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Abstract

We present a brief pedagogical introduction to the E�ective Electroweak

Chiral Lagrangians, which provide a model independent description of the WW

interactions in the strong regime. When it is complemented with some unita-

rization or a dispersive approach, this formalism allows the study of the general

strong scenario expected at the LHC, including resonances.

1 Introduction

As is well known, the Standard Model (SM), which is a SU(3)C � SU(2)L �
U(1)Y quantum gauge theory, is able to describe all our knowledge about the

strong and electroweak interactions, even at the high level of precision reached

at LEP (see for instance [1]). The SM can be divided in three sectors: The �rst

one is the matter content (quarks and leptons), whose elementary particles
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interact between themselves by mediating bosons that belong to the second

sector. These �elds are the eight gluons associated to the SU(3)C group of

the strong interactions as well as the W+;W� and Z bosons together with the

photon, which are associated to the SU(2)L � U(1)Y group of the electroweak

interactions. Finally, there is the so-called Symmetry Breaking Sector (SBS). It

is responsible for the spontaneous symmetry breaking of the electroweak gauge

group SU(2)L � U(1) down to the electromagnetic group U(1)em. Through

the Higgs mechanism it provides masses for the W+;W� and Z bosons while

leaving the photon massless. In addition, the SBS is also connected with the

matter sector through Yukawa couplings which give rise to the quark and lepton

masses, quark mixing (Cabbibo-Kowayashi-Maskawa matrix) and eventually to

CP violation because of the complex phase in this matrix.

Now we arrive to the �rst important remark of this lecture. In contrast

with the matter and the gauge sectors, the SBS is very poorly known from

the experimental point of view. In fact, several di�erent theoretical scenarios

have been widely discussed in the literature. Generically they can be grouped in

three kinds, the Minimal Standard Model (MSM), the Minimal Supersymmetric

Standard Model (MSSM)[2] and QCD-like theories [3]. Let us brie
y review

the main features and problems of these scenarios.

1.1 Minimal Standard Model

It contains the minimum ingredients to explain the present data. However, it

does not shed much light on possible new physics e�ects and it does not address

several problems, among others:

� The Higgs potential is introduced ad hoc. It is not a gauge interaction

as the rest of the the known forces in Nature such as the strong, the

electroweak or even gravity. The origin and nature of this Higgs �eld

remains a mystery.

� Keeping the mass of this scalar �eld at scales close to the electroweak

symmetry breaking (100 GeV to 1 TeV) requires a very �ne tuning, since

radiative corrections tend to make its mass of the order of the next new

physics scale. This is known as the naturalness problem.

� The electron and top masses fall �ve orders of magnitude apart. The

problem of why the masses present such a hierarchy is not addressed.
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� There are hints in the literature suggesting that the simple realization of

the Higgs sector in the MSM could indeed be a trivial (non-interacting)

quantum �eld theory.

Nowadays the existence of the Higgs is taken for granted by many people as

it was the case for the top quark. However the Higgs is not the top. By

this we mean that the SM model would have not been consistent without the

top quark (it becomes an anomalous gauge theory), whereas the Higgs boson

is not a theoretical need. It is possible to postulate di�erent versions of the

SM di�ering in the SBS which are theoretically consistent. Indeed, in most

of the physical systems that present an spontaneous symmetry breaking (like

chiral symmetry breaking in QCD or, in solid state physics, the Cooper pair

formation, magnetization, etc..,), there is nothing analogous to a fundamental

Higgs �eld.

Nevertheless, for its simplicity, this model is very useful to describe the data,

without additional assumptions.

1.2 Minimal Supersymmetric Standard Model

In this model, an additional symmetry relating fermions and bosons is intro-

duced. As a consequence the Higgs potential is related to the gauge couplings

and the scalar particles appear in a natural way. The advantage of this new

symmetry is that for each fermion loop there is a corresponding boson loop with

similar couplings and masses but opposite sign, thus avoiding the naturalness

problem. However:

� Nature is not supersymmetric. \Soft" breaking terms must be added by

hand in order to break spontaneously the SU(2)L � U(1)Y gauge sym-

metry, without spoiling too much the cancellations needed to solve the

naturalness problem. Those terms break supersymmetry explicitly.

� The values of the parameters in those soft breaking terms (more than

a hundred) are unknown, and they severely limit the predictive power of

these models. The origin of those soft breaking terms are the origin of

further speculation.

� Probably the most robust (soft breaking parameter independent) pre-

diction is that a Higgs should appear below around 120 GeV. Thus this
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particle could have been produced at LEP. So far nothing has been found,

but there is still a small room for discovery. However, if nothing of this

kind is found at the next generation of colliders the low-energy supersym-

metric scenarios would be in serious trouble.

1.3 QCD-like scenario

These models mimic the spontaneous chiral symmetry breaking of QCD and

are generically known as Technicolor (TC). The Higgs does not exist as a fun-

damental �eld although some other composite �elds with di�erent quantum

numbers play a similar role. However

� There is no completely consistent and universally accepted Technicolor

model.

� Predictions are very vague due to the strong nature of the interactions.

� The simplest versions, like a direct rescaling of QCD, are ruled out by

the LEP data or by the appearance of undesired 
avor changing neutral

currents.

Therefore we arrive to the second main remark of this lecture: it possible that

the SBS of the SM has nothing to do with our current theoretical expectations.

At this point one could ask which are the main experimental constraints on

the SBS or, in other words, what we really know about this sector. The main

pieces of our knowledge are the following [4]:

1. First of all there must be a physical system coupled to the SM displaying

a spontaneously symmetry breaking pattern from a global G group to

a subgroup H. This symmetry breaking triggers the Higgs mechanism

that breaks the electroweak gauge group SU(2)L � U(1)Y down to the

electromagnetic group U(1)em. Thus we have SU(2)L � U(1)Y 2 G and

U(1)em 2 H.

2. Since we need three would-be Goldstone bosons in order to give masses

to the W+;W� and the Z gauge bosons, we have dim G � dim H = 3.

3. Experimentally we know that the � parameter (which measures the rel-

ative strength of the charged and neutral weak currents) is very close to

one - apart from some radiative corrections proportional to the hyper-

charge coupling g0 squared. Probably the most natural explanation for
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this fact is to assume that the unbroken H group of the SBS contains

the so called custodial group SU(2)L+R (as it happens in the MSM). Any

other assumption leads to some �ne tuning.

With these conditions on G and H it is very easy to show that the only

possible solution is G = SU(2)L � SU(2)R and H = SU(2)L+R.

4. Finally, from the muon mean life it is possible to obtain the dimensional

parameter v ' 250GeV which sets the scale of the SBS dynamics in the

SM.

At this point it is reasonable to think whether it is possible to build a model

independent description of the SBS. As we will see this can be done by using

the E�ective Electroweak Chiral Lagrangian (EChL), which is based on a sim-

ilar formalism used in low-energy hadron physics, namely, Chiral Perturbation

Theory (ChPT) [5]. As we will see, this approach is especially useful when the

SBS is strongly interacting.

2 The Electroweak Chiral Lagrangian

The EChL provides a phenomenological description of the Goldstone boson

dynamics associated to the symmetry breaking of SU(2)L � SU(2)R down to

SU(2)L+R. As far as we are not introducing any other �eld, it has to be realized

nonlinearly. That will limit the applicability of the approach up to the energies

where the other relevant degrees of freedom show up. In the case of strong

dynamics, we expect these other modes to appear at energies much higher than

v ' 250GeV and the formalism will be very useful. In contrast, for theories

with, for instance, a light Higgs (as in the MSSM), there is no applicability

region for this formalism, but in that case we will have additional information

to disentangle the SBS physics when measuring these light modes.

Therefore, we will be assuming a strong SBS. For simplicity, let us then

switch o� momentarily the gauge �elds, whose interactions with the SBS are

comparatively weak. In such case, no other degrees of freedom are present at

low energies except the Goldstone bosons !a(x), which will be gathered in the

SU(2)L+R matrix

U(x) = exp

�
i!a(x)�a

v

�
; (1)

where the �a are the Pauli matrices.
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A low energy expansion of the amplitudes is nothing but a derivative ex-

pansion of the Lagrangian. Then, the simplest G-invariant Lagrangian relevant

at low energies (with two derivatives) can be written as

L2 =
v2

4
tr @�U@

�U y: (2)

From this Lagrangian it is possible to obtain the exact behavior of the elastic

low-energy scattering amplitude for the Goldstone bosons. Indeed, using the

SU(2) and crossing symmetries, any amplitude can be obtained from that of

!+!� ! !0!0, which is given by

A(s; t; u) =
s

v2
+O

 
s2

v4

!
: (3)

Of course, the Goldstone bosons are not directly observable, since through the

Higgs mechanism they are \eaten" by the W� and Z longitudinal components,

that we will denote, generically, by WL. Indeed, the so-called Equivalence The-

orem [6] (ET) relates the Goldstone bosons amplitudes with the corresponding

longitudinal components of the electroweak gauge bosons for the MSM, as fol-

lows

A(W a
LW

b
L ! W c

LW
d
L) ' A(!a!b ! !c!d) +O

�
MWp
s

�
: (4)

This result is a consequence of the Slavnov-Taylor identities coming from the

SU(2)L � U(1)y gauge symmetry. The O(MW =
p
(s)) corrections can be un-

derstood by noting that the Goldstone bosons are massless in contrast with

the gauge bosons, whose mass is O(100GeV). Note that the ET is a high en-

ergy limit, whereas the EChL is a low energy limit. Indeed, for the EChL the

formulation of the Equivalence Theorem is not so simple [7] but we will not

discuss the details here since, later we will unitarize the amplitudes of the ef-

fective lagrangian and in such case the above formilation is valid (the interested

reader can �nd a complete account of this issue in [5] and [8]). At this point

the following comments are in order:

� First we see that the low energy dynamics of the Goldstone bosons is

dictated by symmetry and the scale v only. In this sense, it is universal,

i.e. independent of the details of the SBS. The amplitudes obtained from

eq.(2) are called the Low Energy Theorems.

� The amplitudes above grow with the energy. Thus, if we assume that

no other particles modify this behavior at low energies, they give rise to
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strong interactions for the Goldstone bosons as well as for the longitudinal

components of the electroweak gauge bosons, according to the Equivalence

Theorem.

� However, the growth of this amplitudes is in con
ict with unitarity around

O(1TeV) energies.

In conclusion, provided there are no other light modes in the SBS, we ex-

pect strongly interacting W 0
Ls. From unitarity constraints we also expect new

physics at the TeV scale, possibly in the form of resonances.

3 Beyond the Low Energy Theorems

In order to switch on the gauge �elds in the low energy EChL we change the

derivatives in eq.(2) into the appropriate covariant derivatives, D�, containing

the electroweak gauge �elds. That is

L2 =
v2

4
trD�U(D

�U)y: (5)

In addition we can introduce the next to leading order (four derivative) terms

[9] in the EChL

L4 = L1

�
trD�UD

�U y
�2

+ L2

�
trD�UD

�U y
�2

+ ::: (6)

where we have only displayed those terms that give rise to O(s2=v4) contri-

butions to the Goldstone boson elastic scattering amplitude. These O(s2=v4)

terms depend on several Li constants, which parameterize our ignorance on

the SBS. For special values we recover some particular models. For example,

the MSM with a 1 TeV Higgs corresponds to L1 = 0:007 and L2 = �0:0022
whereas the simplest TC model with three technicolors has L1 = �0:001 and

L2 = 0:001. In addition, under renormalization these parameters can absorb the

divergences appearing in the one-loop contributions to the amplitudes coming

from L2, which are O(s
2=v4). From precision test of the SM it is possible to set

bounds on some of these parameters. However, these bounds are too weak for

L1 and L2, which are expected to lie in the 10�3 to 10�2 range. That precision

could only be reached after a few years of LHC running at full luminosity.
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4 Unitarization and dispersion Relations

Customarily, the longitudinal gauge boson amplitudes are given in a basis of

states of de�nite angular momentum, J , and the \weak isospin", I, associated to

the SU(2) group. These \partial waves", tIJ are also obtained as an expansion

of the form

tIJ(s) = t
(2)

IJ (s) + t
(4)

IJ (s) +O(s3); (7)

where the superscript refers to the corresponding energy (momentum) power.

As we have already seen, they grow with the energy and violate unitarity around

1TeV. In this basis, the elastic unitarity constraint can be easily written for

physical values of s; it reads

Im tIJ(s) =j tIJ(s) j2 ) Im
1

tIJ(s)
= �1; (8)

which is basically the Optical Theorem. Although the results obtained from

the Chiral Lagrangian break unitarity, they are nevertheless unitary in the

perturbative sense

Imt
(4)

IJ (s) =j t
(2)

IJ (s) j2 ) Im t
(4)

IJ (s)

j t(2)IJ (s) j2
= �1: (9)

It is however possible to obtain unitary amplitudes from the e�ective La-

grangian. Note that from eq.(8) we know exactly the imaginary part of the

inverse of the amplitude. As a consequence, any unitary amplitude will satisfy

1

tIJ(s)
= Re

1

tIJ(s)
� i ) tIJ(s) =

1

Re t�1
IJ (s)� i

: (10)

That is, we only have to approximate the real part of the inverse of the amplitude

t�1
IJ , by means of eq.(7). Formally: Re t�1

IJ = (t
(2)

IJ )
�1[1 � Ret

(4)

IJ =t
(2)

IJ + ::: ].

Finally, using eq.(7) we can write

tIJ(s) =
t
(2)

IJ

1� t
(4)

IJ =t
(2)

IJ

(11)

which is known as the Inverse Amplitude Method (IAM). It can be derived

alternatively, by writing a two subtracted dispersion relation for the inverse

amplitude. Using some extra hypothesis and approximations it is possible to

solve the dispersion relation for tIJ(s) to �nd the same result.

This partial wave is strictly unitary and has the proper analytical structure

with the appropriate cuts. In addition it is able to reproduce poles which can be

interpreted as resonances generated dynamically. Note also that, by expanding

this amplitude in power of s, we recover the chiral low-energy expansion.
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4.1 The Inverse Amplitude Method at work

The IAM method has been successfully applied in a completely di�erent phys-

ical context: the low-energy hadron dynamics [10]. As it is well know, QCD is

the proper theory to describe strong interactions, but it cannot be applied

directly at low energies due to the breaking of standard perturbation the-

ory. However in the limit where the three lightest quarks are massless, the

QCD Lagrangian possesses a global symmetry (chiral symmetry) which ro-

tates right quarks or left quarks between themselves. The symmetry group is

SU(3)L�SU(3)R and for di�erent reasons it is known that it is spontaneously

broken to the SU(3)L+R group. The corresponding Goldstone bosons are iden-

ti�ed with the pseudoscalar mesons �0; ��;K0; �K0 and � and their relative low

physical masses compared with the typical hadronic scale of 1 GeV, can be

considered as a perturbation e�ect due to the very small, but non-zero, quark

masses. Note that the symmetry pattern is very close to that of the SBS (it

would be the same if we just considered two quarks).

As we did before we can gather the !a mesons �elds in an SU(3) matrix as

U(x) = exp(i!a�a=F ), where �a are the Gell-Man matrices and F is basically

the pion decay constant. Once more we can describe the low energy hadron

dynamics in terms of a chiral Lagrangian. This approach is known as Chiral

Perturbation Theory (ChPT)[13]. At the lowest order this Lagrangian is given

by:

L2 =
F 2

4
tr @�U@

�U y: (12)

which reproduces the well know current algebra results in a very simple way. At

the next order (four derivatives) one has additional terms whose precise form

is not relevant here, although some of them have the same structure of those

in eq.(6). As a matter of fact, the formalism that we have presented for the

SBS is inspired in the massless limit of SU(2) ChPT, although rescaled from

F ' 93MeV up to v ' 250GeV. The main di�erence is the existence of real

data on meson physics, from which it is possible to determine the values of the

L4 ChPT Lagrangian parameters, whereas they are undetermined for the SBS.

The amplitudes can now be obtained as a truncated series in powers of

the momentum p2 over 4�F ' 1GeV. This formalism is only suitable at low-

energies up to about 500MeV. We should not extrapolate them naively to

higher energies since they would severely violate unitarity and they would not
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Figure 1: IAM �t to the phase shifts for �� ! �� and �K ! �K. For data references

see5.

reproduce resonances.

However, we can use the IAM to extend the applicability of the e�ective

Lagrangian approach. In Fig.1 we show an example of the results obtained

with the IAM when applied to �� ! �� (analogous to the Goldstone boson

!! ! !!) and �K ! �K scattering. Note that now the data is reproduced

up to approximately 1 GeV. In addition, resonances like the �, � and K� are

correctly reproduced with an associated pole in the second Riemann sheet.

Starting from the corresponding e�ective Lagrangians, the IAM has also

been applied very successfully to other processes with coupled channels[11] or

even nucleons[12], reproducing correctly many other resonances. Thus we arrive

to the conclusion that the IAM greatly improves the range of applicability of

the e�ective Lagrangians and, moreover, it is able to reproduce resonances in

the channels where they are present.

5 Resonances in the SBS

Let us then apply the IAM to the SBS. In this case we do not have experi-

mental information yet, and therefore we do not know the values of the O(p4)
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parameters, which are model dependent. Nevertheless, we expect them to lie

between 10�2 and 10�3 if the SBS is strongly interacting.

For elasticWLWL scattering only two O(p
4) parameters appear in the ampli-

tudes, namely, L1 and L2. By changing their values we can therefore reproduce

the behavior of WLWL scattering in any strongly interacting model. In Fig.3

we show the phase shifts �IJ that we expect in three di�erent models. The

�rst one corresponds to the SM with 1TeV Higgs and, consistently, we see a

resonance in the scalar isoscalar channel (a \Higgs"). The second set of values

mimics a simple TC model with three technicolor and thus presents features

very similar to ChPT (compare with the �� curves in Fig.1), mainly, a vec-

tor resonance (a \techni-�). The last model is chosen to show two behaviors

that deserve further comments. First, it could happen that a resonance be-

comes so broad that it may be hard to identify as a resonance, in such case

we say there is a \saturation" of unitarity. (The situation with the � particle

in QCD is of this kind). Second, we have to remember that in the e�ective

Lagrangian approach we only have a �nite theory order by order in energy, but

it is not renormalizable in the strict sense. Thus, the set of possible consistent

fundamental theories is \smaller" than that of e�ective theories. By that we

mean that there could be a choice of parameters which are not the low-energy

limit of any fundamental theory. That may seem obvious if we take an absurd

value for some parameters, like L1 = 106. But it could also occur for values

that look \reasonable". In such case, however, we would �nd inconsistencies

in the e�ective theory. That happens indeed for the last model in Fig.3, which

yields a pole in the �rst Riemann sheet of the I = 2 channel, which should

not be present in a renormalizable quantum �eld theory. That can be used as

a criterium to exclude a set of parameters. There are several arguments that

support this interpretation[14].

We are now in conditions to study the general resonance spectrum of the

strongly interacting SBS. We only have to vary the values of L1 and L2 in

their expected ranges, and identify what resonances appear below 3 TeV (an

estimate of the LHC WLWL scattering reach). In Fig.5 we presents the results

of this approach[14], which deserves some comments:

� The presence of an scalar resonance is represented by the areas that

contain an \H", whereas vector resonances are represented by a \�". Sat-

uration e�ects are labeled by \SI" for each I = 0; 1; 2 channel.
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Figure 2: Phase shifts expected for di�erent choices of electroweak chiral parameters.
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� For illustrative purposes, we have signaled the pairs of parameters that

mimic some simple scenarios. The black triangles stand at the position of

a QCD-like model with 5 or 3 technicolors. The black dots correspond to

the SM with a Higgs whose tree level mass is 800, 1000 or 1200 GeV.

� Note that there are scenarios where we could �nd two resonances in two

di�erent channels, or a resonance in one channel an a saturation behavior

in another, or two saturation e�ects.

� The black area is the part of parameter space which is excluded by the

appearance of poles in the �rst Riemann sheet, it suggests that we cannot

�nd heavy resonances in the I = 2 channel (doubly charged Higgses). This

di�culty has also been found when trying to construct models with such

particles: there is no model where they are heavier than ' 375GeV [15], a

bound obtained from a renormalization group analysis. In this lecture we

are assuming that no such \light" particles are present. In such case, from

the �gure it seems that either nothing at all or a \saturation" behavior is

possible in that channel.

� Finally, there is a small shaded region where no resonance or saturation

e�ect would be clearly visible. In this region it also seems very hard to

obtain a measurement of just the chiral parameters and probably we would

only get some bounds on their values [16]. In such case, not even with

the IAM we could get any information of other more massive resonances

that may lie ahead.

6 Summary

The main conclusions from the discussion below are the following:

� There is not any fundamental reason for the Higgs (Standard or Super-

symmetric) to exist. We should therefore keep an open mind to alternative

scenarios.

� However unitarity requires new physics to appear before below 1 TeV.

� This new physics could be new particles in the best of the worlds or even

a completely new and unexpected physics.
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Figure 3: Resonance spectrum of the strong SBS in the L1; L2 plane. The black area

is excluded. On the white areas, we have represented broad resonances or saturation

e�ects in the I channel by SI ; Higgs-like narrow resonances by H and �-like narrow

resonances by �. In the grey area there is no saturation of unitarity, nor resonances,

below 3 TeV. The black dots represent the MSM with MH = 800; 1000; 1200GeV and

the triangles a QCD-like model with 3 or 5 technicolors.

� In the worst case we will have an enhancement of theWW production. It

will be di�cult to observe at the LHC but not impossible. A lot of work

should be done in this direction and chiral Lagrangians, supplemented

with the inverse amplitude method, can provide a model independent

approach to new phenomena like the strong WLWL scattering and the

resonances that may appear over the LHC energy range.

� In any case we have to wait for the LHC with an open mind. Nature will

tell us.

Acknowledgments

This work has been partially supported by the Ministerio de Educaci�on y Cien-

cia (Spain)(CICYT AEN97-1693) and the U.S. Department of Energy under

contract DE-AC03-76SF00515. J.R.P. thanks the Theory Group at SLAC for

14



their kind hospitality.

References

References

[1] C. Ma~na and M. Mart��nez, Nuc. Phys. Proc. Suppl. B31 (1993)163.

[2] H. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75.

[3] E. Farhi and L. Susskind, Phys. Rep. 74 (1981) 277.

[4] M.S. Chanowitz, Ann. Rev. Nucl. Part. Sci. 38 (1988) 323.

[5] E�ective Lagrangians for the Standard Model A. Dobado, A. G�omez-

Nicola, A.L. Maroto. and J.R. Pel�aez. Texts and Monographs in Physics.

Springer Verlag (1997).

[6] J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Phys. Rev. D10 (1974)

1145

B.W. Lee, C. Quigg and H. Thacker, Phys. Rev. D16 (1977) 1519

M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379

[7] H. J. He, Y. P. Kuang, X. Y. Li , Phys. Lett. B329 (1994) 278. A. Dobado

and J.R. Pel�aez,Phys.Lett. B329 (1994) 469; Nucl. Phys. B425 (1994) 110.

[8] A. Dobado, J.R. Pel�aez and M.T. Urdiales, Phys.Rev. D56 (1997) 7133.

[9] A. Dobado and M.J. Herrero, Phys.Lett. B228 (1989) 495.

[10] A. Dobado and J.R. Pel�aez, Phys. Rev. D56 (1997) 3057.

[11] J.A. Oller, E. Oset and J.R. Pel�aez, Phys. Rev. Lett. 80 (1998) 3452; hep-

ph/9804209, SLAC-PUB-7787; F. Guerrero, J. A. Oller, hep-ph/9805334.

[12] E. Oset and A. Ramos, nucl-th/9711022 .

[13] S. Weinberg, Physica A96 (1979) 327

J. Gasser and Leutwyler, Ann. Phys. 158 (1984) 142.

[14] J.R. Pel�aez, Phys. Rev. D55 (1997) 4193.

[15] H. Georgi and M. Machaceck, Nucl. Phys. 262 (1985) 463. R.S. Chivukula,

M.J. Dugan and M.Golden, Phys. Lett. B366 (1994) 62.

[16] A. Dobado, M.J. Herrero, J.R. Pel�aez, E. Ruiz Morales and M.T. Urdiales,

Phys.Lett. B352 (1995) 400.

15


