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Recently, Dvali and Shifman have considered the possibility of trapping

gauge �elds on p-branes with p < 3 using con�ning dynamics in a bulk 3+1-

dimensional gauge theory [1]. These �eld theoretic branes are very interesting

as their higher dimensional generalizations can be used to construct exten-

sions of the standard model with extra dimensions. In such models gravity

and possibly some other �elds propagate in higher dimensional space-time

whereas the standard model matter and gauge forces are con�ned to (3+1)

dimensional branes [2, 3]. Apart from these potential phenomenological ap-

plications �eld theoretic p-branes also provide a very interesting background

for studying the interplay of dynamics in various dimensions. We are par-
ticularly intrigued by some obvious similarities between these branes and

D-branes [4] in string theory: apart from supporting a gauge �eld in their
world-volume, �eld theoretic branes also allow color ux-strings to end on
them [5]. The aim of this letter is to further explore the analogy between these
branes in �eld theory and in string theory. More concretely, after reviewing
the construction of Dvali and Shifman and giving some simple generaliza-

tions, we consider what happens when N of these walls are brought on top of
each other. From the analogy with D-branes one expects that modes of the
QCD ux-string become light and contribute to the e�ective p dimensional
world-volume �eld theory. In the case of D-branes the lightest modes are
spin-1 �elds (and their superpartners), and the U(1)N gauge symmetry of N
widely separated D-branes gets enhanced to U(N). In the case of the QCD

string the masses of low-lying vibrational modes decrease as

m / L �2 (1)

when the length L of a long ux tube is reduced. However which modes of

the QCD string become light for small L turns out to be di�erent. We will
argue from consistency of the (2 + 1) dimensional low energy �eld theory on
the branes that the lightest such mode is not a spin-1 �eld. Instead we �nd a

scalar whose mass squared is positive for long stretched strings but becomes

negative for very small L � ��1 where eq.1 breaks down. Thus for very

small separation the scalar condenses and reduces the gauge symmetry of
the e�ective �eld theory on the branes. This understanding of the reduction
of gauge symmetry as branes are brought in contact with each other from

both a macroscopic e�ective (2+1)-d theory as well as from a microscopic

(3+1)-d picture with QCD strings is our central result. As a bonus we also
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�nd that �eld theoretic branes can be connected by multi-pronged ux tubes

corresponding to \baryonic" QCD strings.

To get started we �rst review the argument of Dvali and Shifman [1] and

give a simple generalization before moving on to consider what happens when

N of these walls are brought on top of each other.

In the construction of our walls we will frequently assume that a gauge

group is broken in some region of space but not in others. We will also have

use for matter �elds which are very massive in the bulk but light on the

walls. In the discussion we will assume that these e�ects have been arranged

by coupling the theory to a \black box" containing appropriate very mas-
sive neutral and charged scalars with space dependent vacuum expectation

values�.
For simplicity, we �rst attempt to localize a U(1) gauge �eld to a region

W in 3+1 dimensional space between 0 < z < l, which on distances much
larger than l would look like a 2+1 dimensional wall supporting a U(1) gauge
�eld.

The most obvious idea is to arrange for the U(1) to be broken outside W
giving the photon a mass M >> l�1, but unbroken inside W. Then, since
the photon is massive outside W but massless inside, one may think that
there is a massless electric photon in the (2 + 1)-d theory at long distances.
This is not the case. To understand this, note that the region outside W
is superconducting while the region inside is normal vacuum. Now place an

electric test charge insideW and examine the �eld strength at another point
inW a distance r >> l away; if there is a massless photon in the long-distance
theory, we should have a (2 + 1)-d Coulomb �eld in this regime.

Since the region outside is a conductor, however, the electric �eld lines
emanating from the test charge must end on and be perpendicular to the

boundary of W, whereas in order to obtain a 2 + 1 dimensional force law
these �eld lines would have to be repelled from the boundary. We can solve

for the electric �eld using the method of images, with an in�nite number of
image charges of alternating signs. Clearly all the multipole moments vanish

for such a con�guration, and we are left with an exponentially small �eld

for r >> l. Therefore, we conclude that there are no �elds lighter than the

ultraviolet cuto� l�1 of the (2+1)-d theory, coupling to electric charge. It is

very easy to see (as we show in detail in the appendix) that instead, there is

�An example of such a black box can be found in [1].
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Figure 1: The �gure labeled a.) depicts a domain wall which has no

massless electric photon trapped. This can be seen from this �gure by

noting that the electric �eld lines are screened by the superconducting

Higgs vacuum in the bulk. In �gure b.) the bulk is in a con�ned phase

and repels electric ux. As a result, a massless photon coupling to

electric charge is trapped.

a tower of massive gauge �elds with masses quantized in units of l�1.

This failure suggests the correct way to proceed, however. Suppose that
we instead place a magnetic charge g insideW. Now, because of the Meissner
e�ect in the superconducting region, all the magnetic ux lines are repelled
from the boundaries and we recover the (2 + 1)-d magnetic Coulomb law. A
trivial application of Gauss' law yields the relationship between the e�ective

(2 + 1)-d magnetic charge g3 and g:

1

g23
=

1

g2
� l (2)

Of course, we actually want to localize electric photons on the wall, this

can be accomplished by the `t Hooft-Mandelstam dual of this superconduct-
ing picture. Suppose that we begin with a (3 + 1) � d SU(2) gauge theory,

which is broken to a U(1) inside W by a very massive scalar in the adjoint

representation of SU(2). The bulk theory is con�ning at the scale � which
we take to be >> l�1, whereas the the U(1) insideW is free. If we now place
an electric test charge inside W, con�nement expels the electric �eld lines

from the bulk due to the dual Meissner e�ect, and we recover the (2 + 1)-d

Coulomb law for the electric �eld. This successfully localizes a U(1) gauge
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�eld to a (2 + 1)-d wall in a (3 + 1)-d bulk.

There are obvious generalizations of this idea. Suppose we have an

SU(Nc) gauge theory with NF >> NC avors, which are given a very large

mass outside W but are massless inside. Then the outside theory is asymp-

totically free and con�nes. The theory inside the regionW is infrared free at

distances short compared to the wall thickness l where the coupling evolves

according to the (3 + 1)-d renormalization group equation. But at length

scales long compared to l the theory on the wall is (2 + 1)-dimensional and

the coupling evolves according to the (2 + 1)-d renormalization group equa-

tion. At the UV cuto� l�1 of the low energy theory the (2+1)-d gauge
coupling is matched to the higher dimensional coupling as

g2
3
(� = l�1) =

g2
4
(� = l�1)

l
(3)

By the same argument as for the U(1) case above, this localizes an SU(Nc)
gauge theory on the (2 + 1) dimensional wall. Notice that unlike the U(1)
case, this (2+1)-d theory also con�nes; however the con�nement scale is � g2

3

which can be much smaller than the cuto� l�1 if g2
4
is small. This is easy

to arrange since the 3+1-d theory insideW can have a small gauge coupling

at its UV cuto� and gets (logarithmically) weaker as it is scaled into the IR
towards � = l�1. Therefore, there is a range of energies g2

4
=l < E < 1=l where

we can have an uncon�ned (2+1)-d SU(Nc) gauge theory. In this manner it
is possible to engineer a large variety of �eld theoretic branes with di�erent
gauge theories living on them.

What happens if we move an electric charge from the wall into the con�n-
ing bulk [5]? The con�nement tries to expel the electric �eld lines, but since

a net ux of electric �eld must be present at large distances by Gauss' law,

a string of electric ux forms between the charge in the bulk and the wall as
in �gure 2. Thus, these walls have a second qualitative feature in common

with D-branes: strings can end on them y.

yNote that our electric ux strings ending on a wall of uncon�ned gauge �eld are the

electric-magnetic dual to cosmic strings (with their associated magnetic ux) ending on

a domain wall of unbroken gauge �eld as described for example in [6]. The microscopic

physics allowing strings to end on domain walls here is di�erent from the physics allowing

strings to end on domain walls in N = 1 supersymmetric QCD [7, 8]. For a recent

discussion of domain walls in softly broken N = 2 SUSY gauge theories, see [9].
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Figure 2: A test charge which is moved a distance d o� the wall drags

a ux tube of thickness � behind it because electric charge is con�ned

in the bulk.

We now explore this analogy with D-branes further by considering what
happens when we bring two or more of these walls close together. For con-
creteness, let us take a case with SU(2) Higgsed to a U(1) in two regions
W1 = �l1 < z < 0 and W2 = d < z < d + l2. Let us �rst consider the case
where the walls are very well separated d >> l1; l2. Then at distances longer

than l1;2 we have two (2 + 1)-d walls with two separate U(1)0s localized on
them. To see that there are really two U(1)0s, simply note that the electric
�eld lines emanating from a charge on W1 can never end on a charge in W2

because of the con�ning region separating them. Let us further simplify our
description by working in the e�ective theory at distances >> d, where the

separation between the walls cannot be discerned. This is then a (2 + 1)�d
theory with a U(1) � U(1) gauge group. For the case of N well-separated

walls, this very long distance theory has a U(1)N gauge symmetry.

Next consider the opposite extreme when two walls are sitting very close
to each other d << 1=� < l1;2. At long distances this case is indistinguishable
from having just one wall with thickness (l1+l2), and we only localize a single

U(1) gauge �eld in the very long distance theory. Therefore, as the walls

are brought close together, the long-distance theory sees a reduction of the
gauge symmetry from U(1)� U(1) to U(1). This is opposite to the D-brane

case, where the gauge symmetry gets enhanced from U(1) � U(1) ! U(2).
Nevertheless, as we will see below, the physics of the two situations is very

similar.
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Let us �rst try to understand what is going on purely in the long-distance

theory. As the parameter d in the theory is varied, we go from having a

U(1)�U(1) symmetry for d >> l1;2 to just a U(1) symmetry for d = 0. The

most plausible interpretation is that the U(1) � U(1) symmetry is Higgsed

somewhere in the transition where d � �. Since neither of the walls is special,

we expect that U(1) � U(1) must be broken to the diagonal U(1). This

satis�es an interesting consistency check. From the microscopic viewpoint,

when the walls merge to give a new wall of thickness (l1 + l2), the (2+1)-d

coupling of the single U(1) should be

1

g23
=

(l1 + l2)

g24
(4)

On the other hand, the gauge coupling determined by Higgsing U(1)�U(1)
to the diagonal subgroup is

1

g2
3diag

=
1

g23;1
+

1

g23;2
=

l1

g24
+

l2

g24
(5)

as required.
Therefore, purely from considerations of the very low-energy theory, we

conclude that some new state becomes light when d � �, and acquires a
condensate to spontaneously break U(1)1 � U(1)2 ! U(1)diag. The conden-

sate must of course be a Lorentz scalar, and must be charged under both
U(1)0s to break to the diagonal subgroup. The simplest possibility is that
as d is reduced and becomes smaller than � � a scalar �eld �+;� of charge
(+;�) under U(1)1�U(1)2 becomes light and then tachyonic, triggering the
non-zero condensate h�+;�i.

We stress that the existence of such a condensate was deduced by the
requirement of a consistent low-energy e�ective theory. But we can easily

identify a natural candidate for �+;� in the microscopic theory. For d >> l,
there is a stable con�guration corresponding to the QCD string stretching

between the walls as shown in �gure 3.

One can imagine forming this string as follows. Place very heavy test
quarks q; �q inside the con�ning medium between the walls; a QCD string of

con�ned color electric ux will stretch between them. Now, move q(�q) until
it is just inside regionW1(2). This will cost a great deal of energy � �2d, but

the resulting string is stable: it can not break since there are no dynamical
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U(1) U(1)1 2SU(2) SU(2)SU(2)

+ -

21l d l

Figure 3: A color electric ux tube connecting two walls. In terms of

the low energy e�ective theory on the walls this ux tube is described by

a �eld charged under both U(1)'s.

quark states to pop out of the vacuum. Once q; �q are inside their respective
walls, they are no longer in a con�ning medium and can be moved o� to large
distances z. The resulting con�guration is just a ux tube with �eld lines

coming in from in�nity on W1, through the tube and back out to in�nity on
W2 (see �gure 3). Note that an observer on W1 sees this as a state of charge
+1 under U(1)1, while his friend on W2 measures this same state to have

charge �1 under U(1)2.
Thus at least for d >> �, we have identi�ed a stable state �+;�, the lowest

scalar vibrational mode of the QCD string stretching between the walls, with
the quantum numbers we are after. Furthermore, it is clear that for large d

the mass of this mode decreases as �2d as the walls are brought closer. It is

now tempting to speculate that as the walls come very close together, this
state gets lighter and lighter until it becomes tachyonic somewhere around

d � � and condenses. In other words, we imagine that the mass for � as a

zOf course since the (2 + 1)-dimensional theory is itself con�ning at much longer dis-

tances, the energy to move q; �q to in�nity diverges logarithmically in the IR.
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function of d has the form

m2

�(d) = �c0�
2 + c1(�

2d)2 (6)

where c0; c1 are O(1) constants. The contribution proportional to c1 has a

classical origin and dominates when the string is long, while the �rst term

reects a (presumably quantum-mechanical) tachyonic instability of the un-

stretched QCD string. Of course, since the ux tube has a thickness O(�),

in the interesting region it is as long as it is thick so a \string" picture is

necessarily heuristic. In terms of the microscopic (3 + 1)-d description the

condensate of the tachyonic scalar can be understood as a spontaneous de-
con�nement transition of the QCD vacuum between the two walls due to a

condensate of ux tubes.
It is amusing that while the end result of bringing these \branes" together

is very di�erent from the case of bringing D-branes together, the physics has a
similar interpretation: the strings stretching between the branes become light
and donate their lowest excitations to the e�ective theory. In the case of D-

branes, the lowest-lying excitations of open strings contain gauge �elds which
enhance the gauge symmetry. On the other hand, our ux-strings have no
massless gauge �elds so there is no enhancement of gauge symmetry. Instead,
the lightest excitation that is donated is tachyonic and further breaks the
gauge group! It is also interesting that the tachyonic instability of the QCD
string here does not imply that the theory is sick and should be discarded;

it simply means that the correct vacuum, where the strings have condensed,
must be chosen.

Before we move on note that we can obtain some information about the
dynamics of ux tubes by simply translating (2 + 1) dimensional results
into our microscopic description. For example, the fact that the (2 + 1)-

d U(1) � U(1) theory con�nes tells us that ux tubes in our picture are
con�ned. A stable �nite energy con�guration is a spinning bound state of

two ux tubes of opposite ux. In the case of large wall separation when the
ux tubes are long and heavy, this is a non-relativistic bound state but as

we tune the distance between the two walls such that the scalar mode �+;�

becomes light the bound state becomes non-relativistic. It is amusing that
these \bound states" of ux are spinning closed ux-strings which overlap
both walls.

We will not discuss at length an obvious generalization to N walls with

ux tubes stretching between any pair of neighboring walls. These strings
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are charged under neighboring U(1) and donate the necessary scalar �elds to

break U(1)N ! U(1)diag as all N walls are merged.

Instead, we cannot resist the temptation to describe an interesting gener-

alization with strings corresponding to baryons of the con�ned gauge theory

in the bulk. First note that the above construction of domain walls with

trapped gauge �elds generalizes to branes of dimension (1+1). To construct

such a \string" or \1-brane" consider a patch W in the y � z plane where

the bulk non-abelian gauge group is broken to U(1) as depicted in �gure 4.

z

SU(2)

y

x

U(1)

w

Figure 4: A photon can be localized on a 1+1 dimensional \1-brane"

by embedding the U(1) into a con�ning SU(2) in the bulk.

Again, the bulk non-abelian gauge theory is chosen to con�ne at distances

��1 taken to be much shorter than the square root of the area A of W. This
traps a (1+1) dimensional U(1) gauge theory with gauge coupling g2

2
� g2

4
=A

on the string. Given two such 1-branes with areas A1;2 and associated U(1)

gauge theories one can consider bringing the two 1-branes in contact. Again,
the low energy theory sees a reduction of the gauge group from U(1)�U(1) to

U(1)diag with the interpretation of Higgsing of the gauge group via a scalar
which becomes light and tachyonic as the two regions are brought within

distances of order ��1. Evidence for this interpretation is the matching of

U(1) couplings which in this case reads

1

g2
2diag

=
(A1 +A2)

g24
=

A1

g24
+
A2

g24
=

1

g22;1
+

1

g22;2
: (7)

Just as in the case of domain walls a QCD string connecting A1 with A2 has

the correct quantum numbers to supply this scalar.
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Consider now a situation with a con�ning gauge group SU(N) in the

bulk and N patches with roughly equal areas Ai for i = 1; ::; N on which

the running of the SU(N) coupling has been slowed down. (For example,

this could be arranged by adding matter �elds in the adjoint representation

of SU(N) which have very large masses in the bulk but are light on the 1-

branes.) Then the four dimensional gauge coupling remains small on the N

patches, and below the matching scale � � A
�1=2
i the long distance physics

is described by a (1 + 1) dimensional SU(N)N gauge theory. As before

we can create ux tubes connecting any pair of the various 1-branes by

placing a pair of heavy test quarks q and �q in the con�ned bulk, pulling them
apart to form a ux string and then moving the two quarks in two separate
regions Ai and Aj. After removal of the test quarks we are left with a ux

tube which transforms in the fundamental representation of SU(N)i and an
antifundamental of SU(N)j .

What happens if we start with N test quarks in a color singlet state
corresponding to a baryon of the SU(N) bulk gauge group? We can now
move each of the test quarks into a di�erent one of the patches Ai; the ux

tubes from each of these quarks meet at a common junction in the bulk where
N units of ux combine into a color singlet. After removal of the test quarks
we are left with a baryonic N -pronged ux tube connecting the N regions as
in �gure 5.

y

A

A

A

z

1

3

2

Figure 5: A 3-pronged baryonic ux tube connecting three 1-branes.

This baryonic string is stable and has a mass of order N�2 times the char-

acteristic distance between the various patches. In the low energy e�ective

10



SU(N)N theory its lowest vibrational mode would be described by a mas-

sive �eld which transforms in the fundamental representation of each of the

SU(N)'s. As we bring all of the N patches close together, the baryonic string

as well as all the \mesonic" strings become light. As we bring the 1-branes

very close to each other we expect a condensate of strings which decon�nes

the vacuum in the region between the 1-branes, causing them to merge. In

the long distance theory this is described by a condensate of scalars which

breaks SU(N)N ! SU(N).
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Appendix

In this appendix we formalize the conclusions regarding the trapping massless

electric or magnetic photons in the theory where a U(1) gauge �eld is higgsed
away from W but is unbroken inside W. Let us consider formally the limit
where Ml ! 1, so that the photon outside is really in�nitely heavy. The
U(1) then really only exists inside W; with a Lagrangian given by

L =
Z
d3x

Z l=2

�l=2
dz

1

g24
F ��F��: (8)

This just looks like the compacti�cation of a U(1) gauge theory from 4! 3
dimensions on an interval of length l. However, the spectrum of the theory

at energies beneath the compacti�cation scale l�1 depends crucially on the

boundary conditions imposed on F �� at z = +l=2;�l=2. This is because
massless states in the low energy theory must be zero modes in the z direc-
tion, and are therefore sensitive to the boundary conditions, which may or

may not eliminate them. In the present case, the region outside the wall is

superconducting, so the appropriate boundary conditions are that the elec-
tric �eld is perpendicular to the wall (true for any conductor) and that the

magnetic �eld is parallel to the wall (which is only true for a superconductor);
that is

Ex = Ey = 0; Bz = 0 (9)
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which can be written more covariantly as

F ab = 0; a; b = t; x; y: (10)

This makes it clear that a massless photon coupling to electric charge is not

present in the low energy theory, it is projected out of the usual Kaluza-Klein

spectrum by the boundary conditions. The usual KK scalar, corresponding

to F a3, remains in the massless spectrum, but does not couple to electric

charge. Rather, a massless magnetic photon has been trapped. Indeed, the

boundary conditions can also be written as

~F a3 = 0 (11)

which leaves the zero mode of ~F ab in the massless spectrum. This of course
works because in (2 + 1) dimensions, a scalar is dual to a vector �eld.

Of course in both cases, we also have a tower of massive states. This
follows from the standard Kaluza-Klein analysis with the boundary condi-
tions appropriately imposed. But we can also see it in another way. Let us
generalize to the case of an n dimensional wall of thickness l in an n+ 1 di-
mensional space. Let ~x be the n-dimensional coordinates, and y the n+1'th

coordinate. Placing an electric charge at the origin, let us compute the elec-
tric potential at the point ~x; y = 0 on the wall. We can enforce the boundary
conditions by placing an in�nite sequence of image charges of charge (�1)q

at ~x = 0; y = ql. The potential is then

V (~x) =
+1X

q=�1

Z
dnk

(2�)n
dk0

(2�)

ei(
~k~x+k0lq��q)

~k2 + k02
(12)

where we have used the expression for the (n + 1) dimensional Coulomb

potential in terms of its Fourier transform. If we now use the familiar Poisson

resummation identity

1X
q=�1

eiq� = 2�
1X

s=�1

�(�� 2�s) (13)

we can perform the integral over k0, leaving

V (~x) =
1X

s=�1

Z
dnk

(2�)n
ei
~k~x

~k2 + (2�=l)2(s+ 1=2)2
: (14)
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Note that the integrand is just the n-dimensional Yukawa potential for a �eld

of mass 2�=l � (s + 1=2). Therefore, we have shown that the potential can

be expressed in terms of a sum over a tower of n dimensional massive states.

If we instead place a magnetic charge at the origin, an in�nite sequence of

magnetic image charges of the same sign enforce the boundary condition,

and the �q term in eqn.(12) disappears. Therefore, the potential is due to

a sum over n dimensional massive �elds of mass 2�=l � s, which for s = 0

includes the massless magnetic photon we expect in this case.
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