[SLAC] [SLAC Pubs and Reports]

Process, System, Causality, and Quantum Mechanics: A Psychoanalysis of Animal Faith


We shall argue in this paper that a central piece of modern physics does not really belong to physics at all but to elementary probability theory. Given a joint probability distribution J on a set of random variables containing x and y, define a link between x and y to be the condition x=y on J. Define the state D of a link x=y as the joint probability distribution matrix on x and y without the link. The two core laws of quantum mechanics are the Born probability rule, and the unitary dynamical law whose best known form is the Schrodinger's equation. Von Neumann formulated these two laws in the language of Hilbert space as prob(P) = trace(PD) and D'T = TD respectively, where P is a projection, D and D' are (von Neumann) density matrices, and T is a unitary transformation. We'll see that if we regard link states as density matrices, the algebraic forms of these two core laws occur as completely general theorems about links. When we extend probability theory by allowing cases to count negatively, we find that the Hilbert space framework of quantum mechanics proper emerges from the assumption that all D's are symmetrical in rows and columns. On the other hand, Markovian systems emerge when we assume that one of every linked variable pair has a uniform probability distribution. By representing quantum and Markovian structure in this way, we see clearly both how they differ, and also how they can coexist in natural harmony with each other, as they must in quantum measurement, which we'll examine in some detail. Looking beyond quantum mechanics, we see how both structures have their special places in a much larger continuum of formal systems that we have yet to look for in nature.

Full Text


Compressed PostScript


The PDF version of this document was distilled from a PostScript file created from LaTeX source which may have used Type 3 fonts. The resultant PDF may be unreadable on the screen at the default viewing magnification, though the fonts will be legible at slightly higher magnifications. Despite the cosmetic problems resulting from the Type 3 fonts, such PDF files print without problems; likewise, the onscreen text is searchable and selectable.

More Information

Full bibliographic data for this document, including its complete author list, is (or soon will be) available from SLAC's SPIRES-HEP Database.

Please report problems with this file to posting@slac.stanford.edu. The SLAC preprint inventory is provided by the SLAC Technical Publications Department.
Page generated 04 Apr 2001 @ 15:08 PDT by htmlme.pl