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Introduction

In a recent pa.perm, T. Raubenheimer and I'. Zimmermann described a new,
fast transverse instability caused by the interaction of a train of bunches with
the residual gas. lTous produced by transversely offset bunches in the head of a
train induce oscillations of the tail of the train. The ions may be cleared out
by a gap after one revolution, but the memory remains in the train. Amplitude
of oscillations keeps growing exponentially as exp W until the amplitude of a
bunch centroid is on the order of the transverse rms o of a bunch. The rise time
s, of the oscillations of a bunch centroid for the PEP-11I HER was found to be a

. . . , - . .2
fraction of a millisecond, even taking into account the spread of ion frequencies ™.

Computer simulations™ ™ confirm the exponential growth. However, the results
of the simulations show that the exponential regime holds only for a short period
of time and then changes to a much slower growth. Initial growth is rapid; it would
be difficult to observe it directly in experiments. Irom a practical point of view,
the important questions are, what is the amplitude at which a transition to slow
growth takes place and, secondly, what is the growth rate after that transition

compared to the rate, which could be handled with a reasonable feedback system.

The exponential regime is limited by nonlinearity of the beam-ion interaction.
As a result, exponential growth at large amplitudes is replaced by a linear depen-
dence of the amplitude on time. The transition from exponential growth to a linear
regime depends on the initial conditions: exponential growth is noticeable only for
very small initial amplitudes. An estimate of the growth rate at large amplitude

is obtained and compared with computer simulations.

For completeness, the basic formulas of the original paper are re-derived.

Basic equations

I'irst, we reproduce the basic equations of the paper [1]. Consider a train

of bunches n = 1,..,n;. The head of the n-th bunch is located at the position
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The vertical motion of electrons of the n-th bunch is described by the equation

Py(s,z)
Js?
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where wy is a betatron frequency (in ¢m™!), and the potential I of the beam-ion

interaction is

; e ,
U(r,s) = 4( / n (7, ). (2)
7
The ion density n;(7", s) is given by the initial density n?;
ni(r,s) = di' [ — Xp (7, )6y — Ye (', 9)]8[z — 2|l (7). (3)

Here, Xi(7,s) and Yi(y/', z, s) are trajectories of ions generated by the A-th bunch
at the location z of the ring. The initial value y' for Y. Yi(y/, 2, s:) = ¥/, is equal
to the offset y' = y, (54, 24) of the k-th bunch at the location z of the ring at the

morment sg <8, 8 = 2 + zg.
[ons are generated uniformly along the ring with the rate

dN; p 300K
= 0.06( -2 T‘ )N, cmn™!, (4)

dz torr

where p is the residual gas pressure and the lonization cross-section is assumed
to be 2 Mbarn. Initial distribution of ions is defined by the density of the parent

hunch
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where p(x), p(y) are Gaussian distributions with rms o, oy, respectively. We
assume a flat beam o, >> o, and take o, , constant around the ring, and for all
bunches. Therefore, the ion frequencies for ions with atomic number A,

2 2;\}, T’p

w
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are also constant. The frequency spread in a nonlinear regime is produced auto-

matically by nonlinearity of the motion.



For a flat beam we take Xg(7,5) = x cos iy, vy = wp(5— s;), and sp = 2 + 2.

p(y' — yplz + 2, 21)). (T)

Then
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Here p(x) has rms o7 cos” ¢, == o3 /2. The equation for a bunch centroid is obtained
: “n))

by averaging Eq. (1) with the density p, (7, s) = Npp(@)ply—yp(s, 20 ))p(z—(s—
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of the n-th bunch. The following relation simplifies the result

dA
14 2X2023/2
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Averaging Ilq. (T) gives
2 2dA; ,
Y l d!//[yb(b’,:n,) - )l)/\f(y/'!’s_‘*nvg)]
3 dz
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Zn + g, 25 ) 1s the offset of the A-th bunch at the moment s = = + =z,
where the n-th bunch is

— Zns

Here yy(s —
when it generates ions at the same location =z = s

situated at the moment s.
Define the position }m( s, zp) ol the group of ions generated by the m-th bunch
(10)

at the location zy
}'Vm,(&, ) = Ym(yb(iu + Zm, 3171)7 <0, i’)

with the initial condition Yo (z042m, 20) = yp(z0+2m, 2 ) at s = 20+ 2. Equation



(1) gives after averaging

o 1 2 -
P yp(s5.2,) ‘ R — L lynl(s,20 )= Yi(8,5—2n)]°
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Here

- dr. dN; 1 . (12)
3ysp ds op0y

Note that parameter A" of the pa‘per[llis KN = kzy where zp is the total length of

the bunch train.

In the lincar approximation |y, — Yi| << o,, we can take the dependence
of the trajectory Yi(y,z,s) on the initial condition y in the form Yi(y,z,s) =
ycos vy + Yy(s) and obtain

ou 4 1 dN;

—— s (s, Zpl) — )/‘\‘vf 8,8 — 2y )] 13,
<Gy Sooy & p(s, 20) — Yi(s, s )] (13)

In another extreme case o, >> |yy — Yi| >> oy, Eqgs. (8), and (9) give

ov 2 wdN; ) .
<Soee o= IEN L iglle ) = Vilpws s (1)
Y or 3 dz .

The force Eq. (11) depends on a sign of (y, — Yy ).

The motion of ions at the location zp can be considered sunilarly. The ion

centroid 1s described by the equation

1

()2)/\' (5* z ) - _»“?n.(»‘_fo‘l - _
m _w26 27 [)'(171(& :'l)) - yb(S, 5 — 30)] (17/6' 7%
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Equations (10), (11), and (15) can be generalized for the case when ions are

not cleared out after one turn. A centroid of 1ons, generated by the m-th bunch on
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the { > 0-th turn, is described by )T”,fl(s, 20) = Ym{ys(z0 + z2m + 1O, 2), 20, 8) with
the initial condition ¥

171‘(:0+3m.+[(’vv :U) - yb(:l)‘}‘:m‘}‘l(f‘v :m‘) at s = ~0+3m+lC-
Equations (11), (15} take the form

1
2 y -
o=yl s, 2n ‘ - — 2 ynl(8,20) =Y (5,80 —20)]
$+szy<'5a3n) = KRSy LI/(,(S, Zn,)_)/kl(sa SC_;IL)] (]7]6 27 ’ ' ‘
L k.t 0
FY ) (s, 20) 22,05,20) I ! Pk g s (=2 )2
R 2 T, v 207
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Here (' is the circumlerence of the ring, s¢ = smod (C'), and the sum over k is
taken over bunches with z; < z,.

Linear approximation

Equations (11) and (15) give in the lincar approximation |yp(s,2) — Y| << oy

the system of equations

azyb(g’gn ) "
T + wbzf/('qﬂ Zn) — — kS [y[,(s,:,,) - )'/k(SaS - Zn,)]s
' k,2k<2,,.
DY (s, 2) -
T - —u;y[},,,,(s,z)—yb(.S,.S—Z)}. (1‘)

The second of Eqs. (17) has a solution

S;n(“v 3) - !j[,(Z + Zm, :m) COS[Wy(S -z — Zm.)] + };(7)1(“1 :)1 (18)
S
Y0s,2) = wy ds'yy (8’5" — ) sinfwy (s — §)).
Z+ZTIL

Equations (17) and (18) show that effect of the ions is equivalent to a transverse

wakefield.
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The solution was found in the original paper in power series

1 Ky 527 o
(5,z), y'" = ﬁ(f—)m‘ cos(wps — wyz +12). (19)
(N Swy

Indeed, substitution of the term "™ (s, 2) in the right hand side (RHS) of Eq. (17)
gives the next term y(™ (s, z) provided the small terms of the order of (wyz/2m )1,
can be neglected. These conditions, compared to the original paperm, include the

additional factor m. From the expansion in Eq. (19), it is easy to see that signifi-

cio .2
KW ySZ

cant m ~ i
wh

are large, and neglected terms are small provided

1 K R .
§lscpp <<, —— = 5 L orec b $/sefy- (20)
'\(jf ..,u)bu)y K
Under these conditions, Eq. (18) gives the result ™!
yp(s.7) = Aplo(wys  5/5¢55) cos(wys —wyz + ). (21)

The solution grows exponentially as crplwyz  s/s.ps]. This expression depends

only on two parameters: number of bunches in the train ny, and characteristic

time s,
_ A 2
Yb ~ (}(ny/nb) s/s,,’ l _ ('-“y'f'b”b) ' (22)
ap Se Seff
For larger s >> s.¢r, the solution can be found in series
g effs
Ay 1 wsz, mn .
golsez) = 20 (T oy — gz + ) (23)
$ el 2wy 2
in
giving oscillatory dependence on time
. Seff K8z o
yp(s, 7)) = Ay CoOS{wps — wyz + —— ). (24)
S ) Zu.‘b

This solution describes oscillations with the amplitude modulated in time s with

frequency 2wy /rz.

and

(wps/2m)~1



The PEP-II HER parameters are: I = 9 GeV, pressure 5 nTorr, o, = 0.1
cm, oy = 0.02 cm, bunch spacing s, = 1.24 m, number of bunches ny, = 1650,
Ny = 8.3 x 1010 (at the average beam current I, = 3 A), and w, = 0.07 m™!
(for v, = 23.5). That gives dN,/ds = 24.9 em™!, wy = 0.96 x 1072/ A em™L,
k=21 x 1071 em~3, Seff = 1.2 % 10° ¢ for A = 28. In this case Zmar IS
larger than the ring circumference. Clearly, the regime shown in Eq. (24) can
not be achieved, and the exponential growth of Eq. (22) can be stopped only by

nonlinear effects.

The nonlinear regime

Exponential growth, as it was noticed in the original pa‘perm7 tends to saturate
at large amplitudes. Let us consider this regime in more details. Eq. (17) shows
that Y7 grows faster than a bunch centroid y;. lons can be cleared out by a gap
in the bunch train, but memory is retained in the beam, and the amplitude of
ions is determined by the amplitude of bunch centroids. Motion becomes substan-
tially nonlincar when the amplitude growth, Eq. (21), changes the ion frequency
«'(a/oy)? ~ 1 where the nonlinearity of ion oscillations w’ = dw,/d(a/cy)? on the
order of w' ~ 0.lw,. This provides criterion for the time when transition to the
nonlinear regime for the last 1n,-th bunch takes place:

S 3
o~ ln(—gg ).
‘wfff a
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N
g

N
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Clearly, the exponential regime can be expected for s >> s, only if the initial

amplitude g 1s small.

In the substantially nonlinear regime when amplitudes of ions and electrons

yp — Yi| > oy, the equations of motion are

are large,

. — 1

yp(s, zn) . ; T B A~ .

—()T;—n' +wiyp(s, z) = — Sroysy  signfyy(s,ze) — Ye(yls, s — 2] (26)
o e &
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The analysis of these equations is complicated. To achieve a qualitative result,
we proceed as follows. Take yy(s, z) = a(zy,) cos ®(s, z,,, ) where, by analogy with

the linear case,
(D('“'a ;) = wps — (‘?"‘b + W‘y)zm + ps. (28)

Note, that
P(s,s —z) = —W(s,z20) == —Jwys — (wp +wy)z0 — ps]. (29)

Hence, yp(s,s — z0) = als — zp) cos W(s, zp). The RIS of Eq. (27) is

™ 2

§Uywi;sign[}'v,,,‘(3, zp) —a(s — zp)cos U(s, 2]
We assume
)'vm(sa :0) = yb(:() + Zmes :m) + Am(:l)) ('05[\1}('53 5()) + fm] s (30)

where the first term corresponds to the initial condition Y5, (z0 + 2, 20) = yp(20 +
Zm, Zm) for lons generated by the m-th bunch at location zy of the ring, and the
sccond term describes oscillations of these ions induced by kicks of the following
bunches. The argument of the sign function oscillates with s with frequency w,.
The main Fourier harmonics of the sign function oscillates with the same frequency,
confirming the choice of the solution shown in FEq. (29). From Eq. (27) it {ollows
that A, >~ o,. but the phase &, depends on the relation between amplitudes of

different bunches.

Substitute now Y, (s, s — 2 ) in Eq. (26) using
);n('f‘a s — Zm) - yb(Sa Zm) + Ty COS{(I)(S«, Zn,) - gm]- (31)

The RHS of Eq. (26) takes the form

— n—1
- j—)‘h‘aysb signfa(z,) cos (s, z,) — alzg) cos P(s, z) — oy cos(P(s,z,) — Em)]-

(32)

[t oscillates with the frequency wy in the resonance with the betatron oscillations.



The solution of Eq. (26) grows linearly with time

M)sdn sin P(s, z,) (33)

2wh

yb(«ga:n,) = dp CO3 @(3’ 311,) - (

where coefficients d,, depend again on the relation between the amplitudes of differ-
ent terms in the sum of Eq. (32). The result, Eq. (33), can be written in the form
Eq. (28) with the frequency shift g = roysp/(2wp), making analysis self-consistent.
Note that the frequency shift u kills resonance and stops amplitude growth but it

happens only at very large numbers of turns.

Depending on the correlation of signs of different terms in Eq. (32), the am-
- . . Bl 3y . .

plitude squared is proportional to n or to n=. Such uncertainty translates in the
computer simulations to a non-monotonic growth of an amplitude for different
bunches with the bunch number: the amplitudes of different bunches vary by sev-
eral orders of magnitude and a bunch with a larger number does not necessarily
have a larger amplitude. Assuming random signs of different terms in Eq. (32),
we get the estimate for the time dependence of the amplitude of the n-th bunch

when the amplitude is large

S 9 9

) (wysp)n. (34)

yo(s Zn,:) 2
<[ >~
Ty Seff
As discussed below, this estimate qualitatively agrees with numerical simulations,
although it does not predict rather random variation of amplitude with time for

individual bunches.

Because full scale modeling is time consuming, a simple code was used to model
the instability based on Eqgs. (17), (26), and (27). Equation (34) is compared below
with the code to demonstrate that the estimate in Eq. (34) is consistent with Eqs.
(17), (26), (27). Equation (34) is also compared with Raubenheimer’s tracking

simulations.

A train of bunches was modeled 1n the code as a train of macroparticles, a single

macroparticle per bunch. Bunches generate a macroparticle representing ions at

10



all locations around the ring separated by a bunch spacing. lons are generated
by all bunches, which pass a given location and then are retained at this location
for a specified number of turns, or until their amplitude is less than a certain
aperture (3 x 103(fy was used in the simulations). The interaction between ions
and bunches is deseribed as a kick to ions and bunches proportional to the difference
of the positions of the microparticles il the difference is smaller than o, inversely
proportional to the difference if the difference is larger than 100, ~ 7,, and as a
constant kick dependent only on the sign of the difference in other cases. Variation
of the ion frequencies around the ring and variation of the betatron frequencies of

the individual bunches were optional.

The results of the simulations with this code are shown in Figs. 1-5. The

train of ny = 80 macroparticles moves in the 130 rf hucket long ring. Bunch
spacing is s; = 0.42 m, the ion frequency wy, corresponds to wys,/c = 1.53, the
. . . . o~ r .. . R

interaction is defined by sqpp = 2.35 x 10” m, and characteristic time s., defined

bv 1/s. = (wy.9b17l,)2/3€ff, is s = 15.3 m. The initial amplitude is not zero only

for the first bunch y,(0)/o, = 1075

Under this conditions, the linear theory predicts that the amplitude of the n-
th bunch grows to (an_/ay)z = 0.1 after s = s, = 2450(ny/n)® m. Fig. 1 shows
the result of the simulations where all ions are cleared out after each turn and no
frequency spread is included both for ions and bunches. The results qualitatively

. . ) . 1]
reproduce the main features of the exact simulations

= They give an exponential
growth in agreement with linear theory, and show that exponential growth slows
down at large amplitudes. The behavior predicted by Iiq. (31) for the same bunches
1s superimposed with the results of the code in the lower part of Fig. 1. The curves
obtained without any fitting confirm that the estimate Fq. (34) derived from Fgs.

(26) and (27) agrees reasonably well with the code describing the same equations.

Fig. 2 is calculated with the same conditions but ions were retained in 10
turns rather than cleared out after the first turn. Results are siinilar but behavior

of different bunches is much less systematic than in the first case. Quadratic

Il



dependence on s is seen more clearly if results are plotted in the usual (not semi-
logarithmic) scale, Fig. 2b. Note that the amplitude of the first bunch grows
because the ion are not cleared out completelly by the gap. However, the amplitude
of the first bunch remains smaller than that for the last bunch in the train by two

orders of magnitude.

The effect of the frequency spread of ions was studied by G. Stupakov e Fig.
3 shows the variation of the amplitude with time for the same parameters but ion
frequency is varied periodically five times around the ring with 10% amplitude.

The ions are cleared out in one turn.

Fig. 4 is calculated under the same conditions but betatron frequency is in-
creased from bunch to bunch monotonically, increasing totally by 5% along the

bunch train.

Fig. 5 compares Eq. (34) with the Raubenheimer tracking code. Parameters
of the NLC damping ring were used: £ = 2GeV, ny = 90, A = 28, Ny = 1.5x 107,
pressure 107" Torr, s, = 0.42 1, 8y =8 m, o, =42um, o, = 7.7pm. That gives

se =0.82m, sepp =13 % 10* m, and wysy = 1.4. Agreement is reasonable.

Raubenheimer’s numerical simulations for the ALS ring (wysp = 0.5) give
seff = 1.7 x 10" m in good agreement with the lincar theory for this machine. If
this regime continued, the amplitude of the last bunch in the train of 150 bunches
would grow to yp/oy =~ 5 x 107 at s = 1500 m. The simulations show that this
quantity 1s 1 the range of 0.1 to 10.0 for different bunches in the nonlinear regime
after s = 1500 m. The estimate Fq. (34) for the last bunch is 0.3. Note that the
range of the amplitudes for different bunches agrees with linear dependence on n

in Eq. (34).

For parameters of PEP-II, s.pp = 1.2 X 107 m, wysp = 0.22, and ny = 1633,
equation (34) gives (yp/oy,) = 7.5 x 107 (s/m) n/ny, or yp = o in 4.5 msec for
the last ny = 1650 bunch. This rate is smaller than the PEP-I1 damping time but

can be managed with the bunch-by-bunch feedback system.
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We can estimate the amplitude, at which the transition from the exponential
regime of Eq. (22) to the linear regime of Eq. (34) takes place by calculating s at

which both formulas give the same result:

8 a 5
— (wyspn) = Inf(=2) (=
Seff ag Seff

Jwys) 1) (35)

The break point amplitude for the n-th bunch is

L= %W—i?:—/# (36)
It is very small in the tail of the train, indicating that tail of bunches is always
described by Eq. (34). In the head of the train, the break point amplitude can be
large but time Eq. (35) in this case is large too, and growth can be stopped by a
feedback system.

Conclusion

lon-induced fast transverse instability is constrained by nonlincar effects. Non-
linear effects stop exponential growth of the amplitude at fractions of the rms bunch
size. At large s the exponential growth described in the papers[ll s replaced by
the much slower linear growth of the amplitude. An estimate of the growth rate in
this case is given by Eq. (34). The estimate is qualitatively consistent with numer-
ical simulations. Instability at PEP-II can be controlled by the bunch-by-bunch
feedback system with damping time of less than 4.5 ms.
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1) Comparison of the results of simulations (above) with Eq. (34). Lines are
for different bunch numbers. All ions are cleared out after each turn and no
frequency spread is included both for ions and bunches. Below: results of

Eq. (34) are added, no additional parameters are used.
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2) The same as Fig. 1, but ions are retained for 10 turns. The same data are

plotted in logarithmic (above) and linear {below) scales.
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3) Effect of ion frequency variation. Tlie lons are cleared out in one turn.
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5) Comparison of Eq. {34) with the Raubenheimer’s tracking code.
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