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I. INTRODUCTION

One of the most challenging problems in particle physics is the computation of the

spectrum and physical properties of bound states in quantum �eld theory. The main tool

presently used for such nonperturbative computations in quantum chromodynamics is lattice

gauge theory [1], which has been highly successful for determining hadron spectra. However,

the computation of dynamical properties, such as CP violation in weak transition matrix

elements [2] or the shape of the distributions measured in deep inelastic scattering is di�cult

using standard lattice methods.

Light-cone Hamiltonian diagonalization methods [4] appear to provide a number of at-

tractive advantages for solving nonperturbative problems in quantum �eld theory, including

a Minkowski space description, boost invariance, no fermion-doubling, and a consistent Fock

state expansion well matched to physical problems in QCD; however, thus far, full dynam-

ical solutions based on light-cone Hamiltonian diagonalization have been primarily limited

to one-space/one-time models. One promising approach is the transverse lattice which com-

bines light-cone methods in the longitudinal light-cone direction with a spacetime lattice for

the transverse dimensions. [3]

In recent work [5] we have shown that a model �eld theory in 3 + 1 dimensions can

be solved using discrete light-cone quantization (DLCQ) [6,4], a light-cone Hamiltonian

diagonalization method, together with Pauli{Villars regulation of the ultraviolet [7]. The

particular model theory which we constructed has an exact analytic solution by which the

DLCQ results could be checked, for both accuracy and rapidity of convergence. The model

was regulated in the ultraviolet by a single Pauli{Villars boson, which was included in the

DLCQ Fock basis in the same way as the \physical" particles of the theory. The two bare

parameters of the model were then determined by �ts of observables to chosen values.

Here we shall extend this combination of DLCQ and Pauli{Villars regularization to a

more realistic model which mimics many features of a full quantum �eld theory. Unlike the

analytic model which contained a static source, the light-cone energies of the particles in the

new model have the correct longitudinal and transverse momentum dependence. Although

an analytic solution of the new model is no longer available, the numerical convergence

of the discretized light-cone solutions is found to be quite rapid, and the structure of the

solution for the lowest-mass eigenstate is readily obtained. In particular, we can calculate the

light-cone wavefunction of each Fock-sector component, and from these we can compute the

values for various physical quantities, such as average multiplicities and average momenta

of constituents, bosonic and fermionic structure functions, and a form factor slope.

A distinct advantage of our approach is that almost all counterterms are generated

automatically by the Pauli{Villars particles and their imaginary couplings. This can be

explicitly checked for consistency in perturbation theory. For nonperturbative calculations

we conjecture that the same number of Pauli{Villars �elds will be su�cient to regulate the

theory. This does appear to be the case here and in the work reported previously [5]. An

alternative procedure has been proposed and explored by Wilson, Perry and collaborators

[8]; they use a similarity transformation to generate e�ective Hamiltonians perturbatively

which can then be diagonalized in the valence Fock sector.

In our approach one can obtain the full set of Fock-sector wave functions for the lowest-

mass eigenstate. This contrasts with other DLCQ calculations in 3 + 1 dimensions [9{11]
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where the number of particles was severely limited from the outset and e�ects of higher Fock

sectors can only be estimated. The DLCQ calculation by Wivoda and Hiller [12], though

untruncated, did not construct counterterms in a way that can be systematically extended

to other theories. In our case, a Tamm{Danco� truncation [13] in particle number can be

applied, and the impact of the truncation can be studied and understood.

Our notation is such that we de�ne light-cone coordinates [14] by

x� = x0 + x3 ; x? = (x1; x2) : (1.1)

The time coordinate is taken to be x+. The dot product of two four-vectors is

p � x =
1

2
(p+x� + p+x�)� p? � x? : (1.2)

Thus the momentum component conjugate to x� is p+, and the light-cone energy is p�. We

use underscores to identify light-cone three-vectors, such as

p = (p+;p?) : (1.3)

For additional details, see Appendix A of Ref. [5] or a review paper [4].

The model which we study is de�ned in Sec. II. There we also list and de�ne various

quantities which we will compute from the eigensolution, including structure functions and

distribution amplitudes, average multiplicities, and average momenta. The numerical meth-

ods, including the DLCQ procedure, and the results are discussed in Sec. III. Section IV

contains some concluding remarks and plans for future work.

II. A MODEL WITH A DYNAMICAL SOURCE

We shall consider a �eld-theoretic model where one particle, which we take to be a

fermion of mass M , acts as a dynamical source and sink for bosons of mass �. The model is

only slightly more complicated than the analytically soluble model considered in Ref. [5], the

key di�erence being that here the fermion has a proper, momentum-dependent light-cone

energy. Another di�erence is that the vertices do not include the momentum ratios which

were introduced in [5] to control end-point behavior; the restoration of fermion dynamics

makes such factors unnecessary. The theory is still regulated by a single Pauli{Villars boson

with imaginary couplings1 and a mass �1. The light-cone Hamiltonian (or mass-squared

operator) HLC = P+P� � P 2
? is, in the P? = 0 frame,

HLC =

Z
dp+d2p?

16�3p+

 
M2 + p2?
p+=P+

+M 0
0

p+

P+

!X
�

byp�bp� (2.1)

1One could use an Hermitian form and negative metric to implement Pauli{Villars regularization,

but the complex symmetric form is what is known to work well with the numerical method we

have chosen.
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+

Z
dq+d2q?

16�3q+

"
�2 + q2?
q+=P+

ayqaq +
�21 + q2?
q+=P+

ay1qa1q

#

+ g
Z
dp+1 d

2p?1q
16�3p+1

Z
dp+2 d

2p?2q
16�3p+2

Z
dq+d2q?

16�3q+

X
�

byp
1
�bp

2
�

�
h
ayq�(p1 � p

2
+ q) + aq�(p1 � p

2
� q)

+iay1q�(p1 � p
2

+ q) + ia1q�(p1 � p
2
� q)

i
;

where byp�, ayq, and ay1q are creation operators for the fermion source, the physical boson, and

the Pauli{Villars boson, respectively. The operators obey the usual commutation relationsn
bp�; b

y
p0�0

o
= 16�3p+�(p� p0)���0 ;h

aq; a
y
q0

i
= 16�3q+�(q � q0) ;h

a1q; a
y
1q0

i
= 16�3q+�(q � q0) : (2.2)

The M 0
0p

+=P+ counterterm is inserted to cancel a logarithmic dependence on the Pauli{

Villars mass which arises from the one-loop self-energy integral

g2

16�3

8><
>:
Z p+

0

dq+

q+
d2q?

M2+p2
?

p+=P+ � M2+(p?+q?)2

(p+�q+)=P+ � �2+q2
?

q+=P+

� P-V term

9>=
>; � � g2

16�2
ln(�1=�) : (2.3)

This model Hamiltonian is distantly related to the Yukawa Hamiltonian [15], to which one

might also eventually apply the techniques used here.

The bare parameters g and M 0
0 are to be �xed by �tting physical properties of the lowest

massive eigenstate. This is a dressed fermion state which we write as

�� =
p

16�3P+
X
n;n1

Z
dp+d2p?p

16�3p+

nY
i=1

Z
dq+i d

2q?iq
16�3q+i

n1Y
j=1

Z dr+j d
2r?jq

16�3r+j
(2.4)

��(P � p�
nX
i

q
i
�

n1X
j

rj)�
(n;n1)(q

i
; rj; p)

1p
n!n1!

byp�

nY
i

ayq
i

n1Y
j

ay1rj j0i ;

and normalize according to

�0y
� � �� = 16�3P+�(P 0 � P ) : (2.5)

The individual amplitudes must then satisfy

X
n;n1

nY
i

Z
dq+i d

2q?i

n1Y
j

Z
dr+j d

2r?j

�������(n;n1)(qi; rj;P �
X
i

q
i
�
X
j

rj)

������
2

= 1 : (2.6)

The eigenvalue problem is

HLC�� = M2�� : (2.7)
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This is equivalent to the following coupled set of integral equations for the amplitudes:2
4M2 � M2 + p2?

x
�M 0

0x�
X
i

�2 + q2?i
yi

�
X
j

�21 + r2?j
zj

3
5�(n;n1)(q

i
; rj; p) (2.8)

= g

(p
n + 1

Z
dq+d2q?p

16�3q+
�(n+1;n1)(q

i
; q; rj; p� q)

+
1p
n

X
i

1q
16�3q+i

�(n�1;n1)(q
1
; : : : ; q

i�1
; q

i+1
; : : : ; q

n
; rj; p+ q

i
)

+i
p
n1 + 1

Z
dr+d2r?p

16�3r+
�(n;n1+1)(q

i
; rj; r; p� r)

+
i

p
n1

X
j

1q
16�3r+j

�(n;n1�1)(q
i
; r1; : : : ; rj�1; rj+1; : : : ; rn1; p+ rj)

9=
; ;

with x = p+=P+, yi = q+i =P
+, and zj = r+j =P

+.

For �xed M , the eigenvalue problem itself is a condition on the bare parameters. A

convenient choice for the second condition is the value of an expectation value involving the

boson �eld �(x); we use h:�2(0):i � �y
� :�2(0):��, which corresponds to the expectation value

for the sum of 2=yi for physical bosons. For the soluble model in Ref. [5] it was shown to be

closely tied to the coupling g, as can be seen in Eq. (3.11) of that paper. Most importantly,

it can be computed rather quickly from a sum similar to the normalization sum

h:�2(0):i =
P

n=1;n1=0

Qn
i

Z
dq+i d

2q?i

n1Y
j

Z
dr+j d

2r?j

 
nX

k=1

2

q+k =P
+

!
(2.9)

�
�������(n;n1)(qi; rj;P �

X
i

q
i
�
X
j

rj)

������
2

:

These two conditions are su�cient to �x g and M 0
0.

With the two parameters of the model now fully determined, we can compute other

quantities as predictions. These are all obtained from the primary output, which is the

set of wave functions �(n;n1) for the di�erent Fock sectors. We will compute the slope of

the no-ip form factor of the fermion, structure functions for bosons and the fermion, the

distribution amplitude for the physical boson, average momenta, average multiplicities, and

a quantity sensitive to boson correlations. The form factor slope F 0(0) is given by [5]

F 0(0) =
X
n;n1

nY
i

Z
dq+i d

2q?i

n1Y
j

Z
dr+j d

2r?j (2.10)

�
��P

i
y2
i

4
r2
?i +

X
j

z2j
4
r2
?j

1
A�(n;n1)(q

i
; rj;P �

X
i

q
i
�
X
j

rj)

3
5
�

��(n;n1)(q
i
; rj;P �

X
i

q
i
�
X
j

rj) :

A related form,
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~F 0(0) = �
X
n;n1

nY
i

Z
dq+i d

2q?i

n1Y
j

Z
dr+j d

2r?j (2.11)

�

2
64X

i

������
yi

2
r?i�

(n;n1)(q
i
; rj;P �

X
i

q
i
�
X
j

rj)

������
2

+
X
j

������
zj

2
r?j�

(n;n1)(q
i
; rj;P �

X
i

q
i
�
X
j

rj)

������
2
3
75 ;

is better computationally. It is obtained from (2.10) via integration by parts. If a momentum

cuto� is present, there are surface terms, but these will vanish at in�nite cuto�.

The physical boson structure function is de�ned as

fB(y) � P
n;n1

Qn
i

R
dq+i d

2q?i
Qn1

j

R
dr+j d

2r?j

nX
i=1

�(y � q+i =P
+) (2.12)

�
�������(n;n1)(qi; rj;P �

X
i

q
i
�
X
j

rj)

������
2

;

The fermion and Pauli{Villars structure functions fF (x) and fPV (z) are de�ned analogously.

The normalization of each is such that the integral yields the average multiplicity

hnBi =

Z 1

0
fB(y)dy ; hnPV i =

Z 1

0
fPV (z)dz : (2.13)

The average momentum carried by each type is also given by an integral

hyi =

Z 1

0
yfB(y)dy ; hzi =

Z 1

0
zfPV (z)dz : (2.14)

As a measure of the correlations in the multiple-boson Fock sectors, we compute the covari-

ance hy1y2in�2 � hyi2n�2 where

hy1y2in�2 =
P

n�2;n1

Qn
i

R
dq+i d

2q?i
Qn1

j

R
dr+j d

2r?j

nX
i1 6=i2

q+i1
P+

q+i2
P+

(2.15)

�
�������(n;n1)(qi; rj;P �

X
i

q
i
�
X
j

rj)

������
2

;

and hyin�2 is the same as hyi except that only states with two or more bosons are included.

We also compute the distribution amplitude [16] given by '(y) �
R
d2q?�

(1;0)(y; q?).

III. NUMERICAL METHODS AND RESULTS

A. Discretization and diagonalization

We discretize the coupled integral equations and the formulas for quantities such as the

form factor slope in the standard DLCQ manner [6]. Integrals are approximated by discrete
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sums and derivatives by �nite-di�erences. Because of the Pauli-Villars regulation, the theory

is ultraviolet �nite. However, in order to have a �nite matrix problem, we limit the range

of transverse momentum by imposing a cuto� �2 on each constituent's invariant mass

m2
i + p2i?
xi

� �2 ; (3.1)

where mi is the physical mass of the constituent. (Later, we study the large � limit.) The

longitudinal momentum, always being positive, has a natural �nite range.

Given the length scales L and L?, the discrete momentum values are taken to be

p+ ! �

L
n ; p? ! (

�

L?
nx;

�

L?
ny) ; (3.2)

with n even for bosons and odd for fermions. The di�ering values of n correspond to use of

periodic and antiperiodic boundary conditions, respectively, in a light-cone coordinate box

�L < x� < L ; �L? < x; y < L? : (3.3)

The total longitudinal momentum P+ is used to de�ne an integer resolution [6] K � L
�
P+.

The positivity of the longitudinal integers n implies that the number of particles in any

Fock sector is limited to �K=2. The integers nx and ny range between limits associated

with some maximum integer N? �xed by L? and the cuto� �, such that N?�=L? is the

largest transverse momentum allowed by the cuto�.

The integral equations and other physical objects are independent of L, a feature of

boost-invariance in DLCQ. The limit L ! 1 is replaced by the limit K ! 1. The

momentum-space continuum limit is reached when both K and N? become in�nite. The

momentum-space volume limit �2 !1 is taken after the continuum limit.

Weighting factors are included in the sums that approximate integrals in order to incor-

porate boundary e�ects induced by the invariant-mass cuto�. For a discussion of how these

factors are constructed and used, see Ref. [5].

Typical basis sizes are given in Table I. The present calculations, which use a single four-

processor node of an IBM SP, are limited to �11 million states. The Hamiltonian matrix is

extremely sparse, so that the lowest-mass state can be e�ciently extracted with use of the

Lanczos algorithm [17] for complex symmetric matrices [18,5]. The analytic solution for the

soluble model discussed in Ref. [5] is used as an initial guess for the Lanczos procedure.

Before invoking the Lanczos algorithm, the eigenvalue problem is rearranged so that

�1=g is the eigenvalue. This allows computation of g given a �xed value for M and a guess

for M 0
0. The iterative Brent{M�uller algorithm [19] is then used to �nd the value of M 0

0 that

brings h:�2(0):i into agreement with its chosen value.

B. Results

Most of the calculations reported here use the parameter values M2 = �2 and h:�2(0):i =

1. These choices correspond to a relativistic, weak-coupling regime. Because of the weak

coupling, the number of Fock sectors can be truncated to include no more than four bosons
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TABLE I. Basis sizes for DLCQ calculations with parameters M2 = �2, �21 = 10�2, and

�2 = 50�2. The numbers of physical states are in parentheses.

K

N? 9 11 13 15 17

5 54 100 95 176 386 140 1 553 576 6 816 394

(28 065) (66 371) (232 400) (1 038 070) (4 972 065)

6 126 748 536 758 2 907 158 4 935 510

(69 245) (391 511) (2 107 688) (3 013 689)

7 519 325 1 317 392 10 080 748

(276 299) (1 008 539) (7 272 134)

8 1 165 832 5 162 002

(687 394) (4 140 491)

9 2 268 535

(1 437 647)

10 5 850 335

(3 585 752)

TABLE II. Fock sector probabilities
R
j�(n;n1)j2Qn

i dqi
Qn1

j drj , where n is the number of phys-

ical bosons and n1 the number of Pauli{Villars bosons. The numerical and physical parameters

are K = 17, N? = 7, M2 = �2, �21 = 10�2, �2 = 50�2, and h:�2(0):i = 1. The total number of

bosons n + n1 is limited to a maximum of 4. Probabilities smaller than � 10�5 are not resolved

with any accuracy.

nnn1 0 1 2 3 4

0 0.8515 0.0115 0.8�10�5 � 10�10 � 10�16

1 0.1333 0.0005 � 10�7 � 10�12

2 0.0036 0.4�10�5 � 10�10

3 0.3�10�4 � 10�8

4 � 10�7

without any discernible e�ect, as can be seen from the Fock-sector probabilities listed in

Table II; most weak-coupling calculations were done with this truncation in order to increase

the available momentum resolution. For comparison, we have also done some study of other

regimes.

Table III shows values of various quantities, extrapolated from longitudinal resolutions

K = 9 to 19 (or even 21) and transverse resolutions N? = 5 to 10 for small K and to 6 or

7 for large K. These include the bare coupling g, the renormalization parameter M 0
0, the

bare fermion probability j 0j2, the slope of the form factor F 0(0), the average multiplicity

hnBi, and a parameterization of the structure function fB(y) = Aya(1 � y)b (which is an

excellent �t). Each is shown as a function of the cuto� �2 and the Pauli{Villars mass �1.

The extrapolations were done by �tting to the form �+ �=K2 + =N2
?; most quantities are

slowly varying with respect to resolution. The range of values obtained for F 0(0) correspond

to a dressed-fermion radius
q
�6F 0(0) on the order of 0:2��1.
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TABLE III. Extrapolated bare parameters and observables. The physical parameter values

were M2 = �2 for the fermion mass and h:�2(0):i = 1.

�21 = 5�2 �21 = 10�2 �21 = 20�2

(�=�)2 12.5 25 50 25 50 50 100

g=� 21.4 17.7 16.3 17.8 16.0 16.0 15.5

M 0
0=�

2 1.26 1.10 1.10 1.48 1.4 1.8 1.9

j 0j2 0.82 0.83 0.84 0.85 0.86 0.87 0.87

�100�2 ~F 0(0) 1.04 0.78 0.66 0.72 0.59 0.59 0.51

hnBi 0.18 0.15 0.14 0.15 0.14 0.13 0.13

hyi 0.077 0.062 0.057 0.062 0.056 0.056 0.053

hy1y2in�2 � hyi2n�2 1:1 � 10�3 6 � 10�4 6 � 10�4 6 � 10�4 6 � 10�4 6 � 10�4 5 � 10�4
A 9.39 4.21 3.00 4.15 2.77 2.7 2.4

a 1.90 1.50 1.36 1.48 1.31 1.29 1.26

b 2.95 2.54 2.32 2.53 2.26 2.24 2.14

The table shows that the renormalization parameter M 0
0 is the only quantity strongly

dependent on the Pauli{Villars mass. This is to be expected because of its role in the

self-energy counterterm. One might argue that F 0(0) is also strongly dependent; however,

any apparent variation with �21 is largely due to di�erences in cuto� values and transverse

resolution. Although F 0(0) will ultimately become independent of �2 and N?, it is sensitive

to these in the ranges where we calculate. The table also shows that the estimate of
P

i yi <<

1 by G lazek and Perry [20] is justi�ed, in that the expectation value hyi is found to be small.

A sample boson structure function is plotted in Fig. 1. The �gure also shows how

well the form Aya(1 � y)b �ts the numerical results and how insensitive fB is to numerical

resolution, something which was also observed for the model considered in Ref. [5]. The

transverse and longitudinal dependence of a two-body amplitude are shown in Figs. 2, 3

and 4. A particular transverse cross section of the two-body amplitude is presented in

Fig. 5; these results correspond to �xed values of the transverse scale L? and are remarkably

consistent. Figure 6 shows the Q2 dependence of the boson structure function. A fermion

structure function and a Pauli{Villars boson structure function are plotted in Figs. 7 and

8. The parameter values are the same for both. The skewing of the Pauli-Villars particle

momentum distributions to high longitudinal momentum fractions reects the heavy mass

of the Pauli{Villars bosons.

Other values for the physical parameters M and h:�2(0):i have also been considered. A

summary of extrapolated quantities is given in Table IV. The associated structure functions

fB(y) are shown in Figs. 9 through 12. Distribution amplitudes are displayed in Figs. 13

and 14. For values of M larger than � we have found the form Aya(1 � y)be�cy to allow

a noticeably better �t to fB(y). For h:�2(0):i = 5 the maximum number of bosons was

increased to 5. The numerical resolutions ranged from 9 to 21 for K and from 5 to as much

as 10 for N?.

The extent to which the fermion source is dressed by the bosons is directly determined

by the mass ratio M=� and the coupling strength. The latter is tightly correlated with the

chosen observable h:�2(0):i. As the ratio M=� is tuned, the boson structure function fB(y)
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K=15
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FIG. 1. The boson structure function fB at various numerical resolutions, with M = �,

h:�2(0):i = 1, �2 = 50�2, and �21 = 10�2. The solid line is the parameterized �t, Aya(1� y)b.
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TABLE IV. Same as Table III, but for di�erent M2 or h:�2(0):i values.

h:�2(0):i = 1 h:�2(0):i = 5

(M=�)2 0.1 5 10 1

(�1=�)
2 10 10 10 10

(�=�)2 50 100 100 50

g=� 15.1 18.1 19.0 44.5

M 0
0=�

2 1.39 1.66 1.60 10.1

j 0j2 0.83 0.89 0.90 0.41

�100�2 ~F 0(0) 2.0 0.14 0.07 6.7

hnBi 0.16 0.10 0.09 0.62

hyi 0.073 0.032 0.024 0.24

hy1y2in�2 � hyi2n�2 7 � 10�4 3 � 10�4 3 � 10�4 8 � 10�3
A 1.0333 5.2548 7.5519 9.0847

a 1.0512 1.3191 1.3339 1.0256

b 0.8678 2.5430 1.7151 2.1580

c 0 2.2730 4.9870 0

shifts dramatically. A relatively small boson mass shifts the peak in fB(y) to small boson

momentum fractions, as shown in Fig. 11. A large mass shifts the peak to central values

of y and signi�cantly raises the constituent density at large y, as illustrated in Fig. 9. An

increase in h:�2(0):i increases the coupling and increases the probability for a large number

of constituents. Analogous changes occur for the distribution amplitude. Comparison of

Tables III and IV shows that the average number hnBi increases signi�cantly when h:�2(0):i
is changed from 1 to 5.

IV. CONCLUSION

We have successfully computed the Fock-sector wave functions which fully describe the

lowest-mass eigenstate of a �eld-theoretic model Hamiltonian (2.1) in physical three space

and one time dimensions. From these wave functions we have extracted several interest-

ing quantities to show that numerical convergence is under control and that Pauli{Villars

regularization leads to sensible results. The size of the momentum-state basis required is

large but manageable for present-day computing machines. Larger bases could be used by

expanding to more than one node, although one then pays the price of message-passing

overhead.

For the model discussed here there are still interesting calculations which might be done.

One could look at excited states in the one-fermion sector that we have explored, or consider

other sectors, such as the two-fermion sector. Extension to two avors, particularly with

very di�erent masses, should yield some understanding of light systems with heavy intrinsic

constituents, which could have some relevance for intrinsic charm [21].

Beyond this model there are, of course, many possibilities. A solution of Yukawa the-

ory [22], in a no-pair approximation or eventually in full, would be the most immediate

nontrivial extension. Applications to quantum electrodynamics, to positronium [10] or the

11



electron's anomalous moment [11] in particular, would be quite natural. Direct applica-

tion to quantum chromodynamics (QCD) may be problematic; however, a supersymmetric

conformally-invariant form of QCD could lend itself to the spirit of the approach, in that

heavy superpartners in a broken supersymmetry should provide the needed ultraviolet can-

cellations.
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FIG. 2. The one-boson amplitude �(1;0) as a function of longitudinal momentum fraction y and

one transverse momentum component qx in the qy = 0 plane. The parameter values are K = 21,

N? = 7, �21 = 10�2, �2 = 25�2, and h:�2(0):i = 1.
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FIG. 3. The boson-fermion two-body amplitude at zero transverse momentum, with K = 21,

N? = 7, h:�2(0):i = 1, �2 = 25�2, and �21 = 10�2. The normalization is arbitrary.
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FIG. 4. Cross sections of the boson-fermion two-body amplitude taken at varying longitudinal

momenta and at �xed qy = 0, with K = 21, N? = 7, h:�2(0):i = 1, �2 = 25�2, and �21 = 10�2.

The peaks are normalized to be equal at qx = 0.
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FIG. 5. A cross section of the boson-fermion two-body amplitude taken at �xed longitudinal

momentum fraction y = 4=9 and at �xed qy = 0, with K = 9, h:�2(0):i = 1, and �21 = 10�2.

The cuto� �2 and the transverse resolution N? are varied to keep the transverse scale L? �xed

at one of the following values: 1�
� (black),

p
2�� (gray), and 2�� (white). Di�erent symbol shapes

correspond to di�erent values of N?. The peaks are normalized to be equal at qx = 0. The points

at zero amplitude mark the transverse range, which is set by the cuto�.
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FIG. 6. The boson structure function fB(y;q?) withK = 21, N? = 7, h:�2(0):i = 1, �2 = 25�2,

and �21 = 10�2. The transverse momentum is varied with qy �xed at zero.
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FIG. 7. The fermion structure function fF with K = 21, N? = 5 to 7, h:�2(0):i = 1, �2 = 25�2,

and �21 = 10�2. Each N? value yields essentially the same result.
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FIG. 8. Same as Fig. 7 but for the Pauli{Villars boson structure function fPV .
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FIG. 9. Same as Fig. 1, but for M2 = 0:1�2.
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FIG. 10. Same as Fig. 1, but for M2 = 5�2 and � = 100�2 and a parameterized �t of

Aya(1� y)be�cy.
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FIG. 11. Same as Fig. 10, but for M2 = 10�2.
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FIG. 12. Same as Fig. 1, but for h:�2(0):i = 5.
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FIG. 13. Comparison of distribution amplitudes '(y) �
R
d2q?�

(1;0)(y; q?). Various values are

considered for the fermion massM , with h:�2(0):i = 1. The values of the numerical parameters are

K = 19, N? = 5, �2 = 50�2 (except for M2 = 5�2 and 10�2 when �2 = 100�2), and �21 = 10�2.

The lines simply connect the computed points, to guide the eye, and the absolute normalization is

arbitrary.
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FIG. 14. Same as Fig. 13 but with the fermion mass �xed at M = � and h:�2(0):i varied.
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