16) and V LR
0;3 and

V RL
0;3 in the chirality 
ipping o�-diagonal blocks are suppressed as m=E � 1, and can be
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neglected. Thus, the relevant potential terms in (2.16) are V LL
0;3 , V

RR
0;3 and the tensor potential

components V LR
1;2 and V RL

1;2 that are transverse with respect to the neutrino propagation

direction. In this approximation we get

O =

0
BBBB@
E + k � V LL

0+3 0 �m �V LR
�

0 E � k � V LL
0�3 �V LR

+ �m
�m �V RL

� E � k � V RR
0�3 0

�V RL
+ �m 0 E + k � V RR

0+3

1
CCCCA ; (2.22)

where V0�3 � V0�V3 and V� � V1�iV2. Note that since V V;A;T are hermitian, which implies

that (V RL
� )y = V LR

� , the matrix (2.22) is manifestly hermitian. Solving the determinant

equation for (2.22) in the limit of ultra-relativistic neutrinos, assuming V V;A;T ;m� E . we

obtain the general Hamiltonian that governs the neutrino propagation

i
d

dt

 
�L

�R

!
= H�

 
�L

�R

!
with H� � k +

m2

2k
+

 
V LL
0+3 V LR

+

V RL
� V RR

0+3

!
: (2.23)

The two energy eigenvalues are

E = k +
m2

2k
+ 1

2

�
V LL
0�3 + V RR

0�3 �
q
(V LL

0�3 � V RR
0�3)

2
+ 4V LR

+ V RL
�

�
; (2.24)

where the plus (minus) sign refers to neutrinos that are mainly left(right)-handed states.

The solutions for antineutrinos can be obtained from (2.24) by changing the sign of the

potentials (V ! �V ). Note that the contribution to the energy levels from the tensor term,

which is quadratic in V T , does not change sign. In the case of more than one neutrino


avor (2.24) is a matrix equation in the space of the neutrino types. It is interesting to note

that in general we should not expect that the various interactions in (2.24) will be diagonal

in the same basis. In this case even in the massless limit (or for degenerate neutrinos) 
avor

oscillations can occur in matter. In the one 
avor case, the energy gap between the two

states is

�E� =
q
(V LL

0�3 � V RR
0�3)

2
+ 4V LR

+ V RL
� : (2.25)

In the limit of vanishing tensor interaction (VT = 0) �L decouples from �R , and we obtain

EL = k +
m2

2k
+ V LL

0�3; ER = k +
m2

2k
+ V RR

0�3: (2.26)

Clearly in this case we can have oscillations only between di�erent neutrino 
avors. More-

over, if there is a basis where the full V LL (or V RR , for the SM sterile states) is 
avor

diagonal, then oscillations can occur only in the presence of non-trivial mixings in the mass

matrix. Setting V RR = 0 and V LL equal to the SM charged current and neutral current

interactions, we recover the SM case, with non-interacting right-handed states.

So far we only discussed the case of neutrinos propagating in a background of particles.

If also antiparticles (e.g. positrons) are present in the background, one has to take into
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account the corresponding interactions. Assuming CP conservation we �nd that neutrino

scattering o� antifermions leads to the Hamiltonian in (2.23), but with opposite sign for the

potential matrix.

III. IMPLICATIONS AND DISCUSSION

The general interactions that we have studied in the previous section can give rise to

several e�ects for neutrino oscillations in matter. It is well-known that the vector and axial-

vector interactions can be very important for neutrino propagation in dense matter. These

interactions do not change the neutrino spin, but they can enhance 
avor transitions when

the neutrino moves through a resonance [3].

To recover the SM result for the potential felt by an electron neutrino propagating in an

electron background, we set gV = �g0A = gA = �g0V = 1 in (2.12) and obtain

�SM =
p
2GF ne

 *
p=

Ee

+
�me

*
s=

Ee

+!
PL ; (3.1)

with PL = 1
2
(1 � 
5) . De�ning k̂ = k=jkj as a unit vector in the direction of the neutrino

momentum k and using the explicit expression (A5) for the spin vector s we obtain

V SM
�;�� = �

p
2GF ne

"
1 �

*
k̂ � p
Ee

+
�
*
p � �
Ee

+
+me

*
k̂ � �
Ee

+
+

*
(k̂ � p) (p � �)
Ee(me + Ee)

+#
; (3.2)

which is valid for an arbitrary neutrino direction. The plus-sign in (3.2) refers to neutrinos

and the minus-sign to antineutrinos. We note that (3.2) is in agreement with the results

given in [5].

Our main result is, however, that in the presence of a neutrino tensor interaction with the

background fermions, the neutrino can undergo spin-
ip. This e�ect is similar to the spin-

precession induced by a transverse magnetic �eld B? that couples to the neutrino magnetic

dipole moment �� . In fact, if we substitute in (2.23) the o�-diagonal term V LR
� by ��B? we

obtain the equation of motion for a neutrino that propagates in a magnetic �eld [8,9]. Thus,

while these two scenarios originate from di�erent physics, formally they can be treated in

the same way.

To illustrate the e�ects of neutrino oscillations due to the presence of a non-zero trans-

verse tensor potential, we consider the simplest case of one neutrino generation. A left-

handed neutrino that was produced at t = 0 and propagates for a time t in a constant

medium will be converted into a right-handed neutrino with a probability

PLR
� (t) = sin2 2� sin2

�
�E� t

2

�
: (3.3)

The e�ective mixing angle � is given by
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sin2 2� =
j2V LR

+ j2
(�E�)2

; (3.4)

where the energy splitting �E� is de�ned in (2.25). (Note that for one neutrino 
avor we

have V LR
+ V RL

� = jV LR
+ j2). In the case of more than one neutrino 
avor, propagation in

a medium with changing density can lead to resonance e�ects in complete analogy to the

magnetic �eld induced resonant spin-
ip. We will not discuss the details of the resonant

case here (which can be found in the existing literature [9]), but we want to discuss shortly

the results for di�erent types of background matter.

First consider the case where the background fermions are assumed to have an isotropic

momentum distribution. Then, the relevant (transverse) component of the tensor potential

which determines the e�ective mixing in (3.4) is given by

jV LR
+ j =

p
2GF nf

q
jgT j2 + jg0T j2

*
�?

 
sin2 #+

mf

Ef

cos2 #

!+
; (3.5)

where # is the angle between the momentum and the transverse polarization of the of

the background fermion and �? =
q
�21 + �22 . Note that jV LR

+ j vanishes if the neutrino

propagates along the direction of the average background polarization (�? = 0). For a

non-relativistic background only p0 contributes and we obtain from (3.5) that the e�ective

mixing angle is determined by

jV LR
+ j =

p
2GF nf

q
jgT j2 + jg0T j2 h�?i : (3.6)

In the ultra-relativistic limit the e�ective mixing depends on h�? sin2 #i which equals to

h�?=2i if �? is uncorrelated to the momentum of the background fermion. Finally, for a

degenerate background in the presence of a magnetic �eld, only the fermions in the lowest

Landau level contribute to the polarization, with the spin oriented antiparallel to the mo-

mentum. In this case the background is not isotropic, and eq. (3.5) is not applicable. One

obtains for this case

jV LR
+ j =

p
2GF nf

q
jgT j2 + jg0T j2

*
�?
mf

Ef

+
; (3.7)

which vanishes in the ultra-relativistic limit.

Let us now comment on the possible source of the tensor interaction. Of course, one

cannot rule elementary tensor interactions. However, it is interesting to note that also

certain neutrino scalar interactions can generate, after Fierz rearrangement, e�ective tensor

couplings. For example, consider the tree level Lagrangian

� Ltree = ��� (LL eR) + �0�
~� (LL �R) + h:c: ; (3.8)

where LL is the left-handed lepton SU(2)L doublet, eR (�R) is the right-handed electron

(neutrino) singlet, � is a doublet scalar �eld, of mass m�, ~� = i�2�
� and ��; �

0
� are real

9



elementary couplings. At low energy E � m�, the interaction in (3.8) induces a set of

four-fermion e�ective interactions, which also contains the following coupling

H�
int =

�0���

m2
�

(eR �L) (�R eL) = �
�0���

m2
�

h
1
2
(�R �L) (eR eL) +

1
8
(�R ��� �L) (eR �

�� eL)
i
: (3.9)

From (3.9) it follows that gT � �0���=m
2
�. Finally, we mention that the above four-fermion

operator can also be generated when di�erent scalar �elds mix. This possibility exist, for

example, in supersymmetric models without R-parity.

Throughout this paper we assumed the neutrinos to be of the Dirac type. For the case

of Majorana neutrinos there are additional constraints on some of the couplings. Namely,

one can show [10] that the 
avor diagonal elements of the vector couplings gV ; g
0
V as well as

the tensor couplings gT ; g
0
T vanish identically, while the axial-vector couplings are twice the

value corresponding to the Dirac case. As a consequence the standard MSW e�ect does not

distinguish between Dirac and Majorana neutrinos, but a tensor-induced spin-
ip requires

at least two neutrino 
avors in the Majorana case.

To conclude, in this paper we have studied the e�ects on neutrino propagation in matter

due to the most general Lorentz-invariant interactions with the background fermions. Scalar,

pseudo-scalar and longitudinal tensor interactions couple states of opposite chirality but do

not 
ip the helicity, and hence are suppressed by ratio between the neutrino mass and its

energy. Our crucial observation is that transverse tensor interactions are not suppressed,

since they couple states of both opposite chirality and opposite helicity. In the presence of

a non-vanishing background polarization, such interactions can result in a neutrino spin-
ip

during propagation, much alike the magnetic moment spin-precession [8,9]. The requirement

that the background is not changed by the neutrino spin-
ip singles out the coherent part

of the interactions, implying that in a macroscopic system the e�ect can be coherently

enhanced. While we have analyzed in some detail the basic neutrino dynamics, we did

not study its relevance for real physical systems (like the sun or a supernova) nor did we

perform a phenomenological analysis of the couplings which are relevant for producing this

new e�ect. We just mention that the presence of right-handed neutrino components implies

in general a non-vanishing magnetic moment, so that the e�ect of the tensor interaction

will be accompanied by the similar e�ect of the magnetic �eld that polarizes the medium.

For the constraints on the couplings, we expect that in some cases one can derive severe

constraints from SU(2)L related interactions [11] and from the bounds on neutrino masses.

This and related issues will be discussed elsewhere [12].
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APPENDIX A:

We present here the details on the computation of the matrix elements Ma [c.f. (2.4)]

that determine the potentials Va [c.f. (2.3)]. We have

Mf
a � hf;p;�j f �a (ga + g0a


5) f jf;p;�i (A1)

= 1
2Ef

uf (p;�) �
a (ga + g0a


5)uf (p;�) (A2)

= 1
4Ef

Tr [�a (ga + ga
0
5) (p= +mf ) (1 + 
5s=) ] ; (A3)

where Ef and mf denote respectively the energy and the mass of the background fermion f .

In (A2) we have assumed the background fermions to be free, so that a plane wave expansion

for the �eld operators can be used. In obtaining (A3) we have used the identity

uf(p;�)uf (p;�) =
1
2
(p= +mf ) (1 + 
5s=) ; (A4)

where the spin vector s is de�ned as

s �
 
p � �
mf

;�+
p (p � �)

mf (mf + Ef )

!
; (A5)

and satis�es s2 = �1 and s� p
� = 0. Using 
5��� = i

2
����� �

�� and the elementary traces
1
4
Tr [�S;P;V;A;T (p= +mf)(1 + 
5s=)] = mf ; 0 ; p

� ; s� ;������ p�s� we obtain

MS = gS
mf

Ef

; (A6)

MP = g0P
mf

Ef

; (A7)

MV = gV
p�

Ef

+ g0V
mf

Ef

s� ; (A8)

MA = g0A
p�

Ef

+ gA
mf

Ef

s� ; (A9)

MT = �gT �����
p�s�

Ef

+ ig0T
p�s� � p�s�

Ef

: (A10)

While the identity (A4) provides a simple way to calculateMa by means of standard \trace

technology", we �nd it useful to present also an alternative calculation which is based on the

spinorial expression (A2) for Ma. In this derivation the details of the fermion polarization

� = �
y
f � �f (�yf �f = 1) ; (A11)

are more transparent (�f denotes the two-component spinor of the fermion f).

To compute u(p;�) �a (ga + g0a

5)u(p;�) we choose the chiral representation for �a,

where

1 =

 
I 0

0 I

!
; 
5 =

 
�I 0

0 I

!
; 
� =

 
0 ��

��� 0

!
: (A12)
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with �� = (I; �i) and ��� = (I;��i) . Since

u(p;�) �
 
uL(p;�)

uR(p;�)

!
=

 p
p � �fp
p �� �f

!
=

s
Ef +mf

2

 �
I � p��

Ef+mf

�
�f�

I +
p��

Ef+mf

�
�f

!
(A13)

it is su�cient to calculate u
y
C(p;�)�

� uC0(p;�) for C;C 0 2 fL;Rg. Using the identities

(p � �)�i + �i(p � �) = 2pi (A14)

(p � �)�i � �i(p � �) = 2i�kji�kpj (A15)

(p � �)�i(p � �) = 2pi(p � �)� jpj2�i (A16)

we obtain

u
y
L;R(p;�) I uL;R(p;�) = (Ef � p � �) (A17)

u
y
L;R(p;�) I uR;L(p;�) = mf (A18)

u
y
L;R(p;�)� uL;R(p;�) = mf�+

 
p(p � �)
Ef +mf

� p

!
(A19)

uyL;R(p;�)� uR;L(p;�) = Ef� � i(p� �)� p(p � �)
Ef +mf

: (A20)

This allows us to compute

Ja � u(p;�) �a u(p;�) (A21)

for a = S; P; V;A:

JS = uyLuR + uyRuL = 2mf (A22)

JP = u
y
LuR � u

y
RuL = 0 (A23)

JV = u
y
R��uR + u

y
L���uL = 2p� (A24)

JA = u
y
R��uR � u

y
L���uL = 2mfs� ; (A25)

where s� is de�ned in (A5). From the above one immediately obtains Ma for a = S; P; V;A

as in (A6-A9). To compute the tensor terms we de�ne

�i �
 
�i 0

0 �i

!
; �0

i � �i 

5 =

 
��i 0

0 �i

!
: (A26)

The respective currents are

J� = uyL�uR + uyR�uL = 2Ef� �
2p(p � �)
Ef +mf

= 2Efs� 2ps0 (A27)

J�0 = u
y
L�uR � u

y
R�uL = 2i(p� �) = 2i(p� s) : (A28)

Noting that �ij = �ijk�k ; �ij
5 = �ijk�
0
k ; �0i = i�0

i and �0i
5 = i�i one can easily verify

the expression for MT in eq. (A10).
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