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Effect of Centrifugal Transverse
Wakefield for Microbunch in Bend

G. V. Stupakov
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Abstract. We calculate centrifugal force for a short bunch in vacuum moving in a
circular orbit and estimate the emittance growth of the beam in a bend due to this
force.

INTRODUCTION

Many of the basic features of the coherent synchrotron radiation (CSR) of short
bunches and its effect on beam dynamics in accelerators are now well established
[1–4]. The effect is usually described in terms of the longitudinal force, or wakefield,
that causes the energy loss in the beam, and also redistributes the energy between
the particles by accelerating the head and decelerating the tail of the bunch. Coher-
ent radiation becomes most important for short bunches and high currents. More
subtle features of CSR such as transition effect due to the entrance to and exit
from the bend [5], CSR force in the undulator [6], and shielding due to the close
metallic boundaries [7] have been also studied.

Much less is known about the transverse force in a short bunch moving on a
circular orbit. The problem has been treated in several papers beginning from R.
Talman’s work [8], who pointed out that the centrifugal force of a rotating bunch
can result in a noticeable tune shift of betatron oscillations. Later, an important
correction to the Talman paper has been added in Ref. [9], where it was shown
that due to the energy variation in the bunch, the effect of the transverse force
proportional to R−1 is cancelled, and the residual effect is of the order of R−2, that is
much smaller than originally predicted. Recently, however, Derbenev and Shiltsev
[10] found the centrifugal force of the order of R−1 that differs from Talman’s result
by a logarithmic factor only.

Taking into account the existing controversy in the literature, in this paper,
we consider the transverse force in a bunch based on simple physical arguments,
starting from a dc beam. We will derive the centrifugal force for a relativistic
coasting beam in vacuum, and then generalize the result for a short bunch, and
estimate its effect on the emittance growth in a bend.



Throughout this paper we assume ultrarelativistic beam, v = c, moving on a
circular orbit of radius R.

LIENARD-WIECHERT POTENTIALS AND FIELDS

The electromagnetic field of a point charge moving in vacuum, as is well known,
can be found using Lienard-Wiechert potentials, and the fields can be explicitly
expressed in terms of particle’s velocity and acceleration at the retarded time [11].
We will use the coordinate system shown in Fig. 1. For γ = ∞, the fields of the
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FIGURE 1. Coordinate system. Shown are locations of the particle at time t, the point P, the

observation point in front of the particle at an angle ψ, and the point where the radiation occurred

at the retarded time (at an angle α behind the particle). Vector Rret connects the radiation point

with the observation point.

charge are given by the following equations,

E =
q

c

Rret ×
[

(Rret − Rretβret) × β̇ret

]

(Rret − Rretβret)
3

, (1)

H =
1

Rret

[E × Rret], (2)

where the distance Rret shown in Fig. 1 connects the position of the particle at
the radiation time tret and the observation point, Rret = c(t− tret), βret is the unit

vector (v = c) directed along the particle velocity at the radiation time, and β̇ret

is the derivative of the velocity at that time.
If the transverse size of the bunch σr is much smaller than its length σz, only the

field on the orbit interacts with the beam. In this case, the observation point can
be chosen on the circle, as shown in Fig. 1, and Eqs. (1) and (2) can be written as
(see Fig. 1 for notation)



Es(ψ) =
q

R2

2 sin 1

2
(α + ψ)

[α− sin(α + ψ)]3

×
{

2(sin
1

2
(α+ ψ))3

[

cos
1

2
(α + ψ) − cos(α + ψ)

]

− sin(α + ψ)[α− sin(α + ψ)]} , (3)

Eρ(ψ) =
q

R2

2 sin 1

2
(α + ψ)

[α− sin(α + ψ)]3

×
{

2(sin
1

2
(α + ψ))3

[

sin
1

2
(α+ ψ) − sin(α + ψ)

]

+ cos(α+ ψ)[α− sin(α+ ψ)]} , (4)

Hz(ψ) = Es sin
1

2
(α + ψ) − Eρ cos

1

2
(α + ψ), (5)

where Es(ψ) is the longitudinal and Eρ(ψ) – radial components of the electric field,
Hz(ψ) is the vertical magnetic field, ψ = s/R, and the angle α is related to the
position of the observation point by equation

α = 2| sin 1

2
(ψ + α)|. (6)

The plot of the longitudinal field as a function of the position on the circle is shown
in Fig. 2.

The electric field Es per unit charge is equal to the longitudinal wake w. For
small distances, s≪ R, one finds from Eqs. (3) and (6) ,

w(s) =
1

q
Es(s) ≈

{

2(3s)−4/3R−2/3, s > 0,
0, s < 0.

(7)

For a short bunch (σz ≪ R) with a given charge distribution λ(s) (
∫

λ(s)ds = 1),
the longitudinal wake for the bunch is defined as a convolution with the distribution
function,

wbunch(s) =
∫

∞

−∞

w(s− s′)λ(s′)ds′ (8)

=
2

33/4R2/3

∫

∞

s

λ(s′)ds′

(s′ − s)4/3
. (9)

The problem here is that the above integral diverges when s′ → s. To overcome this
difficulty, we can use a trick and integrate the last equation by parts (neglecting
the nonintegral term!):

wbunch(s) =
2

31/4R2/3

∫

∞

0

ds′

(s′ − s)1/3

dλ(s′)

ds′
. (10)
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FIGURE 2. Longitudinal electric field on a circular orbit as a function of angle ψ counted from

the location of the particle. The arrows show asymptotic expressions for the field in the vicinity

of the particle.

Now the integral converges, and gives the right result for the wake [2,3]. The
justification for this trick can be found in a more accurate consideration of the
fields in a small vicinity of the particle [4,5].

We also mention here that although we obtained the above result assuming an
infinitely thin beam, the applicability condition for the longitudinal wake is actually

very mild , σr/σz ≪ (R/σz)
1/3 [3]. At this point we are tempted to apply the

same approach for the calculation of the transverse force in a thin bunch. The
transverse force (per unit charge) Fρ for an ultrarelativistic bunch is Fρ = Eρ+Hz.
The plots of Eρ and Hz are shown in Fig. 3, and the transverse force as a function
of angle ψ on the circular orbit is shown in Fig. 4. Asymptotically, for small
positive ψ in front of the particle Fρ ≈ q/3R2ψ; behind the particle, for negative
small ψ, Fρ ≈ q/R2|ψ|. Again, if we want to convolve this force with the bunch
distribution and to find the transverse wakefield for the bunch, as we did above for
the longitudinal wake, the integral would diverge, and there is no trick that could
make it convergent. As we will see in the next section, there is a profound reason
for such divergence: the transverse force depends on the beam radius σr that we
neglected in the above consideration.

TRANSVERSE FORCE – COASTING BEAM

To make our consideration of the transverse force as simple as possible we begin
here from a problem of a coasting relativistic dc beam of radius a, shown in Fig.
5. To find the transverse force fρ acting on a unit length of the beam in this case,
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FIGURE 3. Radial electric field Eρ and vertical magnetic field Hz on the orbit. Arrows show

the asymptotic expressions for the fields near the particle.
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FIGURE 4. Transverse force per unit charge Fρ as a function of angle ψ. Arrows show asymp-

totic expressions for the force near the particle.

we will use the energy principle that relates the force to the variation of the energy
of the system under infinitesimally small displacement [12]. Since the electric and
magnetic fields of a coasting beam are time independent, the electromagnetic energy
of the beam is the sum of the electrostatic and magnetic energies. To find them,
we need to know the capacitance and inductance of a charged rotating ring, which
can be found in textbooks on electrodynamics (see, e.g., [12]).
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FIGURE 5. Coasting beam of radius a moving along a circular orbit in vacuum.

The inductance of a circular current in vacuum is given by the following formula,

L = 4πR
(

ln
8R

a
− 7

4

)

. (11)

Differentiating the magnetic energy LI2/2c2 with respect to the circumference of
the beam, we obtain the radial magnetic force per unit length of the ring,

fm =
∂(LI2/2c2)

∂(2πR)
=

I2

Rc2

(

ln
8R

a
− 3

4

)

. (12)

Analogously, the capacitance C of the uniformly charged ring is

C−1 =
1

πR

(

ln
8R

a
+

1

4

)

, (13)

and the electric force per unit length is equal to the derivative of the electrostatic
energy with respect to the circumference (with the minus sign),

fe = −∂(Q
2/2C)

∂(2πR)
=

Q2

4π2R3

(

ln
8R

a
− 3

4

)

. (14)

Taking into account that for an ultrarelativistic beam Q = 2πRI/c, we find that
the electric and magnetic forces are equal, which is expected in the limit v = c.

Adding Eq. (12) and (14) gives the total force,

fρ = fm + fe =
I2

Rc2

(

2 ln
8R

a
− 3

2

)

. (15)

We can also easily find the force, if the beam propagates in a circular pipe of
radius b. In this case the capacitance of the ring is,

C−1 =
1

πR

(

ln
b

a
+

1

4

)

, (16)



with the electric force

fe = −∂(Q
2/2C)

∂(2πR)
=

Q2

4π2R3

(

ln
b

a
− 3

4

)

. (17)

Calculation of the magnetic force in this case shows that, as above, it is equal to
the electric one, and the total force is twice the electric force,

fρ = fm + fe = 2fe =
I2

Rc2

(

2 ln
b

a
− 3

2

)

. (18)

The above derivation is very simple, but it does not tell how the centrifugal force
varies in the cross section of the beam. To answer this question, we need to find
the electric and magnetic fields inside the beam. For the beam in vacuum, we will
find these fields using a perturbation theory in small parameter a/R.

As a first step in calculations, we need the electrostatic potential φ and the vector
potential Aθ at distances far from the center of the beam in comparison with the
beam radius, r =

√
x2 + z2 ≫ a, but close, relative to the orbit size, R ≫ r. This

approximation is equivalent to the limit of infinitely thin beam, a → 0, and the
result can be found in textbooks (see, e.g. [12]),

φ(ρ, z) = 2µ

√

R

ρ
κK(κ2), (19)

Aθ(ρ, z) =
(

2

κ2
− 1

)

φ− 4µ

√

R

ρ
κ−1E(κ2), (20)

where κ2 = 4ρR/[(ρ+R)2+z2], ρ is the radius counted from the center of the orbit,
and µ is the charge per unit length. Expanding this expression in the vicinity of
the beam, x = ρ− R, r =

√
x2 + z2 ≪ R, one finds

φ = −2µ
(

1 − x

2R

)

ln

√
x2 + z2

8R
+ µ

x

R
+ . . . , (21)

Aθ = φ− 4µ
(

1 − x

2R

)

+ . . . . (22)

To find the potential φ inside the beam we need to solve the Poisson equation,

∆φ =
1

ρ

∂

∂ρ
ρ
∂φ

∂ρ
+
∂2φ

∂z2
= −4πen(ρ, z), (23)

where n is the particle density in the beam. Using the coordinate x, ρ = R+x, x≪
R, we can expand the first term in the equation keeping only linear terms in R−1,



∂2φ

∂x2
+
∂2φ

∂z2
= −4πen− 1

R

∂φ

∂x
+O(R−2). (24)

Let us assume that φ = φ0 +φ1, where φ0 is the potential in the limit R→ ∞, and
φ1 is linear in R−1, φ1 ≪ φ0. In the zeroth approximation, we have

∂2φ0

∂x2
+
∂2φ0

∂z2
= −4πen. (25)

For a constant density beam, n = const for r < a, the solution of Eq. (25) is

φ0 = µ

(

1 − r2

a2

)

+ 2µ ln
8R

a
, r < a,

φ0 = −2µ ln
r

8R
, r > a, (26)

where µ = πa2en is the beam charge per unit length. In Eq. (26) we took into
account that in the region a ≪ r ≪ R it should match the axisymmetric part of
the asymptotic expression φ ≈ 2µ ln(8R/r) which follows from Eq. (21). In the
first order, the potential φ1 satisfies the equation

∂2φ1

∂x2
+
∂2φ1

∂z2
= − 1

R

∂φ0

∂x
. (27)

The solution can be found by solving Eq. (27) and using as a boundary condition
the asymptotic behaviour for large r, given by Eq. (21). The potential φ1 inside
the beam is,

φ1 =
µ

R
x

(

1 +
r2

4a2
+ ln

a

8R

)

, r < a. (28)

In a similar fashion, we can find the vector potential Aθ that satisfies the equation

∆Aθ = −4πen, (29)

but has a different asymptotic condition at large r, Eq. (22). The result is

Aθ0 = −µ
(

r2

a2
+ 2 ln

a

8R
− 3

)

, r < a,

Aθ1 =
µ

R
x

(

3 +
r2

4a2
+ ln

a

8R

)

, r < a. (30)

It is interesting to note, that although φ and Aθ satisfy the same equation (see
Eq. (23), and Eq. (29)), Aθ 6= φ due to different asymptotic conditions at large r.

Using Eqs. (28) and Eq. (30) for the potentials, one can find the fields inside the
beam and calculate the distribution of the transverse force over the cross section of
the bunch. This force, as a function of radius r is given by the following equation,



Fρ =
µ

R

(

−1 − r2

a2
+ 2 ln

8R

a

)

. (31)

We see that the force has a parabolic profile with the maximum value on the axis
of the beam. Averaging this force over the cross section yields

F̄ρ =
µ

R

(

2 ln
8R

a
− 3

2

)

. (32)

To compare this result with Eq. (15), we need to take into account that µ = I/c
and the force per units length of the beam fρ equals the force per unit charge Fρ
multiplied by I/c. With those factors, we conclude that both results agree with
each other.

Using Eq. (31) and (32) we can also find the relative difference between the force
and its average value

Fρ − F̄ρ
F̄ρ

=
1 − 2r2/a2

4 ln (8R/a) − 3
. (33)

For a thin bunch, when ln(8R/a) ≫ 1, the variation of the force in the cross section
is relatively small.

At this point, it is instructive to consider the transverse particle motion in a
coasting beam under the influence of the centrifugal force. Such motion in the
horizontal plane, z = 0, is governed by the following equation

x′′ +Kx =
eFρ(x)

E
+

1

R(s)

∆E

E
, (34)

where K is the external focusing, and ∆E is the particle energy variation arising
due to the potential inside the beam, ∆E = −eφ(x),

x′′ +Kx =
e

E

(

Fρ −
φ

R

)

. (35)

For z = 0, from Eqs. (26) and (31) we have

φ = µ

(

1 − x2

a2

)

+ 2µ ln
8R

a
, (36)

Fρ =
µ

R

(

2 ln
8R

a
− 1 − x2

a2

)

.

We see that Fρ − φ/R = −2µ/ρ does not depend on x, which means that the
centrifugal force does not contribute to the betatron tune in first order in R−1, in
agreement with Ref. [9]. The difference Fρ − φ/R also agrees with the value of the
effective centripetal force found in Ref. [10].



SHORT BUNCH

To calculate the transverse force for a short bunch, we will use both Lienard-
Wiechert fields and the result found in the previous section for a coasting beam.
We will assume that the bunch density is constant in the cross section within the
radius σr = a, and the longitudinal charge distribution per unit length is given by
µ(s) with the rms bunch length σz .

To find the force Fρ acting on unit charge in the bunch at point s = s0, we select
a small slice of the bunch of length ∆s, such that σz ≫ ∆s ≫ a, with a local
density µ(s0), and calculate the contribution to the force separately from the slice
and from the rest of the beam. First, let us find the contribution to the force from
the bunch excluding the slice. This can be done by integrating the force shown in
Fig. 4. Since the force from a particle of charge q located at point s ahead of the
point s0 is equal to q/R(s − s0), the contribution from the part of the bunch in
front of the slice is

1

R

∫

∞

s0+∆s/2

µ(s′)ds′

s− s′
= −µ(s0)

R
ln

∆s

2R
− 1

R

∫

∞

s0
ln

(

s′ − s

R

)

dµ(s′)

ds′
ds′. (37)

In the second integral, we extended the integration region from s0, because ∆s is
small, and the integral converges at the lower limit. Similarly, the force from a
particle behind the point s0 is equal to q/3R(s0−s), and the contribution from the
part of the bunch behind the slice is

1

3R

∫ s0−∆s/2

−∞

µ(s′)ds′

s− s′
= −µ(s0)

3R
ln

∆s

2R
+

1

3R

∫ s0

−∞

ln

(

s− s′

R

)

dµ(s′)

ds′
ds′. (38)

To find the contribution to the force from the slice itself , we will use the following
trick. Consider a circular dc beam of density µ = µ(s0) and select a slice ∆s with
its center located at ψ = 0. From the previous section, we know that the force in
this case does not depend on position and is given by Eq. (32). If we subtract from
this force the contribution F̃ of the part of the circle external to the slice, that is
the part occupying the region ∆ψ/2 < ψ < 2π − ∆ψ/2, where ∆ψ = ∆s/R, we
will find the force of the slice itself. The quantity F̃ is equal

F̃ =
∫ 2π−∆ψ/2

∆ψ/2
Fρ(ψ)dψ =

∫ 2π−∆ψ/2

∆ψ/2
[Eρ(ψ) +Hz(ψ)]dψ, (39)

where Eρ(ψ) and Hz(ψ) are given by Eqs. (4) and (5) with q substituted by the
charge per unit angle µR. The result of the integration in the limit of small ∆s is

F̃ =
∫ 2π−∆ψ/2

∆ψ/2
Fρ(ψ)dψ =

µ

R

(

A+
4

3
ln

R

∆s

)

, (40)

where the constant A = 3.33 was found from numerical integration. If we now
subtract this result from the force of the dc current, Eq. (32), the difference
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µ(s0)

R

(

2 ln
8R

a
− 3

2

)

− µ(s0)

R

(

A +
4

3
ln

R

∆s

)

(41)

is equal to the force induced by the slice at its center.
Summing Eqs. (37), (38) and (41) gives the total transverse force in a short

bunch:

F̄ρ(s) =
µ(s)

R

(

2 ln
8R

a
− 3.91

)

+
1

R

∫

∞

0

ln ξ
(

1

3
µ′(s− ξ) − µ′(s+ ξ)

)

dξ. (42)

As we see from this equation, the first term in this force is local – it depends on the
charge density at the observation point. This term also logarithmically depends on
the bunch radius a. The second term involves the distribution of the charge in the
bunch. The plot of the force for a Gaussian bunch for several different ratios R/a
is shown in Fig. 6. As we see, for large values of R/a, typical in accelerators with
short bunches, the dominant contribution comes from the term that is proportional
to the local current in the bunch.

NUMERICAL ESTIMATES

In this section, we estimate the effect of the transverse force on the emittance
growth of a bunch passing through a bend and compare it with the emittance
growth due to the longitudinal CSR force. We start from the longitudinal CSR



wake. When the beam passes through the magnet, the energy within the bunch
changes, and due to the variation of the energy, the deflection angle ∆x′ for different
slices of the bunch also varies. This variation is given by the following formula,

∆x′(s) =
θwbunch(s)Ne

2Lb
2E

, (43)

where θ is the deflection angle for the nominal energy, θ ≈ Lb/R, Lb is the length
of the bend, and E is the beam energy. For a short bend, the variance of the
deflection angle is proportional to the increase of the projected emittance ∆ǫN (we
assume that ∆ǫN ≪ ǫN ),

∆ǫN =
1

2
γβ〈(∆x′ − 〈∆x′〉)2〉, (44)

where β is the beta function at the location of the bend. For a Gaussian bunch,
using Eq. (10), we find

∆ǫN = 7.5 × 10−3 β

γ

(

NreL
2
b

R5/3σ
4/3
z

)2

. (45)

To estimate the effect numerically, we will use the parameters of one of the
magnets of the LCLS bunch compressor [13]: θ = 3.6◦, Lb = 1.5 m, E = 6 GeV,
σz = 60 µm, N = 6 × 109, R = 24 m, β = 10 m. Putting these numbers into Eq.
(45) gives

∆ǫN = 4.2 × 10−8 m, (46)

which is about 4% of the nominal emittance in the LCLS [14].
To estimate the emittance growth due to the transverse wake, we note that the

transverse force in the bend deflects the slice by

∆x′(s) =
1

E
F̄ρ(s), eLb (47)

where F̄ρ is the centrifugal force averaged over the cross section. Again, using Eq.
(44) we find

∆ǫN ≈ 2.5 × 10−2 β

γ

(

ΛNreLb
Rσz

)2

, (48)

where Λ is a logarithmic factor equal to ln(8R/a) if the beam travels in vacuum.
To approximately take into account the effect of the walls of the vacuum chamber,
we will use for Λ the value ln(b/a) following from Eq. (18). Assuming b/a = 150,
that gives Λ = 5, we find

∆ǫN = 1.6 × 10−7 m, (49)

that is about four times larger than the longitudinal effect.



CONCLUSION

We found that the centrifugal force for a short bunch is approximately given by

F̄ρ(s) ≈ Λ
λ(s)

R
, (50)

where Λ is a logarithmic factor, typically of the order of several units. The presence
of the conducting walls does not eliminate the transverse force and only modifies
the factor Λ. Although the centrifugal force does not contribute to the tune shift
in a circular accelerator, it does effect the transverse motion of the beam. One of
the examples, considered in this paper, is the emittance growth of a short bunch
in a magnetic compressor. In this case, the ratio of the emittance growth due to
the centrifugal force and that due to unshielded CSR wake is of the order

Λ2

(

R

Lb

)2 (σz
R

)2/3

. (51)

The relative role of the transverse force becomes essential for short bends (although
the gross emittance increase goes down with Lb).
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