%% slacpub7237: page file slacpub7237006.tcx.
%% section 6 Conclusions [slacpub7237006 in slacpub7237006: slacpub7237007]
%%%% latex2techexplorer block:
%% latex2techexplorer page setup:
\iftechexplorer
\setcounter{section}{5}
\fi
\iftechexplorer
\setcounter{secnumdepth}{2}
\setcounter{tocdepth}{2}
\def\thepart#1{}%
\def\thechapter#1{}%
\newcommand{\partLink}[3]{\docLink{#1.tcx}[part::#2]{#3}\\}
\newcommand{\chapterLink}[3]{\docLink{#1.tcx}[chapter::#2]{#3}\\}
\newcommand{\sectionLink}[3]{\docLink{#1.tcx}[section::#2]{#3}\\}
\newcommand{\subsectionLink}[3]{\docLink{#1.tcx}[subsection::#2]{#3}\\}
\newcommand{\subsubsectionLink}[3]{\docLink{#1.tcx}[subsubsection::#2]{#3}\\}
\newcommand{\paragraphLink}[3]{\docLink{#1.tcx}[paragraph::#2]{#3}\\}
\newcommand{\subparagraphLink}[3]{\docLink{#1.tcx}[subparagraph::#2]{#3}\\}
\newcommand{\partInput}{\partLink}
\newcommand{\chapterInput}{\chapterLink}
\newcommand{\sectionInput}{\sectionLink}
\else
\newcommand{\partInput}[3]{\input{#2.tcx}}
\newcommand{\chapterInput}[3]{\input{#2.tcx}}
\newcommand{\sectionInput}[3]{\input{#2.tcx}}
\fi
\newcommand{\subsectionInput}[3]{\input{#2.tcx}}
\newcommand{\subsubsectionInput}[3]{\input{#2.tcx}}
\newcommand{\paragraphInput}[3]{\input{#2.tcx}}
\newcommand{\subparagraphInput}[3]{\input{#2.tcx}}
\aboveTopic{slacpub7237.tcx}%
\previousTopic{slacpub7237005.tcx}%
\nextTopic{slacpub7237007.tcx}%
\bibfile{slacpub7237009u1.tcx}%
\newmenu{slacpub7237::context::slacpub7237006}{
\docLink{slacpub7237.tcx}[::Top]{Top}%
\sectionLink{slacpub7237005}{slacpub7237005}{Previous: 5. Phenomenological Consequences}%
\sectionLink{slacpub7237007}{slacpub7237007}{Next: 7. Soft Masses for a General Messenger Sector}%
}
%%%% end of latex2techexplorer block.
%%%% code added by add_nav perl script
\docLink{slacpub7237.tcx}[::Top]{Top of Paper}%

\docLink{pseudo:previousTopic}{Previous Section}%
\bigskip%
%%%% end of code added by add_nav
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% author definitions added by nc_fix
\def\fo{\hbox{{1}\kern.25em\hbox{l}}}
\def\fnote#1#2{\begingroup\def\thefootnote{#1}\footnote{#2}\addtocounter{footnote}{1}\endgroup}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\def\drawbox#1#2{\hruleheight#2pt\hbox{\vrulewidth#2ptheight#1pt\kern#1pt\vrulewidth#2pt}\hruleheight#2pt}
\def\Dbox{\vbox{\drawbox{6.0}{0.4}}}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\eq{\end{equation}}
\def\to{\rightarrow}
\def\mA{m_{A^0}}
\def\mH{m_{H^0}}
\def\mh{m_{h^0}}
\def\mW{m_{W^{\pm}}}
\def\mZ{m_{Z^0}}
\def\mHu{m_{H_u}}
\def\mHd{m_{H_d}}
\def\bino{\tilde{B}}
\def\mbino{m_{\bino}}
\def\Emissperp{\not \! \! E_{T}}
\def\EmissT{\not \! \! E_{T}}
\def\Emisst{\not \! \! E_T}
\def\Emiss{\not \! \! E}
\def\Rslash{\not \! \! R}
\def\ai{\alpha}
\def\bi{\beta}
\def\aid{\dot{\alpha}}
\def\bid{\dot{\beta}}
\def\bff#1{{\bf{#1}}}
\newcommand{\newc}{\newcommand}
\def\order#1{{\cal O}(#1)}
\def\NPB#1#2#3{Nucl. Phys. B {\bf #1} (19#2) #3}
\def\PLB#1#2#3{Phys. Lett. B {\bf #1} (19#2) #3}
\def\PLBold#1#2#3{Phys. Lett. B {\bf#1} (19#2) #3}
\def\PRD#1#2#3{Phys. Rev. D {\bf #1} (19#2) #3}
\def\PRL#1#2#3{Phys. Rev. Lett. {\bf#1} (19#2) #3}
\def\PRT#1#2#3{Phys. Rep. {\bf#1} (19#2) #3}
\def\ARAA#1#2#3{Ann. Rev. Astron. Astrophys. {\bf#1} (19#2) #3}
\def\ARNP#1#2#3{Ann. Rev. Nucl. Part. Sci. {\bf#1} (19#2) #3}
\def\MODA#1#2#3{Mod. Phys. Lett. A {\bf #1} (19#2) #3}
\def\ZPC#1#2#3{Zeit. f\"ur Physik C {\bf #1} (19#2) #3}
\def\APJ#1#2#3{Ap. J. {\bf#1} (19#2) #3}
\def\MPL#1#2#3{Mod. Phys. Lett. A {\bf #1} (19#2) #3}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\bea{\begin{eqnarray}}
\def\eea{\end{eqnarray}}
\def\slashchar#1{\setbox0=\hbox{$#1$}setaboxfor#1\dimen0=\wd0andgetitssize\setbox1=\hbox{/}\dimen1=\wd1getsizeof/\ifdim\dimen0>\dimen1#1isbigger\rlap{\hboxto\dimen0{\hfil/\hfil}}socenter/inbox#1andprint#1\else/isbigger\rlap{\hboxto\dimen1{\hfil$#1$\hfil}}socenter#1/andprint/\fi}
\def\jfig#1#2#3{\begin{figure}\centering\epsfysize=2.75in\hspace*{0in}\epsffile{#2}\caption{#3}\label{#1}\end{figure}}
\def\sfig#1#2#3{\begin{figure}\centering\epsfysize=2.0in\hspace*{0in}\epsffile{#2}\caption{#3}\label{#1}\end{figure}}
\newcommand{\newc}{\newcommand}
\newc{\mpl}{M_{PL}}
\newc{\eegg}{e^+e^\gamma\gamma}
\newc{\mmgg}{\mu \mu \gamma\gamma}
\newc{\ttgg}{\tau \tau \gamma\gamma}
\newc{\leplep}{l^+l^}
\newc{\llgg}{l^+l^ \gamma \gamma}
\newc{\lllgg}{l^+l^l^{\prime \pm} \gamma \gamma}
\newc{\ljjgg}{l^{\pm}jj \gamma \gamma}
\newc{\lljjgg}{l^+l^jj \gamma \gamma}
\newc{\eeggE}{ee \gamma \gamma + \EmissT}
\newc{\llggE}{l^+l^ \gamma \gamma + \EmissT}
\newc{\gag}{\gamma\gamma}
\newc{\lgg}{l^{\pm} \gamma \gamma}
\newc{\jjgg}{jj \gamma \gamma}
\newc{\jjjjgg}{4j \gamma \gamma}
\newc{\gsim}{\lower.7ex\hbox{$\;\stackrel{\textstyle>}{\sim}\;$}}
\newc{\lsim}{\lower.7ex\hbox{$\;\stackrel{\textstyle<}{\sim}\;$}}
\newc{\ie}{{\it i.e.}}
\newc{\etal}{{\it et al.}}
\newc{\eg}{{\it e.g.}}
\newc{\kev}{\hbox{\rm\,keV}}
\newc{\mev}{\hbox{\rm\,MeV}}
\newc{\gev}{\hbox{\rm\,GeV}}
\newc{\tev}{\hbox{\rm\,TeV}}
\newc{\xpb}{\hbox{\rm\, pb}}
\newc{\xfb}{\hbox{\rm\, fb}}
\newc{\mtop}{m_t}
\newc{\mbot}{m_b}
\newc{\mz}{m_Z}
%\newc{\mZ}{m_Z}
%\newc{\mA}{m_A}
\newc{\mw}{m_W}
\newc{\alphasmz}{\alpha_s(m_Z^2)}
\newc{\swsq}{\sin^2\theta_W}
\newc{\tw}{\tan\theta_W}
\newc{\cw}{\cos\theta_W}
\newc{\sw}{\sin\theta_W}
\newc{\BR}{\hbox{\rm BR}}
\newc{\zbb}{Z\to b\bar}
\newc{\Gb}{\Gamma (Z\to b\bar b)}
\newc{\Gh}{\Gamma (Z\to \hbox{\rm hadrons})}
\newc{\rbsm}{R_b^\hbox{\rm sm}}
\newc{\rbsusy}{R_b^\hbox{\rm susy}}
\newc{\drb}{\delta R_b}
\newc{\tbeta}{\tan\beta}
\newc{\uL}{{\tilde u_L}}
\newc{\uR}{{\tilde u_R}}
\newc{\cL}{{\tilde c_L}}
\newc{\cR}{{\tilde c_R}}
\newc{\tL}{{\tilde t_L}}
\newc{\tR}{{\tilde t_R}}
\newc{\dL}{{\tilde d_L}}
\newc{\dR}{{\tilde d_R}}
\newc{\sL}{{\tilde s_L}}
\newc{\sR}{{\tilde s_R}}
\newc{\bL}{{\tilde b_L}}
\newc{\bR}{{\tilde b_R}}
\newc{\eL}{{\tilde e_L}}
\newc{\eR}{{\tilde e_R}}
\newc{\mhp}{m_{H^\pm}}
\newc{\mhalf}{m_{1/2}}
\newc{\ta}{\tilde t_1}
\newc{\tb}{\tilde t_2}
\newc{\mta}{m_{\tilde t_1}}
\newc{\mtb}{m_{\tilde t_2}}
%\newc{\lR}{\tilde l_R}
%\newc{\eR}{\tilde{e}_R}
\newc{\stauR}{\tilde \tau_R}
\newc{\lR}{\tilde{l}_R}
\newc{\lL}{\tilde{l}_L}
\newc{\nL}{\tilde{\nu}_L}
\newc{\na}{\chi^0_1}
\newc{\nb}{\chi^0_2}
\newc{\nc}{\chi^0_3}
\newc{\nd}{\chi^0_4}
\newc{\ca}{\chi^{\pm}_1}
\newc{\cb}{\chi^{\pm}_2}
\newc{\capos}{\chi^{+}_1}
\newc{\caneg}{\chi^{}_1}
\newc{\mna}{m_{\na}}
\newc{\mlR}{m_{\lR}}
\newc{\mlL}{m_{\lL}}
\newc{\meR}{m_{\eR}}
\newc{\mstauR}{m_{\stauR}}
\newc{\stau}{\tilde{\tau}}
\newcommand{\partLink}[3]{\docLink{#1.tcx}[part::#2]{#3}\\}
\newcommand{\chapterLink}[3]{\docLink{#1.tcx}[chapter::#2]{#3}\\}
\newcommand{\sectionLink}[3]{\docLink{#1.tcx}[section::#2]{#3}\\}
\newcommand{\subsectionLink}[3]{\docLink{#1.tcx}[subsection::#2]{#3}\\}
\newcommand{\subsubsectionLink}[3]{\docLink{#1.tcx}[subsubsection::#2]{#3}\\}
\newcommand{\paragraphLink}[3]{\docLink{#1.tcx}[paragraph::#2]{#3}\\}
\newcommand{\subparagraphLink}[3]{\docLink{#1.tcx}[subparagraph::#2]{#3}\\}
\newcommand{\partInput}{\partLink}
\newcommand{\chapterInput}{\chapterLink}
\newcommand{\sectionInput}{\sectionLink}
\newcommand{\partInput}[3]{\input{#2.tcx}}
\newcommand{\chapterInput}[3]{\input{#2.tcx}}
\newcommand{\sectionInput}[3]{\input{#2.tcx}}
\newcommand{\subsectionInput}[3]{\input{#2.tcx}}
\newcommand{\subsubsectionInput}[3]{\input{#2.tcx}}
\newcommand{\paragraphInput}[3]{\input{#2.tcx}}
\newcommand{\subparagraphInput}[3]{\input{#2.tcx}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% end of definitions added by nc_fix
\section{\usemenu{slacpub7237::context::slacpub7237006}{Conclusions}}\label{section::slacpub7237006}
Gaugemediated supersymmetry breaking has many consequences
for the superpartner mass spectrum, and phenomenological
signatures.
In a large class of gaugemediated models
(including all the single spurion models given in this paper)
the general features include:
\begin{itemize}
\item The natural absence of flavor changing neutral currents.
\item A large hierarchy among scalars with different gauge
charges, {$m_{\tilde q_R}/m_{\tilde{l}_R}\lsim 6.3$}, and
{$m_{\tilde l_L}/m_{\tilde{l}_R}\lsim 2.1$}, with the inequalities
saturated for a messenger scale of order the supersymmetry
breaking scale.
\item Mass splittings between scalars with different gauge
quantum numbers are related by various sum rules.
\item ``Gaugino unification'' mass relations.
\item{Precise degeneracy among the first two generation scalars,
and sum rules
for the third generation that test the flavor symmetry of
masses at the messenger scale.}
\item Radiative electroweak symmetry breaking induced by
heavy stops, even for a low messenger scale.
\item Small $A$terms.
\item The lightest standard model superpartner is either
$\na$ or $\lR^{\pm}$.
%The collider signatures for supersymmetry are then either missing
%energy or, if the supersymmetry breaking scale is larger than a
%few 1000 TeV, heavy charged particles exiting the detector.
\item %If the supersymmetry breaking scale is below a few 1000 TeV
The possibility of
the lightest standard model superpartner
decaying within the detector to its partner plus the Goldstino.
\end{itemize}
The mass relations and sum rules hold in a very large class of
gaugemediated models and represent fairly generic features.
The possibility that the lightest standard model superpartners is
a charged slepton leads to the dramatic signature of
heavy charged particles leaving a greater than minimum ionizing
track in the detector.
This signature should not be overlooked in searches for supersymmetry
at future colliders.
The possibility that the lightest standard model
superpartner decays within the detector, either
$\na \to (\gamma, Z^0, h^0) + G$ or $\lR \to l + G$,
leads to very distinctive signatures, and provides
the possibility of indirectly measuring the supersymmetry
breaking scale.
The minimal model of gaugemediated supersymmetry breaking
is highly constrained, and gives the additional general
features:
\begin{itemize}
\item Gauginos are lighter than the associated scalars,
$m_3 < m_{\tilde{q}}$,
$m_2 < m_{\lL}$, and
$m_1 < m_{\lR}$.
\item The Higgsinos are heavier than the electroweak gauginos,
$3 m_1 \lsim \mu \lsim 6 m_1$.
\item Absence of a light stop.
\item The mass of the lightest Higgs boson receives large
radiative corrections from the heavy stops,
{$80\gev\lsim m_{h^0}\lsim 140\gev$.}
\item Unless $\tan \beta$ is very large,
the lightest standard model superpartner is the
mostly $B$ino $\na$, which decays predominantly by
$\na \to \gamma +G$.
\item At a hadron collider the largest supersymmetric production
cross section is for $\chi_1^{\pm} \chi_2^0$ and
$\chi_1^+ \chi_1^$.
\item{Discernible deviation in $Br(b\to s\gamma)$ from the standard model
with data from future $B$factories.}
\end{itemize}
If superpartners are detected at a high energy collider, one of the most
important tasks will be to match the low energy spectrum with a more
fundamental theory.
Patterns and relations among the superpartner masses
can in general give information about the messenger sector
responsible for transmitting supersymmetry breaking. % \cite{peskin}.
%As discussed in this paper, gaugemediated supersymmetry
%breaking can lead,
%in large classes of models to very predictive relations and sum rules.
%Some of these allow a
%logarithimically senstive probe of the messenger scale.
%In this paper we have studied the minimal model of gauge mediated supersymmetry
%breaking. Reasonable deviations from this minimal model were also detailed
%to show how some of the predictions of the minimal model would be modified.
As discussed in this paper, gaugemediated supersymmetry
breaking leads to many distinctive patterns in the superpartner
spectrum.
Any spectroscopy can of course
be trivially mocked by postulates of
nonuniversal boundary conditions at any messenger scale.
However, gaugemediation in its minimal form represents
a {\it simple} anzatz which is highly predictive.
In addition, if decay of the lightest standard model superpartner
takes place within the detector, implying a low supersymmetry breaking
scale, the usual gauge interactions
are likely to play some role in the messenger sector.
The overall scale for the superpartner masses is of course a free
parameter.
However, the Higgs sector mass parameters set the scale
for electroweak symmetry breaking.
Since all the superpartner masses are related to a single
overall scale with gaugemediated supersymmetry breaking,
it is reasonable that the states transforming under
$SU(2)_L$ have mass of order the electroweak scale.
From the low energy point of view,
masses much larger than this scale would appear
to imply that electroweak symmetry breaking is tuned, and
that the electroweak scale is unnaturally small.
Quantitative measures of tuning are of course subjective.
%However, the tuning among Higgs sector parameters is
%apparent in Fig. \ref{sfig14n}.
However,
when the overall scale is large compared to $\mZ$,
tuning among the Higgs sector parameters arises in
the minimization condition (\docLink{slacpub7237003.tcx}[mincona]{16}) as a
near cancelation between $(\tan^2 \beta1)\mu^2$ and
$\mHu^2  \tan^2 \beta \mHd^2$, resulting in
$\mZ^2 \ll \mu^2$.
In this regime the near cancelation enforces constraints
among some of the Higgs sector parameters in order to obtain
proper electroweak symmetry breaking.
As the overall superpartner scale is increased these
tuned constraints are reflected by ratios
in the physical spectrum which become independent of the
electroweak scale.
This tuning is visually apparent in Fig. \docLink{slacpub7237.tcx}[sfig14n]{10}
as the linear dependence of $\mA$ on $m_{\na}$
at large overall scales.
The ``natural'' regime in which the Higgs sector parameters
are all the same order as the electroweak and superpartner scale
can be seen in Fig. \docLink{slacpub7237.tcx}[sfig14n]{10}
as the nonlinear dependence of $\mA$ on $m_{\na}$.
In Fig. \docLink{slacpub7237.tcx}[sfig16n]{5} this ``natural''
nonlinear regime with light superpartners
is in the far lower
left corner, and hardly discernible in the linearly scaled plot.
Although no more subjective than any measure of tuning,
this bodes well for the prospects
indirectly detecting the effects of superpartners and Higgs
bosons in precision measurements, and
for directly producing superpartners at future colliders.
\medskip
\noindent
{\it Acknowledgements:} We would like to thank M. Carena, M. Dine,
G. Giudice, H. Haber, S. Martin,
M. Peskin, D. Pierce, A. Pomarol,
and C. Wagner for constructive comments.
We would also like to thank
the Aspen Center for Physics and CERN, where this work was partially
completed.
% and we didnt mention e e gamma gamma even once!
% and why read the source file ?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\appendix
%%%% code added by add_nav perl script
\bigskip%
\docLink{pseudo:nextTopic}{Next Section}%

\docLink{slacpub7237009u1.tcx}[::Bottom]{Bottom of Paper}%
%%%% end of code added by add_nav