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Abstract

Commensurate scale relations are perturbative QCD predictions which relate ob-

servable to observable at �xed relative scale, such as the \generalized Crewther rela-

tion", which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering

sum rules to measurements of the e+e� annihilation cross section. All non-conformal

e�ects are absorbed by �xing the ratio of the respective momentum transfer and en-

ergy scales. In the case of �xed-point theories, commensurate scale relations relate

both the ratio of couplings and the ratio of scales as the �xed point is approached.

The relations between the observables are independent of the choice of intermediate

renormalization scheme or other theoretical conventions. Commensurate scale rela-

tions also provide an extension of the standard minimal subtraction scheme, which is

analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits

the physical properties of the e�ective charge �V (Q
2) de�ned from the heavy quark

potential. The application of the analytic scheme to the calculation of quark-mass-

dependent QCD corrections to the Z width is also reviewed.
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1 Introduction

One of the central problems in constructing precision tests of a quantum �eld theory

such as quantum chromodynamics is the elimination of theoretical ambiguities such

as the dependence on the renormalization scale � in perturbative expansions in the

coupling �s(�). However, any prediction which relates one physical quantity to an-

other cannot depend on theoretical conventions such as the choice of renormalization

scheme or renormalization scale. This is the principle underlying \commensurate

scale relations" (CSR) [1], which are general QCD predictions relating physical ob-

servables to each other. For example, the \generalized Crewther relation", which

is discussed in more detail below, provides a scheme-independent relation between

the QCD corrections to the Bjorken (or Gross Llewellyn-Smith) sum rule for deep

inelastic lepton-nucleon scattering, at a given momentum transfer Q, to the radia-

tive corrections to the annihilation cross section �e+e�!hadrons(s), at a corresponding

\commensurate" energy scale
p
s. [1, 2] The speci�c relation between the physical

scales Q and
p
s reects the fact that the radiative corrections to each process have

distinct quark mass thresholds.

The generalized Crewther relation can be derived by calculating the QCD radiative

corrections to the deep inelastic sum rules and Re+e� in a convenient renormalization

scheme such as the modi�ed minimal subtraction scheme MS. One then algebraically

eliminates �MS(�). Finally, BLM scale-setting [3] is used to eliminate the �-function

dependence of the coe�cients. The form of the resulting relation between the ob-

servables thus matches the result which would have been obtained had QCD been a

conformal theory with zero � function. The �nal result relating the observables is

independent of the choice of intermediate MS renormalization scheme.

In quantum electrodynamics, the running coupling �QED(Q
2), de�ned from the

Coulomb scattering of two heavy test charges at the momentum transfer t = �Q2, is

taken as the standard observable. Similarly, one can take the momentum-dependent

coupling �V (Q
2), de�ned from the potential scattering for heavy color charges, as a

standard QCD observable. Commensurate scale relations between �V and the QCD
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radiative corrections to other observables have no scale or scheme ambiguity, even

in multiple-scale problems such as multijet production. As is the case in QED, the

momentum scale which appears as the argument of �V reect the mean virtuality

of the exchanged gluons. Furthermore, we can write a commensurate scale relation

between �V and an analytic extension of the �MS coupling, thus transferring all of

the unambiguous scale-�xing and analytic properties of the physical �V scheme to

the MS coupling.

Commensurate scale relations thus provide fundamental and precise scheme-independent

tests of QCD, predicting how observables track not only in relative normalization, but

also in their commensurate scale dependence.

2 The Generalized Crewther Relation

Any perturbatively calculable physical quantity can be used to de�ne an e�ective

charge [4, 5, 6] by incorporating the entire radiative correction into its de�nition.

All such e�ective charges �A(Q) satisfy the Gell-Mann-Low renormalization group

equation. In the case of massless quarks, the �rst two terms in the perturbative

expansion for the � function of each e�ective charge, �0 and �1, are universal; di�erent

schemes or e�ective charges only di�er through the third and higher coe�cients.

Any e�ective charge can be used as a reference running coupling constant in QCD

to de�ne the renormalization procedure. More generally, each e�ective charge or

renormalization scheme, including MS, is a special case of the universal coupling

function �(Q; �n).

For example, consider the Adler function [7] for the e+e� annihilation cross section

D(Q2) = �12�2Q2 d

dQ2
�(Q2); �(Q2) = � Q2

12�2

Z
1

4m2
�

Re+e�(s)ds

s(s+Q2)
: (1)

The entire radiative correction to this function is de�ned as the e�ective charge

�D(Q
2) :

D
�
Q2=�2; �s(�

2)
�

= D
�
1; �s(Q

2)
�

(2)
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where CF =
N2
C
�1

2NC
: The coe�cient CL(Q

2) appears at the third order in perturbation

theory and is related to the \light-by-light scattering type" diagrams. (Hereafter �s

will denote the MS scheme strong coupling constant.) Similarly, we can de�ne the

entire radiative correction to the Bjorken sum rule as the e�ective charge �g1(Q
2)

where Q is the corresponding momentum transfer:Z 1

0
dx
h
g
ep
1 (x;Q

2)� gen1 (x;Q2)
i
� 1

6

�����gAgV
�����CBj(Q

2) =
1

6

�����gAgV
�����
"
1� 3

4
CF

�g1(Q
2)

�

#
: (3)

It is straightforward to algebraically relate �g1(Q
2) to �D(Q

2) using the known ex-

pressions to three loops in the MS scheme. If one chooses the renormalization scale to

resum all of the quark and gluon vacuum polarization corrections into �D(Q
2), then

the �nal result turns out to be remarkably simple [2] (b� = 3=4CF �=�) :

b�g1(Q) = b�D(Q�)� b�2
D(Q

�) + b�3
D(Q

�) + � � � ; (4)

where

ln

 
Q�2

Q2

!
=

7

2
� 4�(3) +

 
�D(Q

�)

4�

!"�
11

12
+
56

3
�(3)� 16�2(3)

�
�0

+
26

9
CA �

8

3
CA�(3)�

145

18
CF �

184

3
CF�(3) + 80CF�(5)

#
: (5)

where in QCD, CA = NC = 3 and CF = 4=3. This relation shows how the coe�cient

functions for these two di�erent processes are related to each other at their respective

commensurate scales. We emphasize that the MS renormalization scheme is used only

for calculational convenience; it serves simply as an intermediary between observables.

The renormalization group ensures that the forms of the CSR relations in perturbative

QCD are independent of the choice of an intermediate renormalization scheme.

The Crewther relation was originally derived assuming that the theory is confor-

mally invariant; i.e., for zero � function. In the physical case, where the QCD coupling

runs, all non-conformal e�ects are resummed into the energy and momentum transfer
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scales of the e�ective couplings �R and �g1. The general relation between these two

e�ective charges for nonconformal theory thus takes the form of a geometric series

1� b�g1 = [1 + b�D(Q�)]�1 : (6)

We have dropped the small light-by-light scattering contributions. This is again a

special advantage of relating observable to observable. The coe�cients are indepen-

dent of color and are the same in Abelian, non-Abelian, and conformal gauge theory.

The non-Abelian structure of the theory is reected in the expression for the scale

Q�.

Is experiment consistent with the generalized Crewther relation? Fits [8] to the

experimental measurements of the R-ratio above the thresholds for the production

of cc bound states provide the empirical constraint: �R(
p
s = 5:0 GeV)=� ' 0:08 �

0:03: The prediction for the e�ective coupling for the deep inelastic sum rules at

the commensurate momentum transfer Q is then �g1(Q = 12:33 � 1:20 GeV)=� '
�GLS(Q = 12:33�1:20 GeV)=� ' 0:074�0:026:Measurements of the Gross-Llewellyn

Smith sum rule have so far only been carried out at relatively small values of Q2

[9, 10]; however, one can use the results of the theoretical extrapolation [11] of the

experimental data presented in [12]: �extrapol
GLS (Q = 12:25 GeV)=� ' 0:093 � 0:042:

This range overlaps with the prediction from the generalized Crewther relation. It is

clearly important to have higher precision measurements to fully test this fundamental

QCD prediction.

3 General Form of Commensurate Scale Relations

In general, commensurate scale relations connecting the e�ective charges for observ-

ables A and B have the form

�A(QA) = �B(QB)

 
1 + r

(1)

A=B

�B(QB)

�
+ r

(2)

A=B

�B(QB)

�

2

+ � � �
!
; (7)

where the coe�cients rnA=B are identical to the coe�cients obtained in a conformally

invariant theory with �B(�B) � (d=d lnQ2)�B(Q
2) = 0. The ratio of the scales
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QA=QB is thus �xed by the requirement that the couplings sum all of the e�ects of

the non-zero � function. In practice the NLO and NNLO coe�cients and relative

scales can be identi�ed from the avor dependence of the perturbative series; i.e. by

shifting scales such that the NF -dependence associated with �0 = 11=3CA�4=3TFNF

and �1 = �34=3C2
A + 20

3
CATFNF + 4CFTFNF does not appear in the coe�cients.

Here CA = NC , CF = (N2
C � 1)=2NC and TF = 1=2. The shift in scales which gives

conformal coe�cients in e�ect pre-sums the large and strongly divergent terms in the

PQCD series which grow as n!(�0�s)
n, i.e., the infrared renormalons associated with

coupling-constant renormalization. [13, 14, 15, 16]

The renormalization scales Q� in the BLM method are physical in the sense that

they reect the mean virtuality of the gluon propagators. This scale-�xing proce-

dure is consistent with scale �xing in QED, in agreement with in the Abelian limit,

NC ! 0. [17] [3, 18, 19, 20] The ratio of scales �A=B = QA=QB guarantees that

the observables A and B pass through new quark thresholds at the same physical

scale. One can also show that the commensurate scales satisfy the transitivity rule

�A=B = �A=C�C=B; which ensures that predictions are independent of the choice of an

intermediate renormalization scheme or intermediate observable C:

4 Commensurate Scale Relations and Fixed Points

In general, we can write the relation between any two e�ective charges at arbitrary

scales �A and �B as a correction to the corresponding relation obtained in a confor-

mally invariant theory:

�A(�A) = CAB[�B(�B)] + �B[�B(�B)]FAB[�B(�B)] (8)

where

CAB[�B] = �B +
X
n=1

C
(n)
AB�

n
B (9)

is the functional relation when �B[�B] = 0. In fact, if �B approaches a �xed point

�B where �B[�B] = 0, then �A tends to a �xed point given by

�A ! �A = CAB[�B]: (10)
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The commensurate scale relation for observables A and B has a similar form, but in

this case the relative scales are �xed such that the non-conformal term FAB is zero.

Thus the commensurate scale relation �A(QA) = CAB[�B(QB)] at general commen-

surate scales is also the relation connecting the values of the �xed points for any

two e�ective charges or schemes. Furthermore, as � ! 0, the ratio of commensurate

scales Q2
A=Q

2
B becomes the ratio of �xed point scales Q

2

A=Q
2

B as one approaches the

�xed point regime.

5 Implementation of �V Scheme

Is there a preferred e�ective charge which we should use to characterize the cou-

pling strength in QCD? In QED, the running coupling �QED(Q
2), de�ned from the

potential between two in�nitely heavy test charges, has traditionally played that

role. In the case of QCD, the heavy-quark potential V (Q2) is de�ned as the two-

particle-irreducible scattering amplitude of test color charges; i.e. the scattering of an

in�nitely heavy quark and antiquark at momentum transfer t = �Q2: The relation

V (Q2) = �4�CF�V (Q
2)=Q2 then de�nes the e�ective charge �V (Q): This coupling

can provide a physically based alternative to the usual MS scheme. As in the corre-

sponding case of Abelian QED, the scale Q of the coupling �V (Q) is identi�ed with

the exchanged momentum. Thus there is never any ambiguity in the interpretation of

the scale. All vacuum polarization corrections due to fermion pairs are incorporated

in �V through the usual vacuum polarization kernels which depend on the physical

mass thresholds. Of course, other observables could be used to de�ne the standard

QCD coupling, such as the e�ective charge de�ned from heavy quark radiation. [21]

The relation of �V (Q
2) to the conventionalMS coupling is now known to NNLO,

[22] but in the following only the NLO relation will be used. The commensurate scale

relation is given by [23]

�MS(Q) = �V (Q
�) +

2

3
NC

�2
V (Q

�)

�

= �V (Q
�) + 2

�2
V (Q

�)

�
; (11)
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which is valid for Q2 � m2. The coe�cients in the perturbation expansion have their

conformal values, i.e., the same coe�cients would occur even if the theory had been

conformally invariant with � = 0. The commensurate scale is given by

Q� = Q exp
�
5

6

�
: (12)

The scale in the MS scheme is thus a factor � 0:4 smaller than the physical scale.

The coe�cient 2NC=3 in the NLO coe�cient is a feature of the non-Abelian couplings

of QCD; the same coe�cient occurs even if the theory were conformally invariant with

�0 = 0:

Using the above QCD results, we can transform any NLO prediction given in

MS scheme to a scale-�xed expansion in �V (Q). We can also derive the connection

between the MS and �V schemes for Abelian perturbation theory using the limit

NC ! 0 with CF�s and NF=CF held �xed. [17]

The use of �V and related physically de�ned e�ective charges such as �p (to

NLO the e�ective charge de�ned from the (1,1) plaquette, �p is the same as �V ) as

expansion parameters has been found to be valuable in lattice gauge theory, greatly

increasing the convergence of perturbative expansions relative to those using the bare

lattice coupling. [18] Recent lattice calculations of the �- spectrum [24] have been

used with BLM scale-�xing to determine a NLO normalization of the static heavy

quark potential: �
(3)
V (8:2GeV) = 0:196(3) where the e�ective number of light avors

is nf = 3. The corresponding modi�ed minimal subtraction coupling evolved to the

Z mass and �ve avors is �(5)

MS
(MZ) = 0:1174(24). Thus a high precision value for

�V (Q
2) at a speci�c scale is available from lattice gauge theory. Predictions for other

QCD observables can be directly referenced to this value without the scale or scheme

ambiguities, thus greatly increasing the precision of QCD tests.

One can also use �V to characterize the coupling which appears in the hard scat-

tering contributions of exclusive process amplitudes at large momentum transfer,

such as elastic hadronic form factors, the photon-to-pion transition form factor at

large momentum transfer [3, 25] and exclusive weak decays of heavy hadrons.[26]

Each gluon propagator with four-momentum k� in the hard-scattering quark-gluon
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scattering amplitude TH can be associated with the coupling �V (k
2) since the gluon

exchange propagators closely resembles the interactions encoded in the e�ective po-

tential V (Q2). [In Abelian theory this is exact.] Commensurate scale relations can

then be established which connect the hard-scattering subprocess amplitudes which

control exclusive processes to other QCD observables.

We can anticipate that eventually nonperturbative methods such as lattice gauge

theory or discretized light-cone quantization will provide a complete form for the

heavy quark potential in QCD. It is reasonable to assume that �V (Q) will not diverge

at small space-like momenta. One possibility is that �V stays relatively constant

�V (Q) ' 0:4 at low momenta, consistent with �xed-point behavior. There is, in

fact, empirical evidence for freezing of the �V coupling from the observed systematic

dimensional scaling behavior of exclusive reactions. [25] If this is in fact the case,

then the range of QCD predictions can be extended to quite low momentum scales,

a regime normally avoided because of the apparent singular structure of perturbative

extrapolations.

There are a number of other advantages of the V -scheme:

1. Perturbative expansions in �V with the scale set by the momentum transfer

cannot have any �-function dependence in their coe�cients since all running

coupling e�ects are already summed into the de�nition of the potential. Since

coe�cients involving �0 cannot occur in an expansions in �V , the divergent

infrared renormalon series of the form �nV �
n
0n! cannot occur. The general con-

vergence properties of the scale Q� as an expansion in �V is not known. [14]

2. The e�ective coupling �V (Q
2) incorporates vacuum polarization contributions

with �nite fermion masses. When continued to time-like momenta, the coupling

has the correct analytic dependence dictated by the production thresholds in

the t channel. Since �V incorporates quark mass e�ects exactly, it avoids the

problem of explicitly computing and resumming quark mass corrections.

3. The �V coupling is the natural expansion parameter for processes involving non-

relativistic momenta, such as heavy quark production at threshold where the
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Coulomb interactions, which are enhanced at low relative velocity v as ��V =v,

need to be re-summed. [27, 28, 29] The e�ective Hamiltonian for nonrelativistic

QCD is thus most naturally written in �V scheme. The threshold corrections

to heavy quark production in e+e� annihilation depend on �V at speci�c scales

Q�. Two distinct ranges of scales arise as arguments of �V near threshold: the

relative momentum of the quarks governing the soft gluon exchange responsible

for the Coulomb potential, and a high momentum scale, induced by hard gluon

exchange, approximately equal to twice the quark mass for the corrections. [28]

One thus can use threshold production to obtain a direct determination of �V

even at low scales. The corresponding QED results for � pair production allow

for a measurement of the magnetic moment of the � and could be tested at a

future � -charm factory. [27, 28]

We also note that computations in di�erent sectors of the Standard Model have

been traditionally carried out using di�erent renormalization schemes. However, in

a grand uni�ed theory, the forces between all of the particles in the fundamental

representation should become universal above the grand uni�cation scale. Thus it

is natural to use �V as the e�ective charge for all sectors of a grand uni�ed theory,

rather than in a convention-dependent coupling such as �MS.

6 The Analytic Extension of the MS Scheme

The standard MS scheme is not an analytic function of the renormalization scale at

heavy quark thresholds; in the running of the coupling the quarks are taken as mass-

less, and at each quark threshold the value of NF which appears in the � function is

incremented. Thus Eq. (11) is technically only valid far above a heavy quark thresh-

old. However, we can use this commensurate scale relation to de�ne an extended

MS scheme which is continuous and analytic at any scale. The new modi�ed scheme

inherits all of the good properties of the �V scheme, including its correct analytic

properties as a function of the quark masses and its unambiguous scale �xing. [23]
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Thus we de�ne

e�MS(Q) = �V (Q
�) +

2NC

3

�2
V (Q

��)

�
+ � � � ; (13)

for all scales Q. This equation not only provides an analytic extension of the MS

and similar schemes, but it also ties down the renormalization scale to the physical

masses of the quarks as they enter into the vacuum polarization contributions to �V .

The modi�ed scheme e�MS provides an analytic interpolation of conventional MS

expressions by utilizing the mass dependence of the physical �V scheme. In e�ect,

quark thresholds are treated analytically to all orders in m2=Q2; i.e., the evolution of

the analytically extended coupling in the intermediate regions reects the actual mass

dependence of a physical e�ective charge and the analytic properties of particle pro-

duction. Just as in Abelian QED, the mass dependence of the e�ective potential and

the analytically extended scheme e�MS reects the analyticity of the physical thresh-

olds for particle production in the crossed channel. Furthermore, the de�niteness

of the dependence in the quark masses automatically constrains the renormalization

scale. There is thus no scale ambiguity in perturbative expansions in �V or e�MS.
In leading order the e�ective number of avors in the modi�ed scheme e�MS is given

to a very good approximation by the simple form [23]

fN (0)

F;MS

 
m2

Q2

!
�=
 
1 +

5m2

Q2 exp(5
3
)

!
�1

�=
 
1 +

m2

Q2

!
�1

: (14)

Thus the contribution from one avor is ' 0:5 when the scale Q equals the quark

mass mi. The standard procedure of matching �MS(�) at the quark masses serves as

a zeroth-order approximation to the continuous NF .

Adding all avors together gives the total fN (0)

F;MS(Q) which is shown in Fig. 1.

For reference, the continuous NF is also compared with the conventional procedure

of taking NF to be a step-function at the quark-mass thresholds. The �gure shows

clearly that there are hardly any plateaus at all for the continuous fN (0)

F;MS(Q) in between

the quark masses. Thus there is really no scale below 1 TeV where fN (0)

F;MS(Q) can be

approximated by a constant; for all Q below 1 TeV there is always one quark with

mass mi such that m2
i � Q2 or Q2 � m2

i is not true. We also note that if one

would use any other scale than the BLM-scale for fN (0)

F;MS(Q), the result would be to
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Figure 1: The continuous fN (0)

F;MS in the analytic extension of the MS scheme as a

function of the physical scale Q. (For reference the continuous NF is also compared

with the conventional procedure of taking NF to be a step-function at the quark-mass

thresholds.)

increase the di�erence between the analytic NF and the standard procedure of using

the step-function at the quark-mass thresholds.

Figure 2 shows the relative di�erence between the two di�erent solutions of the

1-loop renormalization group equation, i.e. (e�MS(Q)��MS(Q))=e�MS(Q). The solutions
have been obtained numerically starting from the world average [30] �MS(MZ) = 0:118.

The �gure shows that taking the quark masses into account in the running leads to

e�ects of the order of one percent, most especially pronounced near thresholds.

To illustrate how to compute an observable using the analytic extension of the MS

scheme and compare with the standard treatment in the MS scheme we consider the

QCD corrections to the quark part of the non-singlet hadronic width of the Z-boson,
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Figure 2: The solid curve shows the relative di�erence between the solutions to the 1-

loop renormalization group equation using continuous NF , e�MS(Q), and conventional

discrete theta-function thresholds, �MS(Q). The dashed (dotted) curves shows the

same quantity but using the scale 2Q (Q=2) in fN (0)

F;MS. The solutions have been

obtained numerically starting from the world average [30] �MS(MZ) = 0:118.

�NShad;q. Writing the QCD corrections in terms of an e�ective charge we have

�NShad;q =
GFM

3
Z

2�
p
2

X
q

f(gqV )2 + (gqA)
2g
"
1 +

3

4
CF

�NS�;q (s)

�

#
(15)

where the e�ective charge �NS�;q (s) contains all QCD corrections,

�NS�;q (s)

�
=

�
(NL)

MS
(�)

�

(
1 +

�
(NL)

MS
(�)

�

�
24NLX
q=1

 
�11

12
+
2

3
�3 + F

 
m2
q

s

!
� 1

3
ln

 
�p
s

!!

+
6X

Q=NL+1

G

 
m2
Q

s

!35 + : : :

9=; (16)
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To calculate �NS�;q (s) in the analytic extension of the MS scheme one �rst applies

the BLM scale-setting procedure in order to absorb all the massless e�ects of non-zero

NF into the running of the coupling. This gives

�NS�;q (s)

�
=

�
(NL)

MS
(Q�)

�
(17)

�
8<:1 + �

(NL)

MS
(Q�)

�

24NLX
q=1

F

 
m2
q

s

!
+

6X
Q=NL+1

G

 
m2
Q

s

!35+ : : :

9=;
where

Q� = exp
�
3
�
�11

12
+
2

3
�3

��p
s = 0:7076

p
s: (18)

Operationally, one then simply drops all the mass dependent terms in the above ex-

pression and replaces the �xed NF coupling �
(NL)

MS
with the analytic e�MS. (For an

observable calculated with massless quarks this step reduces to replacing the cou-

pling.) In this way both the massless NF contribution, as well as the mass-dependent

contributions from double bubble diagrams, are absorbed into the coupling. We are

thus left with a very simple expression,

�NS�;q (s)

�
=

e�MS(Q�)
�

; (19)

reecting the fact that the QCD e�ects of quarks in the perturbative coe�cients,

both massless and massive, should be absorbed into the running of the coupling.

In order to compare the analytic extension of the MS scheme with the standard

MS result for �NS�;q (s), we will apply the BLM scale-setting procedure also for the

standard MS scheme. This is to ensure that any di�erences are due to the di�erent

ways of treating quark masses and not due to the scale choice. In other words we want

to compare Eqs. (17) and (19). As the normalization point we use �
(5)

MS
(MZ) = 0:118

which we evolve down to Q� = 0:7076MZ using leading order massless evolution with

NF = 5. This value is then used to calculate �NS�;q (MZ) = 0:1243 in the MS scheme

using Eq. (17). Finally, Eq. (19) gives the normalization point for e�MS(Q�).
Figure 3 shows the relative di�erence between the two expressions for �NS�;q (s)

given by Eqs. (17) and (19) respectively. As can be seen from the �gure the relative

di�erence is remarkably small, less than 0:2% for scales above 1 GeV. Thus the
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Figure 3: The relative di�erence between the calculation of �NS�;q (s) in the analytic

extension of the MS scheme and the standard treatment of masses in the MS scheme.

The discontinuities are due to the mismatch between the s=m2 and m2=s expansions

of the functions F and G.

analytic extension of the MS scheme takes the mass corrections into account in a

very simple way without having to include an in�nite series of higher dimension

operators or doing complicated multi-loop diagrams with explicit masses.

The form of NF (Q) at NNLO has recently been computed to two loop order in

QCD for the �V scheme. The application to the analytic extension of MS scheme will

be discussed in a forthcoming paper. [31]

7 Conclusion

Commensurate scale relations have a number of attractive properties:

1. The ratio of physical scales QA=QB which appears in commensurate scale rela-
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tions reects the relative position of physical thresholds, i.e. quark anti-quark

pair production.

2. The functional dependence and perturbative expansion of the CSR are identical

to those of a conformal scale-invariant theory where �A(�A) = 0 and �B(�B) =

0.

3. In the case of theories approaching �xed-point behavior �A(�A) = 0 and �B(�B) =

0, the commensurate scale relation relates both the ratio of �xed point couplings

�A=�B, and the ratio of scales as the �xed point is approached.

4. Commensurate scale relations satisfy the Abelian correspondence principle [17];

i.e. the non-Abelian gauge theory prediction reduces to Abelian theory for

NC ! 0 at �xed CF�s and �xed NF=CF .

5. The perturbative expansion of a commensurate scale relation has the same

form as a conformal theory, and thus has no n! renormalon growth arising

from the �-function. It is an interesting conjecture whether the perturbative

expansion relating observables to observable are in fact free of all n! growth. The

generalized Crewther relation, where the commensurate relation's perturbative

expansion forms a geometric series to all orders, has convergent behavior.

Virtually any perturbative QCD prediction can be written in the form of a com-

mensurate scale relation, thus eliminating any uncertainty due to renormalization

scheme or scale dependence. Recently it has been shown [32] how the commensu-

rate scale relation between the radiative corrections to � -lepton decay and Re+e�(s)

can be generalized and empirically tested for arbitrary � mass and nearly arbitrarily

functional dependence of the � weak decay matrix element.

An essential feature of the �V (Q) scheme is the absence of any renormalization

scale ambiguity, since Q2 is, by de�nition, the square of the physical momentum

transfer. The �V scheme naturally takes into account quark mass thresholds, which

is of particular phenomenological importance to QCD applications in the mass region

close to threshold. As we have seen, commensurate scale relations provide an analytic
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extension of the conventional MS scheme in which many of the advantages of the

�V scheme are inherited by the e�MS scheme, but only minimal changes have to be

made. Given the commensurate scale relation connecting e�MS to �V expansions in

e�MS are e�ectively expansions in �V to the given order in perturbation theory at

a corresponding commensurate scale. Taking �nite quark mass e�ects into account

analytically in the running, rather than using a �xed avor number NF between

thresholds, leads to e�ects of the order of 1% for the one-loop running coupling, with

the largest di�erences occurring near thresholds. These di�erences are important for

observables which are calculated neglecting quark masses, and could turn out to be

signi�cant when comparing low and high energy measurements of the strong coupling.

Unlike the conventional �MS scheme, the modi�ed e�MS scheme is analytic at quark

mass thresholds, and it thus provides a natural expansion parameter for perturbative

representations of observables. In addition, the extension of the MS scheme, including

quark mass e�ects analytically, reproduces the standard treatment of quark masses

in the MS scheme to within a fraction of a percent. The standard treatment amounts

to either calculating multi-loop diagrams with explicit quark masses or adding higher

dimension operators to the e�ective Lagrangian. These corrections can be viewed as

compensating for the fact that the number of avors in the running is kept constant

between mass thresholds. By utilizing the BLM scale setting procedure, based on

the massless NF contribution, the analytic extension of the MS scheme correctly

absorbs both massless and mass dependent quark contributions from QCD diagrams,

such as the double bubble diagram, into the running of the coupling. This gives the

opportunity to convert any calculation made in the MS scheme with massless quarks

into an expression which includes quark mass corrections from QCD diagrams by

using the BLM scale and replacing �MS with e�MS.
Finally, we note the potential importance of utilizing the �V e�ective charge or the

equivalent analytic e�MS scheme in supersymmetric and grand uni�ed theories, par-

ticularly since the uni�cation of couplings and masses would be expected to occur in

terms of physical quantities rather than parameters de�ned by theoretical convention.
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