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ABSTRACT

A new bunch-length measuring method has been developed to measure the subpicosecond

electron pulses generated at the Stanford SUNSHINE facility. This method utilizes a

far-infrared Michelson interferometer to measure coherent transition radiation emitted at

wavelengths longer than or equal to the bunch length via optical autocorrelation. To

analyze the measurement, a simple and systematic way has also been developed, which

considers interference effects on the interferogram caused by the beam splitter; hence, the

electron bunch length can be easily obtained from the measurement. This simple, low-cost,

frequency-resolved autocorrelation method demonstrates subpicosecond resolving power that

cannot be achieved by existing time-resolved methods.
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I. INTRODUCTION

In recent years, the reduction of electron bunch length has become an interesting

aspect in the development of particle accelerators. Its progress greatly affects the design

of next-generation synchrotron light sources, future linear colliders, free-electron lasers,

and high-intensity coherent far-infrared light sources. Hence, a bunch-length measuring

system capable of characterizing subpicosecond pulses will provide a powerful tool to measure

such progress.

It is intuitive to use a time-resolved method to measure the electron bunch length,

which resolves the beam-generated signal in the time domain. However, when the bunch

length is in the subpicosecond regime, it is beyond the resolution of time-resolved methods

developed so far. Nevertheless, the complexity and the cost of hardware for fast time-resolved

methods, such as a streak camera, increase to a great extent as the resolution approaches

one picosecond. It is necessary therefore to develop a new bunch-length measuring technique

with subpicosecond resolving power.

As an alternative, a frequency-resolved technique extracts the frequency content of a

beam-generated signal. From this frequency information, the particle distribution can be

deduced. Unlike time-resolved techniques, this does not require fast processing speed and

complex hardware. Since the necessary broad bandwidth required for short pulses can

be achieved by optical methods, a subpicosecond time resolution can be obtained. This

is a well known technique in the characterization of femtosecond laser pulses [1] and has

been suggested for subpicosecond bunch-length measurement [2]. The method utilizes a

far-infrared Michelson interferometer to measure coherent transition radiation emitted at

wavelengths longer than or equal to the bunch length via optical autocorrelation. The bunch

length can be determined by analyzing the measured frequency information.

At the SUNSHINE facility, we have developed a new bunch-length measuring system

based on this frequency-resolved method. Using subpicosecond electron pulses generated at

SUNSHINE [3,4], we have verified this technique [4,5] and developed it into a simple, low-cost
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instrument for subpicosecond bunch-length measurement. In this paper, we describe the

principle of this autocorrelation technique, the analysis and interpretation of bunch-length

measurements, and the experimental results.

II. AUTOCORRELATION BUNCH-LENGTH MEASURING METHOD

This frequency-resolved method uses a far-infrared Michelson interferometer to measure

the spectrum of coherent transition radiation via optical autocorrelation. Coherent

transition radiation emitted by electron pulses carries the information of bunch distribution

in its frequency content. By analyzing the frequency information, the bunch length

can be derived.

A. Coherent transition radiation

Transition radiation is generated when an electron passes the interface of two media of

different dielectric constants [6]. The spectral distribution is determined by the frequency

dependence of the dielectric constants of the media. For a vacuum-metal interface, the

spectrum of transition radiation is approximately constant in the far-infrared regime due to

the almost perfect conductivity of the metal, and the angular spectral energy for the case

of normal incidence can be expressed as [6]

d2E
dωdΩ

=
e2β2

π2c

sin2 θ

(1− β2 cos2 θ)2
, (1)

where θ is the angle between the radiation and the electron direction, and β the ratio of the

speed of the electron to that of light. For a relativistic electron, this distribution has a zero

at θ = 0 and reaches maximum at θ ∼ 1/γ, where γ is the Lorentz factor.

When a bunch of N electrons passes the interface, the resulting total electric field at

the observation point is the superposition of the one emitted from each electron. If the

observation point is far from the interface, the total intensity at wavelength λ, using far-field

approximation, can be expressed as [7]
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Itotal(λ) = N [1 + (N − 1)f(λ)]Ie(λ) , (2)

where Ie(λ) is the intensity of transition radiation emitted by an electron at

wavelength λ. In the far-infrared regime, Ie(λ) is constant. The form factor f(λ) is

given by the three-dimensional Fourier transform of the normalized bunch distribution

W (r) (
∫
W (r)dr = 1)

f(λ) =
∣∣∣∣∫ W (r)ei2π(n̂·r)/λdr

∣∣∣∣2 , (3)

where n̂ is the unit vector directed from the center of the bunch to the observation point

and r is the position vector of an electron relative to its bunch center. If the radiation

is observed in the forward direction (which is defined as the unit vector ẑ; n̂ ‖ ẑ) from a

transversely symmetric beam with rectangular longitudinal distribution, the form factor f(λ)

is the square of a sinc function, which is independent of the transverse bunch distribution.

Similarly, for a Gaussian longitudinal distribution, f(λ) is also Gaussian [7]. For wavelengths

longer than the bunch length, the form factor approaches unity, and the total radiation

intensity is coherent (Itotal(λ) ∝ N2). On the other hand, for wavelengths shorter than

the bunch length, the form factor reduces to zero, and the radiation becomes incoherent

(Itotal(λ) ∝ N). The coherent radiation has N times more intensity than the incoherent one.

Hence, not only does coherent transition radiation carry the bunch distribution information,

it is also easier to detect than its incoherent counterpart.

It is worth noticing that transition radiation does not produce radiation in the forward

direction [θ = cos−1(n̂ · ẑ) = 0]. Hence, in order to use transition radiation to measure

the bunch length, it is necessary to observe the radiation in an off-axis direction (θ 6= 0).

In the case of an off-axis observation, the transverse bunch distribution will contribute to

the form factor even for a transversely symmetric beam. Minimizing such a contribution

becomes important for clean subpicosecond bunch-length measurements. For example, the

form factor for a cylindrical beam of radius ρ and length l, when observed at an angle θ

(i.e., n̂ · ẑ = cos θ), is given by
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f(λ)
∣∣∣∣
θ

= 4

[
J1(2πρ sin θ/λ)

2πρ sin θ/λ

sin(πl cos θ/λ)

πl cos θ/λ

]2

, (4)

where J1 is the first order Bessel function. In the forward direction (θ = 0), the transverse

contribution vanishes, and the form factor reduces to the familiar sinc-squared function.

However, for large angles or big transverse beam sizes, the transverse contribution will

result in an apparant bunch length mearsurement that is longer than the actual one. This

transverse contribution can be ignored if the 2πρ tan θ/3.83¿ l condition is satisfied, which

is assumed through out this paper. Therefore, good focusing to produce small transverse

beam size and a reasonable angular acceptance for the detector are crucial for accurate

subpicosecond bunch-length measurements.

B. Michelson interferometer

Since the spectrum of coherent transition radiation emitted by subpicosecond electron

bunches is in the far-infrared regime, a far-infrared Michelson interferometer is used to

measure the spectrum via optical autocorrelation, and the bunch length can be deduced

from the autocorrelation measurement. A Michelson interferometer used to measure the

bunch length is shown schematically in Fig. 1. It consists of a beam splitter, a fixed and a

movable mirror, and a detector. When light enters the Michelson interferometer, the beam

splitter splits its amplitude into two mirror arms. As these two rays are reflected from the

mirrors, they are recombined at the beam splitter and sent into the detector.

An ideal beam splitter has constant amplitude reflection (R) and transmission (T )

coefficients over all frequencies, which satisfy |R|2 = |T |2 = 1
2
. As shown in Fig. 1, for

an incoming light pulse of electric field E with intensity proportional to |E|2, the light pulse

split by the beam splitter and reflected by the fixed mirror has a field amplitude of TRE

when it reaches the detector; on the other hand, the light pulse reflected by the movable

mirror has an amplitude of RTE at the detector. Note that perfect reflection on the mirrors

is assumed. At zero optical path difference, the pulses completely overlap at the detector,
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and the total intensity reaches the maximum |2RTE|2 = 4|RT |2|E|2 = |E|2. All the incident

energy goes into the detector. As the path difference increases but is still shorter than the

bunch length, the two pulses overlap partially, and the total intensity decreases. Part of

the incident energy now goes back to the source. When the path difference of two arms is

larger than the bunch length, the two pulses are totally separated in time, and the resulting

intensity at the detector is 2|RT |2|E|2 = 1
2
|E|2. Only half of the incident energy goes into

the detector, while the other half goes back to the source. The intensity is constant over

all path differences greater than the bunch length and is called the baseline. The variation

of intensity about the baseline as a function of optical path difference is defined as the

interferogram. Therefore, the width of the peak in the interferogram can be used to estimate

the bunch length. For example, the bunch length is equal to the full width at half maximum

(FWHM) of the interferogram for a rectangular bunch distribution; however, for a Gaussian

bunch distribution, its equivalent bunch length (
√

2π σz) is about 75% of the interferogram

FWHM, i.e.,

Equivalent Bunch Length

Interferogram FWHM
=


1, rectangular ;

0.75, Gaussian .
(5)

The interferogram is obtained by measuring the detector signal as a function of the

path difference in the two arms. The intensity of the recombined radiation intensity at the

detector can be expressed in the time domain with an additional time delay δ/c for the

movable arm by

I(δ) ∝
∫ +∞

−∞

∣∣∣TRE(t) +RTE
(
t+

δ

c

)∣∣∣2 dt
= 2 |RT |2 Re

∫ +∞

−∞
E(t)E∗

(
t+

δ

c

)
dt

+2|RT |2
∫ +∞

−∞
|E(t)|2 dt ; (6)

alternatively, in the frequency domain an extra phase difference e−iωδ/c is added to the

radiation from the movable arm, and the intensity at the detector can be expressed by
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I(δ) ∝
∫ +∞

−∞

∣∣∣TRẼ(ω) +RT Ẽ(ω) e−iωδ/c
∣∣∣2 dω

= 2Re
∫ +∞

−∞
|RT |2 |Ẽ(ω)|2 e−iωδ/c dω

+ 2
∫ +∞

−∞
|RT |2 |Ẽ(ω)|2 dω , (7)

where δ is the optical path difference and c the speed of light. Equations (6) and (7) are

related by the Fourier transform

Ẽ(ω) =
1√
2π

∫ +∞

−∞
E(t) eiωt dt . (8)

The baseline is defined as the intensity at δ → ±∞; i.e.,

I∞ ∝ 2|RT |2
∫ +∞

−∞
|E(t)|2 dt

= 2
∫ +∞

−∞
|RT |2 |Ẽ(ω)|2 dω . (9)

By definition, the interferogram can be written

S(δ) = I(δ)− I∞

∝ 2|RT |2 Re
∫ +∞

−∞
E(t) E∗

(
t+

δ

c

)
dt (10)

= 2Re
∫ +∞

−∞
|RT |2 |Ẽ(ω)|2 e−iωδ/c dω . (11)

Therefore, the interferogram S(δ) is the autocorrelation of the incident light pulse [c.f.,

Eq. (10)], and its Fourier transform is the power spectrum of the pulse [c.f., Eq. (11)].

Solving for |Ẽ(ω)|2 in Eq. (11) yields

|Ẽ(ω)|2 ∝ 1

4πc|RT |2
∫ +∞

−∞
S(δ) eiωδ/c dδ , (12)

where |Ẽ(ω)|2 = |Ẽ(−ω)|2 is used since E(t) is a real function. Using Eq. (2) and the

relation Itotal(λ) ∝ |Ẽ(2πc/λ)|2, the bunch form factor can be obtained by

f(λ) ∝ 1

N − 1

[∫+∞
−∞ S(δ) ei2πδ/λ dδ

4π c|RT |2 NIe(λ)
− 1

]
. (13)

Hence, the interferogram contains the frequency spectrum of coherent transition radiation

and can be used to derive the bunch length.
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C. Beam-splitter interference effects

Suitable beam splitters for the far-infrared regime (a Mylar foil in our design) do not

provide constant and equal reflectance and transmittance for all frequencies. This departure

from an ideal beam splitter is caused by the interference of light reflected from both surfaces

of the beam splitter, which is equivalent to thin-film interference in optics [8]. The total

amplitude reflection coefficient for a Mylar foil of thickness t and refractive index n mounted

at a 45◦ angle to the direction of incoming light is given by [9]

R = −r 1− eiφ
1− r2 eiφ

, (14)

where r is the amplitude reflection coefficient of the air-to-Mylar interface at an incident

angle of 45◦, and φ defined as 4πtσ
√

(2n2 − 1)/2 at wavenumber σ = 1/λ [10]. The total

amplitude transmission coefficient for the same condition is

T = (1− r2)
eiφ/2

1− r2 eiφ
. (15)

No absorption in the foil is assumed, and the refractive index is assumed to be constant

(n = 1.85) over all frequencies [10]. The phase difference between R and T is π/2 at any

frequency. With this, energy conservation in the interferometer can be proved [9].

The efficiency of the beam splitter defined as |RT |2 is shown in Fig. 2 for some typical

thicknesses. Unlike the ideal beam splitter, the efficiency is not constant over all frequencies

and becomes zero at certain frequencies where light reflected from both surfaces of the beam

splitter interferes destructively. Equations in the time domain, such as Eq. (6), are no longer

valid for the case of varying efficiency and need to be replaced by appropriate convolution

integrals; however, equations in the frequency domain such as Eq. (7) still hold. The width

of the interferogram cannot be directly used for bunch-length estimation unless interference

effects on the interferogram are included.
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D. Bunch-length analysis

Although the interference effects on the interferogram caused by the complex reflection

and transmission coefficients of the beam splitter do not seem to have simple analytical

forms, these effects can be studied numerically for known bunch distributions, and the bunch

length can be estimated from the study. Both Gaussian and rectangular bunch distributions

are currently used in this study. While most real bunch distributions are neither Gaussian

nor rectangular, the bunch lengths estimated from the two distributions will give reasonable

bounds for the real one.

The beam-splitter-affected interferogram can be obtained numerically by using the

spectrum of a known bunch distribution and Eqs. (7), (14), and (15). Some numerical results

of the beam-splitter interference effects for a rectangular bunch distribution are shown in

Fig. 3. For an ideal beam splitter, the interferogram is non-negative and has the expected

triangular peak with its FWHM equal to the bunch length [c.f., Fig. 3(a)]. For Mylar beam

splitters, negative valleys appear in the interferograms, which are due to suppression of the

low frequency area by the first zero of the beam-splitter efficiency. These valleys move closer

to the main peak as the beam-splitter thickness (t) decreases [c.f., Fig. 3(b)–(d)]. For very

thin beam splitters [thinner than about half the equivalent bunch length (lb)], they merge

with the main peak and make the peak narrower [c.f., Fig. 3(d)]. The effects are similar for

a Gaussian distribution. Detailed results on how the FWHM values in the interferogram

change with the equivalent bunch length for both Gaussian and rectangular distributions

are shown in Fig. 4 for some Mylar beam-splitter thicknesses. The raggedness of the lines

for rectangular distribution is due to the high-frequency lobes of the sinc function. On

the other hand, Gaussian distribution has smoother variation in the high frequency area,

and the resulting slopes of the lines are smoother. When the equivalent bunch length is

shorter than about twice the beam-splitter thickness, the valleys in the interferogram are

separated from the main peak, and the relation between the interferogram FWHM and the

equivalent bunch length is the same as that for the ideal beam splitter in Eq. (5). The slopes
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of the lines become unity for rectangular distribution and 1/0.75 for a Gaussian. As the

equivalent bunch length becomes greater than about twice the beam-splitter thickness, the

valleys cut into the main peak and narrow its width. This peak-narrowing effect reduces the

slopes of the lines for rectangular distribution at longer bunch length and, hence, makes the

interferogram width less sensitive to the bunch-length change and increases the uncertainty

of estimated bunch length. Therefore, a beam splitter of suitable thickness is important

for effective bunch-length measurement. As indicated in Fig. 4, thicker beam splitters are

more preferable for bunch-length measurement. Once the beam splitter is chosen, the bunch

length can be derived from the measured interferogram width with the help of Fig. 4.

III. EXPERIMENTAL SETUP

For this experiment, the SUNSHINE facility was operated to produce 1-µs-long electron

macro-pulses at 10 Hz containing a train of about 3000 electron bunches at an energy of

30 MeV. Each bunch had about 3.5× 107 electrons. The bunch length is to be determined

by this autocorrelation method. As shown in Fig. 1, transition radiation is generated when

the electrons pass through a 25.4-µm-thick Al foil. The foil supported by a copper ring is

oriented at a 45◦ angle to the beam direction so that backward transition radiation is emitted

in the direction normal to the beam path and can easily be extracted from the evacuated

beam line into air via a 1-mm-thick high-density polyethylene (HDPE) window of 19 mm

diameter. Since backward transition radiation is emitted at the Al surface, the focal point of

an off-axis paraboloidal mirror is aligned with this surface to convert the divergent radiation

into parallel light without introducing extra optical path difference to the extracted light

pulse. The parallel light then enters a far-infrared Michelson interferometer.

The interferometer consists of a Mylar beam splitter supported by an Al ring, a fixed

and a movable first-surface mirror, and a room-temperature detector. The beam splitter

is mounted at a 45◦ angle to the direction of incident parallel light. The movable mirror

is moved by a linear actuator via a 486-based PC. The detector consists of a Molectron
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P1-65 LiTaO3 pyroelectric bolometer of 5 mm diameter and a pre-amplifier. Its bolometer

has a wide spectral response from millimeter waves to ultraviolet rays. This detector is

designed to measure the integrated radiation energy from each 1-µs macro-pulse and is

attached to a copper light-cone [11], which collects the light into the detector. The detector

signal is digitized into the computer. With the computer interfaces, the autocorrelation

measurements are performed automatically through the program under the LabVIEW

control environment implemented on the computer.

IV. RESULTS AND DISCUSSION

It has been confirmed that backward transition radiation emitted by the electron pulses

generated at SUNSHINE is coherent in the previous experiment [3]. Therefore, the spectrum

measured by the autocorrelation method contains the information of the bunch distribution

and can be used to derive the bunch length. By measuring the detector signal as a function

of the position of the movable mirror via the computer program, the interferograms of 2.2

mm long with 5-µm mirror step size are measured for four different Mylar beam-splitter

thicknesses and shown in Fig. 5. This 5-µm mirror step size corresponding to a 33-fs time

resolution is good enough for the experiments; however, finer resolution can still be achieved

by the actuator. The beam parameters are kept the same when different beam splitters are

used. The valleys around the main peak are separated farther apart as the beam-splitter

thickness increases. This widens the main peak [c.f., Fig. 5(a)–(c)] until the valleys are out

of the peak [c.f., Fig. 5(c),(d)]. The base of the peak can even be seen in Fig. 5(d). In the

figure, the FWHM’s of the main peaks are measured in terms of mirror movement. The

corresponding widths in terms of optical path difference are twice this movement. These

measured interferogram FWHM’s and the estimated equivalent bunch lengths deduced from

Fig. 4 for Gaussian and rectangular distributions are shown in Table I. The estimated bunch

lengths provide intervals for the real bunch length. As the beam-splitter thickness increases

from 12.7 to 50.8 µm, the interval narrows down, which indicates the estimation gets better
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for thicker beam splitter. Additionally, the intervals stay the same for 50.8- and 127-µm

beam splitters and agree with the estimation made from Eq. (5) for the ideal beam splitter .

It is also worth noticing that the estimated intervals are consistent over a 10-fold change in

the beam-splitter thickness. The estimated equivalent bunch length is about 100 µm long,

which corresponds to an rms bunch length of σz ≈ 43 µm or σt ≈ 142 fs.

For linear accelerators, using a solid metal foil to generate coherent transition radiation

for the interferometer does not seem to cause a problem, although it generally destroys the

electron-beam quality. However, such a destructive procedure cannot be applied to circular

accelerators. Nondestructive methods (such as using a bending magnet to generate coherent

synchrotron radiation [12] or using a metal foil with a center hole to generate coherent

transition radiation) are suitable for this application, despite the fact that the measured

spectrum has to be corrected for the frequency dependence of these generating methods

[i.e., Ie(λ) in Eq. (2)] in order to extract bunch information f(λ).

In principle, the measured spectral information can be used to reconstruct the bunch

distribution and give a better bunch-length measurement. However, there are some

practical difficulties in reconstructing the electron distribution for this experiment. First,

the spectrum is contaminated by water absorption lines [4,5] because the interferometer

is not protected from humidity. These lines are hard to remove, and their effects on the

reconstructed distribution are not clear. Secondly, the zeros of the beam-splitter efficiency

produce artificial peaks when the spectrum is numerically corrected for the beam-splitter

interference effects [4,5]. Unfortunately, in the presence of measurement noises, these peaks

are also not easy to remove. Finally, there are infinite distributions which give the same

autocorrelation even if the constraints for non-negative and real electron distribution are

employed. Although one-dimensional phase-retrieval methods have been suggested for this

reconstruction problem [12,13], they cannot guarantee the uniqueness of the solution, not to

mention the immunity against noises in data. Structures generated by these reconstruction

methods need to be verified as to whether they are real bunch structures or the artifacts

produced by the methods.
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V. CONCLUSION

In conclusion, a new frequency-resolved bunch-length measuring method specialized for

subpicosecond electron pulses has been developed at the Stanford SUNSHINE facility. This

method measures the autocorrelation of coherent transition radiation emitted at wavelengths

longer than or equal to the bunch length via a far-infrared Michelson interferometer.

The bunch length can be derived form the interferogram with special consideration of

interference effects in the beam splitter. Measurements have verified this method by

showing consistent results over a broad range of beam-splitter thicknesses. Based on

a low-cost, easy-to-operate, compact, and transportable Michelson interferometer, this

autocorrelation method demonstrates subpicosecond resolving power beyond the reach of

existing time-resolved methods.

This work was supported in part by Department of Energy contract DE–AC03–

76SF00515.
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TABLES

TABLE I. Measured interferogram FWHM’s in terms of optical path difference (OPD) for

different beam-splitter thicknesses and the corresponding estimated equivalent bunch lengths

deduced from Fig. 4 for Gaussian and rectangular distributions.

Beam splitter Interferogram Estimated equivalent bunch length (µm)

thickness (µm) FWHM OPD (µm) Gaussian Rectangular

12.7 55.6 60.8 100.6

25.4 77.4 72.8 103.2

50.8 112.3 86.9 111.0

127.0 110.4 83.1 109.1
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thicknesses: 12.7 (solid), 25.4 (dash-dotted), and 50.8 µm (dashed line). The incident light is

assumed to be unpolarized.
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FIG. 3. The simulation of the beam-splitter interference effects for a rectangular bunch

distribution with different beam splitters. The interferograms for (a) an ideal beam splitter and

Mylar beam splitters of thicknesses (t) (b) equal to, (c) half, and (d) one third of the bunch length

(lb) are shown.
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FIG. 5. Interferograms of 2.2 mm long with 5-µm mirror step size for different Mylar

beam-splitter thicknesses: (a) 12.7, (b) 25.4, (c) 50.8, and (d) 127 µm. The FWHM’s of the main

peaks are measured in terms of mirror movement. The corresponding widths in terms of optical

path difference are twice this movement.
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