%% slacpub7176: page file slacpub7176002.tcx.
%% section 2 IR sensitivity of LLA and soft gluon emission at large angles [slacpub7176002 in slacpub7176002: slacpub7176003]
%%%% latex2techexplorer block:
%% latex2techexplorer page setup:
\iftechexplorer
\setcounter{section}{1}
\fi
\iftechexplorer
\setcounter{secnumdepth}{2}
\setcounter{tocdepth}{2}
\def\thepart#1{}%
\def\thechapter#1{}%
\newcommand{\partLink}[3]{\docLink{#1.tcx}[part::#2]{#3}\\}
\newcommand{\chapterLink}[3]{\docLink{#1.tcx}[chapter::#2]{#3}\\}
\newcommand{\sectionLink}[3]{\docLink{#1.tcx}[section::#2]{#3}\\}
\newcommand{\subsectionLink}[3]{\docLink{#1.tcx}[subsection::#2]{#3}\\}
\newcommand{\subsubsectionLink}[3]{\docLink{#1.tcx}[subsubsection::#2]{#3}\\}
\newcommand{\paragraphLink}[3]{\docLink{#1.tcx}[paragraph::#2]{#3}\\}
\newcommand{\subparagraphLink}[3]{\docLink{#1.tcx}[subparagraph::#2]{#3}\\}
\newcommand{\partInput}{\partLink}
\newcommand{\chapterInput}{\chapterLink}
\newcommand{\sectionInput}{\sectionLink}
\else
\newcommand{\partInput}[3]{\input{#2.tcx}}
\newcommand{\chapterInput}[3]{\input{#2.tcx}}
\newcommand{\sectionInput}[3]{\input{#2.tcx}}
\fi
\newcommand{\subsectionInput}[3]{\input{#2.tcx}}
\newcommand{\subsubsectionInput}[3]{\input{#2.tcx}}
\newcommand{\paragraphInput}[3]{\input{#2.tcx}}
\newcommand{\subparagraphInput}[3]{\input{#2.tcx}}
\aboveTopic{slacpub7176.tcx}%
\previousTopic{slacpub7176001.tcx}%
\nextTopic{slacpub7176003.tcx}%
\bibfile{slacpub7176005u2.tcx}%
\newmenu{slacpub7176::context::slacpub7176002}{
\docLink{slacpub7176.tcx}[::Top]{Top}%
\sectionLink{slacpub7176001}{slacpub7176001}{Previous: 1. Introduction}%
\sectionLink{slacpub7176003}{slacpub7176003}{Next: 3. Resummation of soft emission and Wilson lines}%
}
%%%% end of latex2techexplorer block.
%%%% code added by add_nav perl script
\docLink{slacpub7176.tcx}[::Top]{Top of Paper}%

\docLink{pseudo:previousTopic}{Previous Section}%
\bigskip%
%%%% end of code added by add_nav
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% author definitions added by nc_fix
\def\Journal#1#2#3#4{{#1} {\bf #2}, #3 (#4)}
\def\NCA{\em Nuovo Cimento}
\def\NIM{\em Nucl. Instrum. Methods}
\def\NIMA{{\em Nucl. Instrum. Methods} A}
\def\NPB{{\em Nucl. Phys.} B}
\def\PLB{{\em Phys. Lett.} B}
\def\PRL{\em Phys. Rev. Lett.}
\def\PRD{{\em Phys. Rev.} D}
\def\ZPC{{\em Z. Phys.} C}
\def\st{\scriptstyle}
\def\sst{\scriptscriptstyle}
\def\mco{\multicolumn}
\def\ra{\rightarrow}
\def\vp{{\bf p}}
\def\al{\alpha}
\def\ab{\bar{\alpha}}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bea{\begin{eqnarray}}
\def\eea{\end{eqnarray}}
\def\CPbar{\hbox{{\rm CP}\hskip1.80em{/}}}%temp replacement due to no font
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% end of definitions added by nc_fix
\section{\usemenu{slacpub7176::context::slacpub7176002}{IR sensitivity of LLA and soft gluon emission at large angles}}\label{section::slacpub7176002}
We provide evidence \cite{1,4,5} that the DrellYan cross section
is free from $1/Q$ IR contributions.
To oneloop accuracy this statement can be checked by an explicit
calculation with a small gluon mass $\lambda$ as regulator.
Nonanalytic terms in the small$\lambda$
expansion correspond to higher twist contributions \cite{6,7}.
A textbook calculation gives \cite{1}
at $N\gg 1$
\be
\omega_{DY}(N,Q^2,\lambda^2)\omega_{DY}(N,Q^2,0) =
\frac{C_F \alpha_s}{\pi}\frac{N^2\lambda^2}{Q^2}\ln(\lambda^2/Q^2)+
O\!\left(\frac{1}{N},\frac{N\lambda}{Q} \right).
\ee
Note that the suspected linear term $\sqrt{\lambda^2/Q^2}$ is absent; the
leading IR contribution is of order $N^2\lambda^2/Q^2$. The $N^2$
enhancement signals that the power corrections are determined by the
{\em smaller} of the two large scales: $Q/N$ is the
moment space analogue of the energy available for gluon emission.
In terms of the energy fraction $z$ the relevant scale is $(1z)Q$ rather
the mass of the DrellYan pair $Q$.
To understand the apparent $1/Q$ sensitivity of the LLA, it is
instructive to consider the structure of the
oneloop integral for soft gluon emission
\be
\omega_{DY} \sim \int\frac{d^3k}{2k_0}\delta[(p_1+p_2k)^2Q^2]
\left{\cal M_{DY}}\right^2.
\ee
The matrix element (in LLA) is $\left{\cal M_{DY}}\right^2
\sim 2Q^2/k_\perp^2$
and it is convenient to rewrite the phasespace integral as
$$
\int \frac{d^3k}{2k_0} \sim \int\frac{dk_\perp^2}{\sqrt{k_0^2k_\perp^2}}\,.
$$
We now take a massless gluon, and to avoid collinear divergences
introduce an explicit cutoff on the minimal transverse momentum
$k_\perp>\mu$. Remembering that $k_0=\sqrt{s}(1z)/2$ and taking moments
we get
\be\label{DYphasespace}
\omega_{DY}^{soft} = \frac{2C_F}{\pi}\int_0^{12\mu/Q} dz\, z^{N1}
\int_{\mu^2}^{Q^2(1z)^2/4}\frac{d k^2_\perp}{k^2_\perp}\frac{1}
{\sqrt{(1z)^24k^2_\perp/Q^2}}
\ee
The crucial point is now that the LLA corresponds to resummation of
soft and {\em collinear} emission, that is the leading logarithms
(and in fact the nexttoleading as well) come from the integration
region of small gluon transverse momentum compared to its energy
$k_\perp \ll k_0 = Q(1z)/2\ll Q$. Thus, for summation of
large logarithms, it is safe to neglect the term $4 k_\perp^2/Q^2$
under the square root, so that
\be
\omega_{DY}^{soft+coll.} = \frac{2C_F}{\pi}\int_0^{12\mu/Q} dz\,
\frac{ z^{N1}1}{1z}
\int_{\mu^2}^{Q^2(1z)^2/4}\frac{d k^2_\perp}{k^2_\perp},
\ee
where we have replaced $z^{N1}$ by $z^{N1}1$ to
take into account virtual gluon exchange.
Taking the integrals, we get the expected double logarithm but
also the linear term in $\mu/Q$ discussed in Sect.~1.
However, this IR contribution of order $1/Q$ comes from the
endpoint integration region $1z\sim \mu/Q$ (where $k_\perp\sim k_0$)
in which neglect of
the $k_\perp^2/Q^2$ term under the square root is not justified.
In fact, the square root cannot even be expanded in $k_\perp^2/
(Q^2 (1z)^2)$
since this would generate increasingly singular contributions. Instead, the
integral must be taken exactly. When this is done \cite{1}, all
$\mu/Q$ terms disappear.
The physical reason for the enhanced IR sensitivity of the resummed
cross section in LLA is that we neglected soft gluon radiation
at large angles $k_\perp\sim k_0$. To recover the correct
IR behavior, the phase space integral for soft gluon
emission has to be taken exactly; the common collinear approximation is
sufficient for summing logarithms to leading and nexttoleading
logarithmic accuracy
but is misleading for the analysis of powersuppressed effects.
%%%% code added by add_nav perl script
\bigskip%
\docLink{pseudo:nextTopic}{Next Section}%

\docLink{slacpub7176005u2.tcx}[::Bottom]{Bottom of Paper}%
%%%% end of code added by add_nav