[SLAC] [SLAC Pubs and Reports]

Weak-Scale Phenomenology of Models with Gauge-mediated Supersymmetry Breaking


We study in some detail the spectral phenomenology of models in which supersymmetry is dynamically broken and transmitted to the supersymmetric partners of the quarks, leptons and gauge bosons, and the Higgs bosons themselves, via the usual gauge interactions. We elucidate the parameter space of what we consider to be the minimal model, and explore the regions which give rise to consistent radiative electroweak symmetry breaking. We include the weak-scale threshold corrections, and show how they considerably reduce the scale dependence of the results. We examine the sensitivity of our results to unknown higher-order messenger-sector corrections. We compute the superpartner spectrum across the entire parameter space, and compare it to that of the minimal supergravity-inspired model. We delineate the regions where the lightest neutralino or tau slepton is the next-to-lightest supersymmetric particle, and compute the lifetime and branching ratios of the NLSP. In contrast to the minimal supergravity-inspired model, we find that the lightest neutralino can have a large Higgsino component, of order 50%. Nevertheless, the neutralino branching fraction to the gravitino and the light Higgs boson remains small, < 10$^{-4}$, so the observation of such a decay would point to a non-minimal Higgs sector.

(Equations render on Windows, Mac OS, AIX, Linux, Solaris, and IRIX with the techexplorer plug-in.)

Full Text


Compressed PostScript


More Information

Full bibliographic data for this document, including its complete author list, is (or soon will be) available from SLAC's SPIRES-HEP Database.

Please report problems with this file to posting@slac.stanford.edu. The SLAC preprint inventory is provided by the SLAC Technical Publications Department.
Page generated 02 May 2001 @ 12:18 PDT by htmlme.pl